
Optimizing Adiabatic Quantum-Flux-Parametron
(AQFP) Circuits using Exact Methods

Dewmini Sudara Marakkalage, Heinz Riener, Giovanni De Micheli

Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Adiabatic Quantum-Flux-Parametron (AQFP) is a
family of superconducting electronic (SCE) circuits exhibiting
high energy efficiency. In AQFP technology, logic gates require
splitters to drive multiple fanouts and both the logic gates and
the splitters are clocked, requiring path balancing to ensure all
fanins of a gate arrive simultaneously. There have been several
attempts to optimize the resource usage of AQFP circuits under
these constraints, but we identify three main shortcomings of the
state of the art: i) lack of consideration for interdependent logic
paths, ii) heavy reliance on balanced splitter trees, and iii) lack
of support for majority-5 gates. In this work, we present a new
approach of optimization for the AQFP technology that alleviates
these shortcomings using exact methods. Through explicit, size-
bounded enumeration, we generate a database of optimum AQFP
circuits for small logic functions under different arrival time
patterns of the inputs and use the resulting database to rewrite
logic blocks of larger networks. We evaluate our algorithm on
a subset of MCNC benchmarks. We show that the proposed
method achieves over a 21% decrease in area (the number of
Josephson Junctions) and a 35% decrease in delay in the critical
path (the number of levels) as compared to existing work when
using an area-oriented strategy. Our method achieves over a
19% area reduction when using a delay-oriented approach while
decreasing delay by over 40%.

Index Terms—AQFP, majority gates, exact synthesis, logic
synthesis

I. INTRODUCTION

Superconducting electronic (SCE) circuits are getting in-
creasingly popular in the electronics industry due to their low
energy consumption and high-speed operation. The growing
interest in SCE is further fuelled by the escalating challenges
and higher costs of transistor downscaling in traditional CMOS
technologies. The potential of SCE to revolutionize the elec-
tronics industry is widely recognized as evidenced by the
growing involvement of the EDA industry in developing tools
and synthesis flows for SCE supported by government-funded
programs such as IARPA’s SuperTools program [1].

SCE circuits are based on superconductive inductors and
Josephson Junctions (JJs) [2], and there are several families
of SCE circuits. The examples include Rapid Single Flux
Quantum (RSFQ) [3], Energy-efficient SFQ (eSFQ) [4], Re-
ciprocal Quantum Logic (RQL) [5], Low-Voltage RSFQ (LV-
RSFQ) [6], Dynamic Single Flux Quantum (DSFQ) [7], and
Adiabatic Quantum-Flux-Parametron (AQFP) [8]. While most
of such families use DC-biased junctions which cause static
power dissipation, the technologies such as AQFP achieve
superior energy-efficiency using AC-biased junctions, and this
work focuses on the AQFP technology.

a b0

X

a b

0

X

SPL2 SPL2

SPL2

0

0

B

B

B

BB

Fig. 1: An example logic network with unit-delay gates (left)
and its splitter-inserted, path-balanced version (right).

The AQFP technology provides efficient implementations
of majority-3 and majority-5 gates that offer more complex
logic functionalities at a comparably low resource usage (see
Section III), leading to more compact circuitry. On the other
hand, AQFP logic gates cannot directly drive more than
one fanout, necessitating clocked splitters to support multiple
fanouts. Moreover, the gates are also clocked, requiring each
gate’s fanins to arrive at the same time via logic paths that
are balanced with (clocked) buffers. Figure 1 shows a simple
logic network with unit-delay gates (left) and its splitter-
inserted, path-balanced version (right). In all figures, green
squares labeled “B” denote buffers while blue rectangles
labeled “SPLk” denote splitters of branching factor k.

The path balancing and splitter requirements of AQFP
technology pose additional challenges in logic synthesis be-
cause, in addition to the gates that implement logic functions,
buffers and splitters also significantly affect the area and delay
of a circuit. As such, there have been several attempts to
optimize the splitter insertion and path balancing of AQFP
circuits [9]–[11]. However, existing work suffers from one or
more of the following weaknesses: i) lack of consideration
for interdependent logic paths [10], ii) the bias towards using
balanced splitter trees [9], and iii) the lack of support for
more complex logic gates such as majority-5 [9]–[11]. In this
work, we show how to mitigate these shortcomings using exact
synthesis on small blocks of logic in a given logic network.

