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Abstract
The adiabatic quantum-flux parametron (AQFP) is a promis-

ing energy-efficient superconducting technology. Before tech-

nology mapping, additional buffer and splitter cells need

to be inserted into AQFP circuits to fulfill two special con-

straints: (1) Input signals to a logic gate need to arrive at

the same time, thus shorter paths need to be delayed with

buffers. (2) The output signal of a logic gate has to be actively

branched with splitters if it drives multiple fanouts. Buffers

and splitters largely increase the area and delay in AQFP

circuits. Naïve buffer and splitter insertion and light-weight

optimization using retiming techniques have been used in

related works, and it is not clear how much space there is for

further optimization. In this paper, we develop (a) a linear-

time algorithm to insert buffers and splitters irredundantly,

and (b) optimization methods by scheduling and by mov-

ing groups of gates, called chunks, together. Experimental

results show a reduction of up to 39% on buffer and split-

ter cost. Moreover, as the technology is still developing and

assumptions on the physical constraints are not clear yet,

we also discuss the impacts of different assumptions with

experimental results to motivate future research on AQFP

register design.

Keywords: AQFP, superconducting electronics, path balanc-

ing, combinational circuit, scheduling

1 Introduction
Superconducting electronics is an emerging domain arising

from the demand for ultra-low power consumption. Among

various superconducting logic families, the adiabatic quantum-

flux parametron (AQFP) [11] is a technology featuring zero

static energy consumption and very small switching energy

dissipation. Two of the challenges in AQFP circuit design

come from the path-balancing and fanout-branching require-

ments which are not needed in traditional CMOS logic cir-

cuits.

Path-balancing: TheAQFP gates are AC-biased. EachAQFP

gate receives an alternating excitation current to periodically

release its output signal and reset its state. All AQFP clocking

schemes [9, 10] require that the input signals of a logic gate

be released at the previous clocking phase. In other words,

all data paths must be of the same length. Whereas shorten-

ing longer paths is not always possible, buffers need to be

inserted to delay shorter paths.

Fanout-branching: In the AQFP technology, logical 0 and 1

are represented with different current directions. As the out-

put current of an AQFP gate is limited, it has to be amplified

by a splitter before branching into multiple fanouts. AQFP

splitters are also clocked.

As the research at the physical level rapidly develops and

the fabrication capability grows for larger and more complex

circuits, design automation tools specialized for AQFP are

in need. Pioneering works attempt to adapt existing tools to

fulfill the path-balancing and fanout-branching constraints

with post-synthesis modifications and optimization. In [2]

and [3], after classical logic synthesis, path-balancing buffers

and fanout-branching splitters are inserted separately and

then retiming-like algorithms are applied to reduce the buffer

and splitter cost locally. A majority-based logic synthesis

flow considering AQFP buffer and splitter costs is proposed

in [13], which emphasizes on reducing circuit depth and re-

stricting the increase of fanout count. In [4], consideration

of the balancing and branching constraints is integrated in

exact-synthesis-based rewriting. However, in the results of

these works, buffers and splitters still make up for over 50%,

and sometimes up to 80%, of the total cost. Moreover, as the

technology is still being developed, the physical constraints

are ever-changing and assumptions on the requirements vary

across different works and are often unclear, which makes

them difficult to compare with. For example, whether pri-

mary inputs and primary outputs need to be path-balanced

and fanout-branched depends on the design of interfacing

registers, which is still under development [7].

While the path-balancing constraint also exists for the

rapid single-flux-quantum (RSFQ) technology and optimiza-

tion methods have been researched [6], an important distinc-

tion is that RSFQ splitters are not clocked but AQFP splitters

are. For this reason, fanout-branching has to be considered

together with path-balancing in AQFP, which makes the

problem more complicated. If only path balancing needs to

be done, as in RSFQ, the optimal way of inserting buffers

without changing the logic structure can be found in lin-

ear time. However, buffer and splitter insertion in AQFP is

non-trivial even without logic optimization. Thus, we limit

our investigation to the problem of AQFP buffer and splitter

insertion without logic transformation.

In this paper, observations about the complexity of the

defined problem and systematic methods to deal with it are

presented, and the impact of the technology assumptions

are experimented and discussed. In Section 4, a linear-time
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algorithm to count irredundant buffers is presented, which

subsumes the retiming and optimization techniques pro-

posed in [3]. Different than the previous work, we consider

buffers and splitters together and count them in an irredun-

dant way such that the “optimizations” in [3] are considered

without extra effort. Also, we observe that the irredundant

construction is not optimal yet. On top of the locally ir-

redundant buffer and splitter insertion, efforts have to be

made in finding a suitable depth assignment to logic gates to

achieve the global optimum. In Section 5, methods to obtain

an initial depth assignment and to adjust it incrementally

are presented. To escape from local minimum, we propose

to move groups of gates together as a chunk. Experimental

results show that obtaining better depth assignments using

the proposed methods reduces the number of buffers by up

to 39%. Moreover, various possible technology assumptions

are first discussed in Section 3 and then experimented in

Section 6. The results suggest that branching and balancing

of primary inputs have greater impacts on the buffer count

of about 50% and 30%, respectively.