Our main idea is to generate a database of minimum area
(the number of JJs for example) AQFP circuits for all single-
output, 4-input functions and for a set of different input arrival-
time patterns, and then use the database to rewrite logic blocks
of a larger network in the topological order. Our approach

155



differs from the similar-looking method proposed by Amaru
et al. [12] for exact delay synthesis in two key aspects. First, as
their goal was to minimize the delay, their database generation
ignores possible area improvements that result from logic
sharing and enumerates only the tree structures. In contrast,
our goal is to minimize the overall area, and logic sharing
can both support (by reducing the gate count) and hinder
(by increasing the splitter count, the number of levels, and
consequently the number of buffers) this goal. Therefore, we
enumerate all directed acyclic graph (DAG) structures within a
predetermined size bound. Second, the outputs of logic blocks
chosen by the algorithm can have multiple fanouts, and our
algorithm takes the splitter requirements of such logic blocks
into account before synthesizing the other logic blocks that
use the outputs of already synthesized logic blocks as inputs.
To synthesize such fanout nets, we use balanced splitter trees.
But unlike the work of Testa et al. [9] which uses balanced
splitter trees on all multi-fanout nodes, we use this strategy on
only a small fraction of such nodes (i.e., only on the outputs
of the blocks of logic chosen by the algorithm).

We evaluate our synthesis algorithm on the same subset
of MCNC benchmarks considered by Testa et al. [9] using
two different strategies, area-oriented and delay-oriented. The
former strategy improves the area by over 21% while reducing
the critical path delay by over 35% on average compared to
the optimized results of Testa et al. [9]. Compared to the
same results, the latter strategy reduces the area by over 19%
while decreasing the critical path delay by more than 40%
on average. Note that we use the total number of Josephson
Junctions as the measure of area and the number of gate levels
(including buffers and splitters) as the delay measure.

The remainder of this paper is organized as follows: In
Section II, we discuss the shortcomings of existing approaches
which motivated this work, and in Section III, we provide
some relevant background. In Section IV, we describe our
database generation method and introduce the algorithm for
synthesizing AQFP circuits. In Section V, we present our ex-
perimental results, and in Section VI, we conclude with a brief
discussion on our results and some potential improvements to
the proposed method.

II. MOTIVATION

In this section, we discuss existing work on optimizing
AQFP circuits and their main drawbacks.

The work of Cai et al. [10] presents a new framework for
inserting the optimum number of buffers and splitters for a
given fanout net with fixed levels. Both Ayala et al. [11]
and Testa et al. [9] proposed new synthesis flows for AQFP
circuits. The synthesis flows first apply logic optimizations,
then using the required number of splitters on multi-fanout
nets, determine levels of the gates, and finally insert buffers as
required together with optimizations that move splitters around
to decrease the buffer count. In the logic optimization phase,
the work of Testa et al. [9] uses depth optimizations based
on majority-inverter graphs (MIGs) [13] (see Section III),

X

v

X

SPL2

v

SPL2

X

SPL2

v

SPL2

B

B

B

u u u

Fig. 2: A part of a logic network with unit-delay gates (left),
and its path-balanced versions (middle and right) using two
choices of locally optimum splitter-trees with 1-to-2 splitters.

X

X

SPL2 SPL2

SPL2

B B

B B

B

X

SPL2

SPL2

SPL2

B B

B

X

SPL2

SPL2

SPL2

B B

B

(a) (b) (c) (d)

uuuu

Fig. 3: (a) A logic network with unit-delay gates, (b) its
path balanced version using a balanced splitter tree, (c) an
optimized version of (a) by pushing one splitter up in the
hierarchy, and (d) optimum path balancing with an unbalanced
splitter tree.

where the depth optimization algorithms use estimated splitter
requirement as the cost heuristic to achieve better results.

We identify three shortcomings in the existing work:
a) Lack of consideration for interdependent logic paths:

Consider Figure 2 which shows a logic network on the left,
and two possible splitter tree choices for the highlighted fanout
net assuming 1-to-2 splitters. (For simplicity, we disregard the
splitter/buffer requirement of all unspecified fanins.) The logic
path interdependencies make the choice on the right a better
option than the choice in the middle. However, the existing
algorithms are susceptible to making suboptimal choices in
such situations as they reason based solely on the local view
and consider both splitter trees as equally good options.

b) Bias for balanced-splitter trees: The approaches in
prior work naively use balanced splitter trees for multiple-
fanout nets when deciding the levels of those fanouts [9].
However, always using balanced splitter trees can incur ad-
ditional buffer costs if the fanouts of a particular node have
to be placed at uneven depths due to constraints dictated by
other shared logic paths. In such cases, an unbalanced splitter
tree can be a better match as shown in Figure 3.

For the given logic network (left), the unbalanced splitter

156



tree (right) costs fewer buffers compared to a balanced splitter
tree (middle two trees) assuming 1-to-2 splitters. The second
network naively uses a balanced splitter-tree and adds buffers
on top of it whereas the third network optimizes the buffer
count by pushing one of the splitters up in the hierarchy.
Nevertheless, the network on the right with the unbalanced
splitter tree has a better resource usage.

c) Lack of support for more complex gates: None of the
prior works support the generation of netlists with majority-k
gates for k > 3 although the AQFP technology can support
efficient implementations of such gates [14]. For example, con-
sider the logic function of majority-5 itself. Using only AND-
2, OR-2, and majority-3 gates, computing this function needs
at least four gates which costs at least 24 JJs whereas using a
single majority-5 gate uses only 10 JJs. (See Section III.)

Our method alleviates these drawbacks by precomputing
exactly optimum circuits for functions with a few variables
and using them to rewrite logic blocks of larger networks.

III. BACKGROUND

In this section, we give background on majority-inverter
graphs (MIGs), AQFP logic circuits, NPN equivalence, and
exact synthesis.

A. MIG-based logic synthesis

The k-input Boolean majority gate outputs 1 if and only if
more than k/2 of the inputs are one. Logic synthesis based on
majority gates was extensively studied in the past [15]–[17],
and recently Amaru et al. [13], [18] proposed MIG as a new
paradigm for logic synthesis. An MIG is a directed acyclic
graph (DAG) where each internal node represents a majority
gate, and each directed edge is either labeled as a regular edge
or a complemented edge indicating the absence or presence of
an inverter at the respective fanin. MIGs accompany a sound
and complete set of algebraic rules [19] which we state below.
We use the notation 〈. . . 〉 to denote the majority operation.

Commutativity : 〈x y z〉 = 〈y z x〉 = 〈z x y〉,
Associativity : 〈xu 〈y u z〉〉 = 〈z u 〈xu y〉〉

Distributivity : 〈xu 〈y z v〉〉 = 〈〈xu y 〉 z 〈xu v〉〉,
Majority : 〈xx y〉 = x and 〈x x̄ y〉 = y,

Inverter Propagation : 〈x̄ ȳ z̄〉 = 〈x y z〉.

B. AQFP logic circuits

Logic gates in the AQFP technology are mainly constructed
using superconductive inductors and JJs which are based
on the Josephson effect [20]. Takeuchi et al. [21] proposed
a simple cell library for AQFP technology based on four
primitive cells—buffer, inverter, constant, and branch—where
a gate is created using an array of primitive cells together
with a branch while a splitter is constructed using a buffer
and a branch. The majority-3 gate consists of three buffer cells
together with a branch, and different fanin inverted versions
of a majority-3 gate are constructed by substituting a subset
of buffer cells with inverter cells [21]. The 2-input AND and
OR gates are constructed by substituting a buffer cell with a

constant cell. Each of the three primitive cells, buffer, inverter,
and constant, consists of two JJs, and hence a splitter also uses
2 JJs while all gates—majority-3, AND-2, and OR-2—as well
as all their input-inverted versions use 6 JJs each. Additionally,
the majority-5 gate and its input-inverted versions can be
implemented with 10 JJs each [14]. As a majority-3 gate uses
the same resources as an AND-2 or an OR-2 gate, Cai et
al. [22] proposed that majority logic synthesis is more suitable
for optimizing AQFP circuits.