2 Background
2.1 Adiabatic Quantum-Flux Parametron
The adiabatic quantum-flux parametron (AQFP) is an emerg-

ing superconducting technology shown to achieve promis-

ing energy efficiency. [11] The basic circuit components in

this technology are the buffer cell and the branch cell. The

majority-3 logic gate can be constructed by combining three

buffer cells with a 3-to-1 branch cell, from which other logic

gates, such as the AND gate and the OR gate, can be built

with constant cells (biased buffer cells). Input negation of

logic gates is realized using a negative mutual inductance

and is of no extra cost. [12] The commonly-used cost metric

of AQFP circuits is the Josephson junction (JJ) count. A buffer

costs 2 JJs and a majority-3 gate costs 6 JJs.

Logic gates in an AQFP circuit need to be activated and

deactivated periodically by an excitation current. [9] In other

words, every gate in an AQFP circuit is clocked, and all input

signals have to arrive at the same clock cycle. To ensure this,

shorter data paths need to be delayed with clocked buffers.

Moreover, the output signal of AQFP logic gates cannot be

directly branched to feed into multiple fanouts. Instead, split-

ters are placed at the output of multi-fanout gates to amplify

the output current. A splitter cell is composed of a buffer

cell and a 1-to-𝑛 branch cell (usually, 2 ≤ 𝑛 ≤ 4) and is also

clocked. As the cost of splitters comes mostly from the buffer

cells, in the remaining of this paper, we do not distinguish

buffers and splitters and will model them with the same

abstract data structure.

2.2 Terminology
A (logic) network is a directed acyclic graph defined by a pair

(𝑉 , 𝐸) of a set 𝑉 of nodes and a set 𝐸 of directed edges. The

node set 𝑉 = 𝐼 ∪𝑂 ∪𝐺 is disjointly composed of a set 𝐼 of

primary inputs (PIs), a set 𝑂 of primary outputs (POs), and a

set𝐺 of (logic) gates. Each PI has in-degree 0 and unbounded

out-degree, whereas each PO has in-degree 1 and out-degree

0. The out-degree of each gate is unbounded and the in-

degree is a fixed number depending on the type of the gate.

For any gate 𝑔 ∈ 𝐺 , the fanins of 𝑔, denoted as FI(𝑔), is the
set of gates and PIs connected to 𝑔 with an incoming edge.

Similarly, the fanouts of 𝑔, denoted as FO(𝑔), is the set of
gates and POs connected to𝑔with an outgoing edge. Fanouts

are also defined for PIs.

A mapped network 𝑁 ′ is a network whose node set 𝑉 ′ is
extended with a set 𝐵 of buffers. A buffer is a node with

in-degree 1. In a mapped network, the definition of the

fanouts of a gate is modified by ignoring any intermedi-

ate buffers, i.e., a path from a gate 𝑔 to one of its fanouts

𝑔𝑜 ∈ FO(𝑔) ⊂ (𝐺 ∪𝑂) may include any number of buffers

in 𝐵, but never another gate in 𝐺 − {𝑔,𝑔𝑜 }. The definition
of fanins is modified similarly. The fanout tree of a gate 𝑔,

denoted by FOT(𝑔), is the set of buffers between 𝑔 and any

gate or PO in FO(𝑔). Fanout trees are also defined for PIs.

For each node 𝑛 in a network, the depth of 𝑛, denoted by

𝑑 (𝑛), is a non-negative integer assigned to 𝑛. The depth of a

network 𝑁 = (𝑉 = 𝐼 ∪𝑂 ∪𝐺, 𝐸) is defined as

𝑑 (𝑁 ) = max

𝑜∈𝑂
𝑑 (𝑜). (1)

Moreover, the relative depth between a PI or a gate𝑛 ∈ (𝐼∪𝐺)
and one of its fanout 𝑛𝑜 ∈ FO(𝑛) ⊂ (𝐺 ∪𝑂), is denoted and

defined as

rd (𝑛, 𝑛𝑜 ) = 𝑑 (𝑛𝑜 ) − 𝑑 (𝑛). (2)

Note that relative depth is only defined among PIs, gates,

and POs.

3 Technology Assumptions
To fulfill the needs in theAQFP technology for fanout-branching

and path-balancing, we define the following two properties

for a mapped network 𝑁 ′ = (𝑉 ′ = 𝐼 ∪𝑂 ∪𝐺 ∪ 𝐵, 𝐸 ′) with
a depth assignment. Given the splitting capacities 𝑠𝑖 , 𝑠𝑔, 𝑠𝑏 of

each type of node,

1. 𝑁 ′ is path-balanced if

∀𝑛1, 𝑛2 ∈ 𝑉 ′ : (𝑛1, 𝑛2) ∈ 𝐸 ′⇒ 𝑑 (𝑛1) = 𝑑 (𝑛2) − 1, (3)

∀𝑖 ∈ 𝐼 : 𝑑 (𝑖) = 0, and (4)

∀𝑜 ∈ 𝑂 : 𝑑 (𝑜) = 𝑑 (𝑁 ′). (5)

2. 𝑁 ′ is properly-branched if every PI has an out-degree

no larger than 𝑠𝑖 = 1, every gate has an out-degree no

larger than 𝑠𝑔 = 1, and every buffer has an out-degree

no larger than 𝑠𝑏 .

An (unmapped) network 𝑁 with a depth assignment is

said to be legal if a path-balanced and properly-branched

mapped network 𝑁 ′ can be extended from 𝑁 .

Logic networks defined in Section 2.2 model the combina-

tional parts of digital circuits. In practice, PIs of a network
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are usually provided by the register outputs of the previous

sequential stage and POs are connected to the register in-

puts of the next stage. Depending on how the registers are

implemented, different assumptions on whether PIs and POs

need to be path-balanced or branched may arise.