As stated in Section I, logic gates in AQFP technology
cannot drive multiple fanouts and therefore a tree of splitters
must be used in case a gate has to feed several fanouts. The
gates and the splitters are clocked, and consequently, buffers
must be inserted to make the circuit pipelined. Depending
on the design of registers and the used clocking schemes,
there can be different requirements on whether splitters are
needed for primary inputs, whether path balancing is needed
for primary inputs, and how the path balancing is done for
primary outputs [23].

C. NPN Equivalence

Two functions f and g are NPN equivalent if f can be
obtained from g using a combination of input negations,
input permutations, and output negation [24], [25]. When
generating synthesis databases, the NPN equivalence can be
used to significantly reduce the number of database entries.
For example, although there are 22

4

= 65536 different 4-input
functions, there are only 222 different 4-input NPN classes.

D. Exact synthesis

Exact synthesis is the process of synthesizing circuits to
meet exact specifications. For example, it can be used to syn-
thesize exactly optimum circuit structures for a given Boolean
function. Prior work on exact synthesis include [12], [26]–
[30] and they use different approaches such as decomposition-
based, SAT-based, and explicit enumeration-based methods.
Since exact methods are computation-heavy, it is impractical
to use them for large networks. Instead, they are typically used
to construct databases for logic functions with a few variables,
and separate rewriting algorithms are used to optimize small
logic blocks of larger networks using the generated databases.

IV. AQFP RESYNTHESIS APPROACH

In the first half of this section, we describe in detail the
generation of the exact synthesis database, and in the second
half, we present the overall algorithm for synthesizing path-
balanced AQFP circuits using the precomputed database.

A. Generation of the database

The exact synthesis database contains MIGs that give the
minimum area (after splitter-insertion and path-balancing) for
each 4-input NPN class1 under different input arrival-time
patterns. We identify the input arrival-time pattern of a single-
output MIG structure by the depths of its inputs with respect to

1We store MIGs that compute the function with the lexicographically
smallest truth-table in each NPN class.

157



?? ?

? ?

?

?? ?

?

?

Fig. 4: Two partial DAGs (left and middle) and a DAG (right).
The partial DAG in the middle is derived from the one on the
left by tying a new gate and connecting it to one uncommitted
leaf in each of the existing gates. The DAG on the right is
derived from the partial DAG on the left by attaching four
inputs (leaf nodes) to the five uncommitted leaves.

the output. For simplicity, we explain the method focusing only
on 3-input gates, but it is straightforward to extend it to include
k-input majority gates for k > 3. The database is generated
in three steps which are summarized below. Note that we use
the term DAG to mean the underlying directed acyclic graph
structure of an MIG without considering inverters.

First, we enumerate all single-output DAGs with two, three,
four, and five leaf nodes (up to four inputs and a constant) and
seven2 gates. Next, we compute the area of realizing those
DAGs as splitter-inserted, path-balanced circuits under a set
of different input arrival patterns. We use the number of JJs
(proportional to the number of primitive cells) to measure the
area, but our method can support more general measures such
as the physical cell area. Finally, we enumerate the 4-input
NPN classes computable by each DAG structure (considering
fanin inverters) and store the best-area MIG (i.e., the DAG
together with a fanin inverter configuration) for each 4-input
NPN class and for a set of input arrival-time patterns. We now
describe each of the three steps in detail.

1) Generating DAG structures: To systematically generate
DAGs, we first generate partial DAGs, which are DAGs where
some gates have leaves that are not committed to inputs.
This notion of partial DAGs is similar to the one used by
Haaswijk [31]. Note that, a partial DAG can be extended to
a larger partial DAG by binding new gates to a subset of
uncommitted leaves, or they can be converted to a DAG by
binding inputs to uncommitted leaf nodes. Figure 4 shows a
partial DAG (left), and another partial DAG (middle) and a
DAG (right) obtained from the first partial DAG. Note that
the uncommitted leaves are designated with question marks
and inputs are shown as filled squares.

Starting with a single-gate partial DAG with three uncom-
mitted leaves, we generate other partial DAGs by attaching
gates to the uncommitted leaves of existing partial DAGs in a
level-by-level fashion. Having generated all partial DAGs with
k gate levels, we generate all partial DAGs that have k+1 gate
levels by extending those with k gate levels in such a way that
each newly added gate has at least one fanout that is in level k.
To generate DAGs from partial DAGs, we consider all different
ways of attaching at most five inputs to available uncommitted

2It is known that all 4-input functions can be synthesized with MIGs of at
most seven majority-3 gates.

6

5

4

3

2

1

v

u

Fig. 5: Two fanout-nets
with the same relative
fanout levels.

u

SPL2

u

SPL3

B

B

B B

B

B

6

5

4

3

2

1

Fig. 6: Computing best area for
a relative level configuration using
dynamic programming.

leaves of a partial DAG. When enumerating DAGs, we use the
commutativity and majority rules (see Section III-A) to avoid
having redundant gates.

2) Computing Area of DAGs: Recall from Section III-B
that all input-inverted versions of a logic gate use the same
amount of resources in AQFP technology. Thus, to determine
the minimum amount of resources needed to realize an MIG
as an AQFP circuit, we only need to know its underlying
DAG structure ignoring the inverters. We now explain how
to find the optimum buffer-splitter insertion for such DAGs.
Note that we do not need splitter insertion or path balancing
for constant nodes as we have different versions of majority
gates with implicit constant fanins [21] (see Section III). Thus
the optimum buffer-splitter insertion for a DAG may depend
on which leaf (if any) is treated as a constant. However, at the
time of database generation, we do not know which leaf of
an MIG in the database gets connected to a constant during
synthesis. Therefore, for each DAG, we consider all versions
of it obtained by assigning a constant to at most one leaf and
compute their optimum splitter-inserted path balanced versions
separately. Note that treating one leaf as a constant affects all
shared logic paths. Hence it can also decrease the splitter-
buffer resources needed in other fanout nets.

If we fix the depths of a gate and all of its fanouts, we
can find the best buffer-splitter tree for that fanout net using
dynamic programming. Once the gate depths are fixed, the best
splitter-buffer tree for a given fanout net depends only on the
relative levels of the fanout nodes. The relative levels of fanout
nodes in the fanout net of a node u are the level differences
between those fanout nodes and u. For example, Figure 5
shows two fanout nets (of nodes u and v respectively) in red
and blue that have the same relative fanout levels {2, 3, 3}.

For a given multiset Slev = {`1, . . . , `k} of relative fanout
levels, the buffer cost cb, the splitter cost cs, and the splitter
branching factor fs, the recursive function in Algorithm 1
computes the optimum buffer-splitter cost or returns ∞ if
there is no valid splitter-buffer configuration. In any valid
fanout net, all relative fanout levels must be positive (Line 2),
and if a node has only one fanout, we only need to add
sufficiently many buffers (Line 3). If there are multiple fanouts,
the algorithm iterates over fanout choices for the top-most
splitter in the splitter tree (Line 5), computes the cost of the

158



Algorithm 1: Computing minimum cost for a given
multiset of relative fanout levels Slev, buffer cost cb,
splitter cost cs, and splitter branching factor fs.

1 function cost(Slev = {`1, . . . , `k}, cb, cs, fs):
2 if 0 ≥ min`∈Slev

` then return ∞
3 if |Slev| = 1 then return cb(`1 − 1)
4 cbest ←∞
5 for all T ⊆ Slev such that 2 ≤ |T | ≤ fs do
6 cT ← cs, `min ← minT
7 for t ∈ T do cT ← cT + cb(t− `min)
8 cT ← cT + cost ( {`min − 1} ∪ Slev \ T , cb,

cs, fs)
9 cbest ← min(cbest, cT )

10 return cbest

c

b

d

0

a SPL2

SPL2SPL2

B

B

c

b

d

0

a SPL2

SPL2SPL2

B

B

B B

c

b

d

0

a SPL2

SPL2SPL2

B

B B

0 0 0

Fig. 7: Three different buffer-splitter configurations to realize
the same DAG structure.

chosen splitter and that of the buffers needed on the outputs
of the chosen splitter (Lines 6-7), and recursively compute the
best cost for the remaining tree (Line 8), while keeping track
of the best cost found so far (Line 9). For example, Figure 6
shows two possible choices for the top-most splitter in the
splitter tree (Line 5 of Algorithm 1) assuming that the splitter
branching factor is at least three. We can speed-up Algorithm 1
by caching the already computed optimum buffer-splitter costs
for different relative level configurations.