3.1 Path-Balancing of PIs
It is possible to design registers that can hold and output

its value at every clock cycle. In this case, the PI nodes in

our model can be placed at any depth, i.e., condition 4 is

removed.

3.2 Path-Balancing of POs
In most related works, it is assumed that all PO signals must

arrive at the register inputs at the same clock cycle. That

is, POs are path-balanced to ensure robust operations. If

the PI values are always available and stable until the next

register update, shorter paths from PI to PO simply compute

the same result repeatedly in the later cycles when longer

paths are still computing. In this case, shorter paths do not

have to be aligned with the longest path (the critical path).

In other words, the PO nodes in our model are no longer

limited to be placed at the same depth, i.e., condition 5 is

removed. However, there may still be constraints on the PO

depths depending on the clocking scheme used. For example,

a 4-phase clocking scheme [9] may require that the depths

of PO nodes must be a multiple of 4 because the registers

can only take inputs in one of the four clock phases.

3.3 Branching of PIs
When a register drives multiple outputs, we may or may

not need to insert splitters to ensure a large enough current,

depending on the physical implementation of the register. If

the registers are capable of producing large current, 𝑠𝑖 can be

set to infinity. Otherwise, it is also possible to duplicate the

frequently-used PIs in the register file to avoid deep splitter

trees, or to design special large-capacity buffers having a

higher 𝑠𝑏 value and use them for PIs with many fanouts.

3.4 Branching and Inversion of POs
If a gate output feeds into multiple registers, then splitters

are always needed. If the negated output of a majority gate

is required by the next sequential stage, we can push the

output inversion to the gate’s inputs because the majority

function is self-dual [5] and input negation is for free in

AQFP. However, if a gate output is needed by the next stage

once in the regular form and once in the negated form, then

we not only need a splitter, but also an additional NOT gate

made of an input-negated buffer.

3.5 Problem Formulation
In this paper, we focus on the problem of AQFP buffer inser-

tion after logic synthesis without changing the structure of

the original network, formulated as follows:

Given a network 𝑁 = (𝑉 = 𝐼 ∪ 𝑂 ∪𝐺, 𝐸) and the value

of the parameter 𝑠𝑏 , find a mapped network 𝑁 ′ = (𝑉 ′ =
𝐼 ∪𝑂 ∪𝐺 ∪ 𝐵, 𝐸 ′), such that:

1. 𝑁 ′ is path-balanced and properly-branched.

2. For all gates 𝑔 ∈ 𝐺 , FO(𝑔) and FI(𝑔) remain the same

in 𝑁 ′ as in 𝑁 .

3. |𝑉 ′ | is minimized. Since𝑉 ′ = 𝑉 ∪ 𝐵, it is equivalent to
|𝐵 | being minimized.

We call such 𝑁 ′ a minimum mapped network for 𝑁 .

4 Irredundant Buffer Insertion
A mapped network is said to be irredundant if the following

two conditions hold.

1. There is no dangling buffer, i.e., every buffer has at

least one outgoing edge.

2. There does not exist any pair of two buffers whose

incoming edges are connected from the same node and

both of them have out-degrees smaller than 𝑠𝑏 .

We consider only irredundant networks in the remaining

of this paper. In this section, we will explain how the problem

formulated in Section 3.5 can be approached, starting from

the following observation.

Claim 1. Given a network 𝑁 = (𝑉 , 𝐸), finding a minimum

mapped network for 𝑁 is essentially finding a depth assign-

ment to every node in 𝑉 .

To show why Claim 1 is true, we will first formulate

Lemma 2 to show that the buffer set in an irredundant

mapped network can be decomposed into fanout trees of

each gate. Then, we will present Algorithm 1 to show how

the irredundant fanout tree of a gate 𝑔 can be constructed

given the relative depths of its fanouts. Thus, once a depth

assignment is given, the total size of fanout trees is decided,

so as the size of the mapped network.

Lemma 2. In any irredundant mapped network with PI set 𝐼 ,

gate set 𝐺 , and buffer set 𝐵,

𝐵 =
⋃
𝑔∈𝐺

FOT(𝑔) ∪
⋃
𝑖∈𝐼

FOT(𝑖).

Proof. By definition, a buffer has exactly one incoming edge.

The adjacent node connected to a buffer with its incoming

edge is either another buffer in 𝐵, a gate in 𝐺 , or an PI in

𝐼 because POs have no outgoing edge. Going from a buffer

𝑏 in the opposite direction of edges and continue tracing

until a gate 𝑔 or a PI 𝑖 is met, we have 𝑏 ∈ FOT(𝑔) (or
𝑏 ∈ FOT(𝑖)) because there is no dangling buffer tree (rule 1

for irredundant networks). Hence, for each buffer 𝑏 ∈ 𝐵,

there is either a gate 𝑔 ∈ 𝐺 such that 𝑏 ∈ FOT(𝑔), or there is
a PI 𝑖 ∈ 𝐼 such that 𝑏 ∈ FOT(𝑖). Moreover, this gate or PI is

unique for each 𝑏. For each gate 𝑔 ∈ 𝐺 and for each PI 𝑖 ∈ 𝐼 ,
FOT(𝑔) ⊆ 𝐵 and FOT(𝑖) ⊆ 𝐵 by definition. Thus, the set of

non-empty fanout trees is a partitioning of 𝐵.
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Input: A gate 𝑔

Output: The size |FOT(𝑔) | of the fanout tree of 𝑔
1 𝑙𝑚𝑎𝑥 ← max

𝑔𝑜 ∈FO(𝑔)
rd (𝑔,𝑔𝑜 )

2 count ← 0

3 edges ← |{𝑔𝑜 ∈ FO(𝑔) : rd (𝑔,𝑔𝑜 ) = 𝑙𝑚𝑎𝑥 }|
4 for 𝑙 = 𝑙𝑚𝑎𝑥 − 1 downto 1 do
5 buffers ← ⌈ edges𝑠𝑏

⌉
6 count ← count + buffers
7 edges ← buffers + |{𝑔𝑜 ∈ FO(𝑔) : rd (𝑔,𝑔𝑜 ) = 𝑙}|
8 assert edges = 1

9 return count

Algorithm 1: Irredundant fanout tree construction

given relative depths of fanouts.