To find the minimum area for a DAG structure, we employ
a depth bounded search algorithm. We consider all possible
ways of assigning depths (relative to the output node) to the
gates within a gradually increasing bound on the maximum
depth. For each assignment of depths to gates, we compute the
best splitter-buffer tree for each fanout net using Algorithm 1.
If no valid splitter-buffer configuration is found for the con-
sidered bound on the maximum depth, we increase the bound
and try again. Once we reach a depth bound that gives at least
one depth assignment with a valid splitter-buffer configuration,
we stop increasing the maximum depth. However, we still
consider all possible depth combinations for the inputs (leaf
nodes) and find the best cost for each such combination over
all depth assignments to other gates.

For example, Figure 7 shows three different depth assign-
ments to gates and inputs for the same underlying DAG
structure. One can verify there is no valid splitter-buffer
configuration that achieves a maximum depth of 4, but there

are several valid assignments for a maximum depth of 5
including the three shown in the figure. In the first two cases,
the inputs (a, b, c, d) have the depths (2, 4, 5, 5). (I.e., the input
a is at depth 2, the input b is at depth 4, etc., assuming the top
node has depth 0. This correspond to an arrival-time pattern
where inputs a and b, respectively, arrive 3 and 2 unit-delays
later than inputs c and d.) However, the first case uses only
(6 · 4 + 2 · 3 + 2 · 2) = 34 JJs whereas the second case uses
(6 ·4+2 ·3+2 ·4) = 38 JJs. Hence, the minimum cost for the
considered DAG under the input depths (2, 4, 5, 5) is 34. In
the third case depicted in Figure 7, the inputs (a, b, c, d) have
depths (2, 3, 5, 5) and the total cost is 36 JJs. Since this is
the only valid buffer-splitter configuration for this input depth
pattern, the minimum cost for the DAG under this input depth
pattern is 36.

3) Enumerating NPN classes and constructing the
database: To generate the database, for each DAG, we
compute the different 4-input NPN-classes computable by it.
We do this by considering all possible inverter configurations
(i.e., different ways of inverting fanins of gates), evaluating
the functions computed by the DAG under these inverter
configurations, and determining the corresponding NPN
classes together with the respective NPN transformation
(i.e., how to permute and negate inputs and outputs). For
a given majority-3 gate, although there are eight different
inverter configurations for its fanins, we need to explore
only half of them due to the inverter propagation property
(see Section III-A). Thus, in total, we explore 4n different
inverter configurations for a DAG with n gates. We use a pre-
computed look-up table to efficiently find the NPN classes of
4-input functions and their associated NPN transformations.

Recall that, in the cost computation step, we computed costs
of DAGs for different input arrival-time patterns identified by
the pattern of the input depths. To construct the database,
we go over different NPN classes computable by the DAG
(under a suitable inverter configuration), and for each NPN
class, we go over the different patterns of input depths and
associated costs. For each NPN class f computable by a DAG
g and for each input depths d and associated cost c, we then
compute the new input depth pattern d′ we would get if we
use DAG g to compute f (this is computed by permuting
d according to the input permutation of the associated NPN
transformation). Finally, we update the database entry for
(NPN class, input depth pattern) pair (f, d′) by c and the
respective input permuted DAG if there is no existing entry for
the pair (f, d′) or if c is smaller than the cost of the existing
entry for the pair (f, d′).