𝑔

𝑙 = 1

𝑙 = 2

𝑙 = 3

𝑙 = 4

𝑙 = 5

buffers = ⌈ 2
2
⌉ = 1,

buffers = ⌈ 1
2
⌉ = 1,

buffers = ⌈ 2
2
⌉ = 1,

buffers = ⌈ 3
2
⌉ = 2,

edges = 1

edges = 2

edges = 1

edges = 2

edges = 3

Figure 1. Example sub-network to illustrate Algorithm 1.

For any gate𝑔, given relative depths rd (𝑔,𝑔𝑜 ) of its fanouts
𝑔𝑜 ∈ FO(𝑔), the size of its fanout tree |𝐹𝑂𝑇 (𝑔) | can be com-

puted with Algorithm 1. The algorithm iterates over all levels

𝑙 from the relative depth of the highest fanout down to 1,

and counts the number of buffers (variable buffers) needed

at each level. The total number of buffers is accumulated in

variable count (line 6). At each level 𝑙 , variable edges keeps

the number of edges ending in some node of relative depth

𝑙 , which is simply the number of buffers and fanouts at this

level (line 7). Then, the number of buffers needed at the lower

level 𝑙 − 1 is computed by the number of edges starting at

𝑙 − 1 (i.e., the number of edges ending at 𝑙) divided by the

splitting capacity 𝑠𝑏 and rounded up (line 5). This algorithm

works also for constructing the fanout tree of a given PI. If

the fanout information is stored in a data structure that the

size |{𝑔𝑜 ∈ FO(𝑔) : rd (𝑔,𝑔𝑜 ) = 𝑙}| for any given value 𝑙 can

be queried in constant time, then the algorithm runs in linear

time with respect to |FO(𝑔) |.
Figure 1 illustrates an example execution of Algorithm 1,

where circles are gates and squares are buffers, and 𝑠𝑏 = 2

is assumed. The concerned gate 𝑔 has one fanout of rela-

tive depth 2 and three fanouts of relative depth 5. The total

number of buffers in the fanout tree is 5.

The constructed fanout tree is guaranteed to be irredun-

dant because only theminimum number of buffers is inserted

at each level based on the number of outgoing edges needed.

Note that the retiming optimization proposed in [3], which

pushes buffers from the outputs of a splitter to its input, is al-

ready considered during construction of irredundant fanout

trees.

Moreover, Algorithm 1 also verifies whether it is possible

to build a properly-branched network with the given depth

assignment. In line 8, the assertion makes sure that the gate

𝑔 has only one outgoing edge. Running the algorithm for all

PIs and gates in a depth-assigned network, by Lemma 2, a

mapped network is derived. The mapped network is guaran-

teed to be properly-branched if the assertion in line 8 never

fails. It is also path-balanced because every node is connected

to a node at exactly one level lower. As Algorithm 1 is deter-

ministic, we conclude that the number of irredundant buffers

for a given depth assignment is unique.

5 Optimization on Depth Assignment
Following Claim 1, in this section, we attempt to find a good

depth assignment to minimize the total number of buffers

in the mapped network. In Section 5.1, we first obtain an

initial depth assignment using scheduling algorithms. Then,

in Section 5.2, we try to move gates up or down to reduce the

total number of buffers.Moving a gate 𝑔 up by 𝑙 levels means

that 𝑑 (𝑔) is increased by 𝑙 while the depths of the other gates
remain the same. Similarly, moving 𝑔 down means 𝑑 (𝑔) is
decreased. During the entire process, we always ensure that

the network is legal.

5.1 Obtaining an Initial Depth Assignment
An initial depth assignment can be obtained using an as-

soon-as-possible scheduling (ASAP) algorithm which assigns

the smallest possible depth to each gate. To ensure that the

network can be path-balanced and properly-branched after

mapping, enough depths for a balanced fanout tree are re-

served at the output of every multi-fanout gates, which is

calculated as ⌈
log( |FO(𝑔) |)

log(𝑠𝑏)

⌉
. (6)

Then, an as-late-as-possible scheduling (ALAP) can be applied

using an upper bound 𝑑 (𝑁 ) obtained by ASAP.

However, neither ASAP nor ALAP achieves the global

optimum. Figure 2 (a) shows an example sub-network after

ASAP, where circles are gates and squares are buffers. The

gate 𝑔 is not the highest fanout of either of its fanins, thus

moving 𝑔 up does not increase sizes of the fanout trees of

𝑔1 and 𝑔2. Moreover, the fanout 𝑔3 is lower-bounded by its

other fanin. Thus, by moving up 𝑔, as shown in Figure 2 (b),

a buffer is eliminated in its fanout tree.

The reason why this problem is not trivial is because a

movement of a gate affects both its own fanout tree and its

fanins’ fanout trees. Moreover, in some cases, it is impossible

to legally move a single gate and reduce the buffer count,

but rearranging some gates altogether eventually leads to
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𝑔1 𝑔2

𝑔

𝑔3

(a) Original sub-network.

𝑔1 𝑔2

𝑔

𝑔3

(b) Optimized sub-network.

Figure 2. Example sub-network where ASAP does not lead

to the optimum.

further reduction. Thus, in the following sections, groups of

gates are identified and moved together as chunks.

5.2 Chunked Movement
A movement is legal if the network remains legal after the

movement. For example, if a gate 𝑔 has a fanout 𝑔𝑜 of relative

depth rd (𝑔,𝑔𝑜 ) = 1, then moving 𝑔 up alone is not legal.

Similarly, if a gate 𝑔 has more than one fanouts, then moving

any of its fanouts to 𝑑 (𝑔) + 1 is not legal because there must

be a buffer occupying the only outgoing edge of 𝑔 at 𝑑 (𝑔) + 1.
A pair of gates (𝑔,𝑔𝑜 ) : 𝑔𝑜 ∈ FO(𝑔) are close if either one

of the following conditions holds:

1. rd (𝑔,𝑔𝑜 ) = 1, implying that 𝑔𝑜 is the only fanout of 𝑔.

2. |FO(𝑔) | > 1 and rd (𝑔,𝑔𝑜 ) = 2.

If a gate 𝑔 and its fanout 𝑔𝑜 are not close, then there is flexi-

bility at the output of 𝑔 and at the input of 𝑔𝑜 .

A chunk 𝐶 is a set of closely-connected gates and can

be seen as a super-node having multiple incoming and out-

going edges, called the input interfaces (IIs) and output in-

terfaces (OIs), respectively. An interface is a pair (𝑔𝑐 , 𝑔𝑓 ) of
gates, where 𝑔𝑐 ∈ 𝐶 , 𝑔𝑓 ∉ 𝐶 , and either 𝑔𝑓 ∈ FI(𝑔𝑐 ) (II) or
𝑔𝑓 ∈ FO(𝑔𝑐 ) (OI).

Input: An initial gate 𝑔0
Output: A chunk 𝐶 and its interfaces 𝑇

1 𝐶 ← {𝑔0}
2 𝐹 ← {(𝑔0, 𝑔) : 𝑔 ∈ FI(𝑔0) ∪ FO(𝑔0)}
3 𝑇 ← ∅
4 while 𝐹 ≠ ∅ do
5 (𝑔𝑐 , 𝑔𝑓 ) ← pop(𝐹 )

6 if 𝑔𝑓 ∈ 𝐶 then continue
7 if 𝑔𝑐 and 𝑔𝑓 are close then
8 𝐶 ← 𝐶 ∪ 𝑔𝑓

9 𝐹 ← 𝐹 ∪ {(𝑔𝑓 , 𝑔) : 𝑔 ∈ FI(𝑔𝑓 ) ∪ FO(𝑔𝑓 )}
10 else
11 𝑇 ← 𝑇 ∪ {(𝑔𝑐 , 𝑔𝑓 )}
12 return 𝐶,𝑇

Algorithm 2: Chunk construction.

II

slack=1

BII

slack=1

BII

slack=1

BII,

slack=2

OI

OI

𝑔0 𝑔4
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𝑔2

.

.

.

Figure 3. A chunk to be moved down.

Algorithm 2 illustrates how a chunk can be constructed.

Starting from an initial gate 𝑔0, a chunk is formed by ex-

ploring towards its fanins and fanouts and adding gates into

the chunk if they are close (line 8), or recording an input or

output interface if there is flexibility (line 11). When a new

gate is added into the chunk, its fanins and fanouts are also

explored (line 9).

A chunk constructed with Algorithm 2 has flexibilities at

all of its interfaces. Thus, even though the individual gates in

the chunk cannot be moved legally, a chunk may be moved

as a whole. Figure 3 shows an example chunk. Starting from

the initial gate 𝑔0, closely-connected gates 𝑔1, 𝑔2, 𝑔3, 𝑔4 are

added into the chunk in the respective order. The gate 𝑔1,

for example, cannot be moved up nor down without moving

other gates at the same time. In contrast, the gate 𝑔0 can be

legally moved down, but moving it alone only increases the

total number of buffers.

To see howmany levels a chunk can bemoved andwhether

the movement reduces the total number of buffers, we define

some more properties for chunk interfaces.

Moving down: When a chunk is intended to be moved

down, a slack is computed at each input interface (𝑔𝑐 , 𝑔𝑓 ) by

slack(𝑔𝑐 , 𝑔𝑓 ) =
{

rd (𝑔𝑓 , 𝑔𝑐 ) − 1, if |FO(𝑔𝑓 ) | = 1

rd (𝑔𝑓 , 𝑔𝑐 ) − 2, otherwise
(7)

The slack of the chunk is the maximum number of levels by

which we can move the chunk down, and it is calculated as

the minimum slack of all of its input interfaces. Moreover,

(𝑔𝑐 , 𝑔𝑓 ) is said to be a beneficial input interface (BII) if

∀𝑔𝑜 ∈ FO(𝑔𝑓 ), 𝑔𝑜 ≠ 𝑔𝑐 : rd (𝑔𝑓 , 𝑔𝑜 ) < rd (𝑔𝑓 , 𝑔𝑐 ). (8)

If a chunk has 𝑥 BIIs and 𝑦 OIs with distinct 𝑔𝑐 , moving the

chunk down by 𝑙 levels eliminates 𝑙 · (𝑥 − 𝑦) buffers in total.

Moving up: Similarly and conversely, when a chunk is

intended to be moved up, a slack is computed at each output
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interface (𝑔𝑐 , 𝑔𝑓 ) by

slack(𝑔𝑐 , 𝑔𝑓 ) =
{

rd (𝑔𝑐 , 𝑔𝑓 ) − 1, if |FO(𝑔𝑐 ) | = 1

rd (𝑔𝑐 , 𝑔𝑓 ) − 2, otherwise
(9)

The slack of the chunk is the minimum slack of all of its

output interfaces. When moving up, output interfaces are

always beneficial. If a chunk has 𝑥 OIs with distinct 𝑔𝑐 and

𝑦 IIs, moving the chunk up by 𝑙 levels eliminates 𝑙 · (𝑥 − 𝑦)
buffers in total.

6 Experimental Results
In this section, we present experimental results using dif-

ferent combinations of technology assumptions discussed

in Section 3. The irredundant buffer insertion and chunked

movement algorithms are implemented in C++-17 as part of

the EPFL logic synthesis librarymockturtle
1
[8]. As discussed

in Section 2.1, the intrinsic logic gate in the AQFP technology

is the majority-3 gate, majority-inverter graphs (MIGs) [1]

are used as the data structure for (unmapped) networks in

our experiments. We use the same initial MIGs as in [13]

from the MCNC benchmark suite [14].

6.1 Balancing of PIs and POs
In this section, we use the assumptions that PIs need to be

branched (𝑠𝑖 = 1) and 𝑠𝑏 = 3. Table 1 shows the four possible

combinations of the assumptions on whether PIs and POs

need to be path-balanced. When the POs are not balanced,

we do not impose the requirement of modulo-4 path lengths

either. The block Unmapped lists the benchmark names

(Bench.), numbers of majority gates (#gates), network depths

before buffer insertion (Depth), and numbers of PIs (#PIs)

and POs (#POs). There are five columns in each block, listing

the numbers of irredundant buffers after the initial ASAP

scheduling (ASAP) and after ALAP (ALAP), the final number

of buffers after optimization with chunked movement (Opt.),

the depth of the mapped networks (Depth), and the number

of chunks (#chunks). The row Improv. lists the percentage

improvements of ALAP and Opt. comparing to ASAP. The

row Ratio lists the ratios of the initial ASAP (bold), ALAP
(italic), and optimized (underlined) buffer counts across dif-

ferent experiments using Balance PIs + Balance POs as
the baseline.

The scheduling method (ASAP or ALAP) that leads to

fewer buffers is used to obtain the initial depth assignment

for chunked movement, decided independently for each

benchmark and for each experiment. When PIs need to be

balanced (the upper half of Table 1), ALAP do not lead to

much improvement, but chunked movement is able to op-

timize away 17% of the buffers. On the other hand, when

PIs do not need to be balanced (the lower half of Table 1),

ALAP usually leads to much better results, reducing about

20-30% of buffers, and chunked movement further eliminates

1
Available: github.com/lsils/mockturtle

another 6-8%. Observing the bold ratios, we see that the path-

balancing buffers for POs constitute about 14% of the total

when ASAP is applied; observing the italic ratios, we see that

the path-balancing buffers for PIs constitute about 30% of the

total when ALAP is applied. With the chunked-movement-

based optimization, the two extremes are balanced, and we

see a larger impact of the PI-balancing assumption.

6.2 Branching of PIs and Splitting Capacity
In this section, we use the assumptions that neither PIs nor

POs need to be balanced (i.e., the last case in Table 1), and we

study the impact of branching PIs and the value of buffer’s

splitting capacity 𝑠𝑏 . Table 2 shows the number of buffers

(Opt.) and the circuit depth (Depth) after optimization us-

ing different assumptions on PI branching and 𝑠𝑏 value. The

two columns under |FO(𝑖) | show, respectively, the maximum

(Max.) and the average (Avg.) fanout size of PIs in each bench-

mark. Row Ratio lists the ratios of the buffer counts in each

experiment comparing to Branch PIs, 𝑠𝑏 = 3.

If PIs do not need to be branched, the number of buffers

needed is halved. In other words, about half of the buffers are

used to branch high-fanout PIs. This phenomenon is even

more obvious when the splitting capacity is smaller. Indeed,

PIs with high fanout counts are common in many bench-

marks, and PI-branching splitters can hardly be eliminated

with any optimization.

When not branching PIs, the impact of splitting capacity

is relatively minor, with less than 5% difference between

𝑠𝑏 = 3 and 𝑠𝑏 = 4. Thus, except for branching PIs, design of

high-capacity splitters is not particularly necessary.

7 Conclusion and Future Work
In conclusion, this paper provides a different viewpoint to

the problem of AQFP buffer and splitter insertion. With the

linear-time irredundant buffer insertion algorithm presented

in Section 4 and simple scheduling algorithms discussed

in Section 5.1, a good starting point can be obtained effi-

ciently. Then, the chunked movement method illustrated

in Section 5.2 provides possibility to further minimize the

cost and escape from local minima. In Section 6, experimen-

tal results show that the proposed optimization flow with

scheduling and chunked movement reduces about 17-39% of

buffers, depending on the technology assumptions imposed.

Moreover, experiments on different assumptions suggest that

PI balancing has a greater impact than PO balancing, and that

PI branching accounts for half of the inserted buffers. These

results motivate future research on the design of AQFP reg-

isters and splitters. For future work, we hope to develop an

exact algorithm to find the global optimal, which will allow

us to evaluate how good the existing and future-developed

heuristics are. We also plan to integrate the proposed buffer

optimization with logic synthesis algorithms considering

AQFP constraints such as [4, 13].

136

github.com/lsils/mockturtle


Irredundant Buffer and Splitter Insertion and Scheduling-Based Optimization for AQFP Circuits IWLS’21, July 19-22, 2021, Virtual Conference

Table 1. Impact of PI and/or PO balancing and quality of chunked movement.

Unmapped Balance PIs

Balance POs Not balance POs

Bench. #gates Depth ASAP ALAP Opt. Depth #chunks ASAP ALAP Opt. Depth #chunks

c1908 381 38 3011 3296 2820 64 56 2605 3296 2413 64 56

c432 174 44 2471 2647 2220 68 25 2423 2635 2198 70 30

c5315 1270 33 9936 11844 9457 60 200 6409 11402 5986 59 205

c880 300 28 2577 2911 2159 42 44 1854 2884 1501 42 45

chkn 421 28 1607 1280 1241 38 8 1536 1280 1232 38 8

count 119 18 816 1004 766 29 31 639 1004 585 29 31

dist 535 16 1086 814 809 28 3 1066 814 808 28 3

in5 443 19 1413 1056 1042 30 18 1278 1056 1020 30 18

in6 370 17 1184 938 884 23 22 1002 938 811 23 22

k2 1955 25 5177 4570 4171 43 53 4512 4528 3722 43 139

m3 411 13 833 636 620 22 14 761 634 615 22 14

max512 713 17 1399 1093 1078 28 3 1361 1093 1070 28 3

misex3 1532 24 4181 3004 2879 38 16 4113 3004 2883 38 15

mlp4 462 16 915 668 653 26 9 839 668 647 26 9

prom2 3477 22 6855 5442 5300 33 59 6777 5442 5298 33 59

sqr6 138 13 381 246 246 20 8 287 241 229 20 6

x1dn 152 14 479 561 428 22 16 453 561 399 22 16

Total 44321 42010 36773 37915 41480 31417

Improv. 5.2% 17.0% -9.4% 17.1%

Ratio (1.00) (1.00) (1.00) 0.86 0.99 0.85

Not balance PIs

Balance POs Not balance POs

Bench. #PIs #POs ASAP ALAP Opt. Depth #chunks ASAP ALAP Opt. Depth #chunks

c1908 33 25 3011 2910 2549 62 24 2605 2910 2202 62 44

c432 36 7 2471 1903 1689 65 6 2423 1891 1673 65 6

c5315 178 123 9936 4520 3934 56 64 6409 4197 3574 56 64

c880 60 26 2577 1475 1306 40 22 1854 1448 1238 40 22

chkn 29 7 1607 785 720 34 8 1536 785 715 34 8

count 35 16 816 343 287 24 15 639 343 286 24 15

dist 8 5 1086 791 762 24 2 1066 791 761 24 2

in5 24 14 1413 814 762 27 14 1278 814 746 27 13

in6 33 23 1184 674 627 23 21 1002 674 621 23 19

k2 45 45 5177 3854 3375 37 59 4512 3812 3249 37 56

m3 8 16 833 613 576 19 13 761 611 567 19 12

max512 9 6 1399 1081 1036 26 3 1361 1081 1028 26 3

misex3 14 14 4181 2983 2815 34 19 4113 2983 2811 34 19

mlp4 8 8 915 645 609 23 8 839 645 603 23 8

prom2 9 21 6855 5435 5261 33 57 6777 5435 5259 33 57

sqr6 6 12 381 230 217 17 8 287 225 200 17 6

x1dn 27 6 479 399 362 19 5 453 399 362 19 5

Total 44321 29455 26887 37915 29044 25895

Improv. 33.5% 39.3% 23.4% 31.7%

Ratio 1.00 0.70 0.73 0.86 0.69 0.70
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Table 2. Impact of PI branching and splitting capacity.

Branch PIs Not branch PIs

|FO(𝑖) | 𝑠𝑏 = 2 𝑠𝑏 = 3 𝑠𝑏 = 4 𝑠𝑏 = 2 𝑠𝑏 = 3 𝑠𝑏 = 4

Bench. Max. Avg. Opt. Depth Opt. Depth Opt. Depth Opt. Depth Opt. Depth Opt. Depth

c1908 22 0.67 2624 69 2202 62 2073 58 1245 66 952 61 870 59

c432 6 0.17 1932 75 1673 65 1512 58 497 74 456 67 423 57

c5315 84 0.47 4818 65 3574 56 3087 51 2668 60 2043 51 1796 50

c880 11 0.18 1568 50 1238 40 1192 40 528 45 437 42 428 42

chkn 42 1.45 1001 40 715 34 602 34 264 34 235 33 229 33

count 32 0.91 373 26 286 24 273 24 72 25 57 23 57 23

dist 96 12.00 1093 27 761 24 659 23 392 22 376 22 376 22

in5 52 2.17 1019 29 746 27 670 27 351 26 307 26 306 26

in6 46 1.39 835 25 621 23 544 21 216 20 206 20 205 20

k2 152 3.38 4554 39 3249 37 2915 36 3019 38 2349 35 2207 35

m3 77 9.62 861 25 567 19 481 19 306 18 278 18 267 18

max512 126 14.00 1475 30 1028 26 894 24 563 23 541 23 539 23

misex3 144 10.29 3769 43 2811 34 2558 34 2029 33 1864 33 1841 34

mlp4 79 9.88 888 25 603 23 514 23 281 22 263 22 263 22

prom2 451 50.11 7369 37 5259 33 4568 31 3813 26 3405 26 3346 26

sqr6 33 5.50 292 17 200 17 179 17 92 16 90 16 90 16

x1dn 15 0.56 415 21 362 19 331 19 139 20 124 18 123 18

Total 34886 25895 23052 16475 13983 13366

Ratio 1.35 (1.00) 0.89 0.64 0.54 0.52
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adding up the complexity of the nodes:

group complexity =
2l−1∑
h=0

C(h, 2l) (35)

The computational complexity of a whole row is obtained
with respects to the complexity of the groups and the number
of groups in a row:

row complexity = 2(log2
n
2 −l) ×

2l−1∑
h=0

C(h, 2l) (36)

The computational complexity of the PC block is obtained
by adding up the complexity of all rows:

complexity[PC] =

log2(n)−1∑
l=0

2(log2
n
2 −l) ×

2l−1∑
h=0

C(h, 2l)


=

9

14
n4 +

23

4
n3 +

93

4
n2 +

15

2
n log2 n−

415

14
n (37)

Finally, the overall computational complexity of a Ladner-
Fischer adder is calculated by adding up the complexity of
the three stages in Eq. (14), Eq. (18), and Eq. (37). Based
on the calculated complexity, we can observe that the order
of the verification complexity is O(n4). Therefore, proving
correctness of a Ladner-Fischer adder using BDDs has quartic
time complexity.

E. Verification Complexity of a Kogge-Stone adder
The Kogge-Stone adder is another parallel prefix adder

with a parallel tree of prefix operators (see Fig. 4). The
computational complexity of each prefix operator is shown
in Fig. 8 as a C function. Note that if the inputs of a
prefix operator are (G[i:k], P[i:k]) and (G[k−1:j], P[k−1:j]), the
complexity can be calculated by C(i− k, k − j).

For an n-bit Kogge-Stone adder, the depth (i.e., number of
rows) and the number of nodes in each row are:

depth = log2(n),

nodes in row = n− 2l (38)
where l is the row number. Please note that the equations are
exact for all word lengths being a power of 2 (i.e., n = 2m) [2].

We divide the nodes in each row into two groups based
on the input values of the C functions. In the first group
(green boxes in Fig. 8), the input values of the C functions are
identical, i.e., C(2l−1, 2l). In the second group (red boxes in
Fig. 8), the first input values are exactly the same and equal
2l − 1. However, the second value is equal to h + 1 for the
hth node in the group.

The number of nodes in the first group (group1) and second
group (group2) are as follows:

nodes in group1 = n− 2l+1 + 1,

nodes in group2 = 2l − 1 (39)
The computational complexity of each group is obtained by

adding up the complexity of the inside nodes:
group1 complexity = (n− 2l+1 + 1)× C(2l − 1, 2l),

group2 complexity =
2l−2∑
h=0

C(2l − 1, h + 1) (40)

TABLE I
RUN-TIME OF VERIFYING ADDERS (SECONDS)

Size
Benchmarks

serial prefix Ladner-Fischer Kogge-Stone
1024 1.28 1.64 1.84
2048 6.37 7.56 8.37
3072 15.24 17.94 21.60
4096 27.21 33.59 39.01
5120 43.05 49.85 69.89
6144 67.87 78.07 104.47
7168 97.36 114.06 142.42
8192 129.78 153.67 177.43
9216 164.53 184.33 234.78
10240 200.45 241.49 315.52

We can add the complexity of the first and second group to
get the computational complexity of a row. The computational
complexity of the PC block is obtained by adding up the
complexity of all rows:
complexity[PC] =

log2(n)−1∑
l=0

(n − 2
l+1

+ 1) × C(2
l − 1, 2

l
) +

2l−2∑
h=0

C(2
l − 1, h + 1)

 =

81

70
n
4
+

111

14
n
3
+ 22n

2
+ 6n log2 n −

321

7
n +

517

35
(41)

By adding up the complexity of the three stages in Eq. (14),
Eq. (18), and Eq. (41), the overall complexity is obtained.
After calculating the computational complexity, we can con-
clude that the order of the BDD-based verification complexity
is O(n4). Therefore, proving correctness of a Kogge-Stone
adder has quartic time complexity.

IV. EXPERIMENTAL RESULTS

We have implemented the BDD-based verifier in C++. The
tool takes advantage of the symbolic simulation to obtain the
BDDs for the primary outputs. Then, the BDDs are evaluated
to see whether they match the BDDs for an adder. In order to
handle the BDD operations, we used the CUDD library [20].
The benchmarks for the three prefix adders are generated using
GenMul [21]. All experiments are performed on an Intel(R)
Core(TM) i7-8565U with 1.80 GHz and 24 GByte of main
memory.

Table I reports the verification times for adders. The first
column Size denotes the size of the adder based on the
inputs’ bit-width. The run-time (in seconds) of the BDD-
based verification method is reported in the second column
Benchmarks for the three prefix adders.

It is evident in Table I that the BDD-based verification
reports very good results for prefix adders. A Kogge-Stone
adder with 10240 bits per input, which consists of more than
400K gates, can be verified in less than 6 minutes. Thus, the
experimental results for the three prefix adders confirm the
scalability of the BDD-based verification method.

In order to check the correctness of the complexity bounds
obtained in Section III, we first show the results of Table I
as three graphs in Fig. 9. Then, we fit a curve to the points
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