B. Synthesis Algorithm

We now describe our algorithm for synthesizing a large
logic network as an AQFP circuit using the generated database.
Given a logic network, it outputs a new MIG (which we refer
to as the AQFP circuit) together with an assignment of levels
to each gate. The best splitter-buffer configuration can then be
recovered from the level assignment by adapting Algorithm 1

159



Algorithm 2: Algorithm to synthesize a given logic
network as an AQFP circuit.

1 ntkaqfp ← Empty AQFP circuit.
2 ntklut ← ABC_LUT_MAP(ntkmig).
3 mlev ← Empty map from ntkaqfp nodes to integers.
4 msig ← Empty map from ntklut nodes to ntkaqfp

signals.
5 foreach primary input p of ntklut do
6 Create new primary input p′ in ntkaqfp.
7 mlev[p′]← 0, msig[p]← p′.

8 foreach node n ∈ ntklut in topological order do
9 ni ← The i-th fanin of n for i = 1, ..., 4.

10 `i ← Adjusted level of msig[ni] for i = 1, ..., 4.
11 h← Node function of n.
12 f ← NPN class of h.
13 σ ← Input permutation to get h from f .
14 (`′1, . . . , `

′
4)← σ(`1, . . . , `4).

15 g ← Best DAG from DB for f and (`′1, . . . , `
′
4).

16 g ← Input permuted g according to inverse of σ.
17 g ← Fanin inverted g such that it computes h.
18 Create g in ntkaqfp with inputs (msig[n1], . . . ,

msig[n4]) and let n′ be the root node.
19 Update mlev[n′] and msig[n].

to output the minimum area splitter-buffer configuration in-
stead of only returning the minimum area.

The algorithm, outlined in Algorithm 2, first maps the
input network to a 4-LUT circuit using ABC’s [32] LUT
mapping [33]. Then, it maintains two mappings, one from the
4-LUT nodes to the corresponding signals (a signal denotes
the output of nodes or its complement) in the new AQFP
circuit, and another from the majority nodes in the new AQFP
circuit to their assigned levels. Initially, it replicates all primary
inputs in the target AQFP network, assigns level 0 to each
primary input, and initializes the two mappings accordingly.
Then it traverses the 4-LUT nodes in the topological order
and resynthesizes each 4-LUT node according to a DAG
structure chosen from the exact synthesis database. To choose
the best DAG structure for a given 4-LUT node n with fanins
n1, . . . , n4, the algorithm does the following: First, it computes
the node function h (i.e., h such that the output of n is
h(n1, . . . , n4)), its NPN class f , and the input permutation σ
that describes how to permute the inputs n1, . . . , n4 in order
to compute h from f . Then it computes the current levels
of the signals in the AQFP circuit that correspond to nodes
n1, . . . , n4. In case any fanin ni has multiple fanouts, its level
is computed assuming a nearly balanced splitter tree at its
output. For example, suppose that n1 has 10 fanouts and we
have 1-to-4 splitters. Let n(aqfp)1 be the corresponding node
in the new AQFP network. Then, the algorithm assumes a
splitter tree with three splitters and two levels at the output of
n
(aqfp)
1 . Consequently, if n(aqfp)1 is at some level `, for two of
n1’s fanouts, we assume n1 is available at level `+1 (the first
splitter in the tree has two slots remaining), and for the other

eight of n1’s fanouts, we assume n1 is available at level `+ 2
(after two successive splitters). After finding the input levels
of the fanin nodes, we permute those levels according to σ.

Next, in the database, we go over the entries with different
input depth patterns for NPN class f . Suppose that for NPN
class f and input depth pattern d, we have some DAG g with
cost c. If we were to use DAG g to resynthesize node n, the
cost would be c plus the cost of buffers needed to fill in the
gaps between the permuted fanin levels and the input depths
d of DAG g. Furthermore, we can also compute the level of
the new node in the AQFP circuit that would represent the
4-LUT node n, using the permuted input levels and the input
depth pattern d. At this point, to choose the best DAG, we
propose two strategies: Either we use an area-oriented strategy
where we choose the DAG that minimizes the area and break
ties using the level we would get for the output node, or we
use a delay-oriented strategy where we choose the DAG that
minimizes the level of the output node and break ties using
the area cost that would be incurred.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from our AQFP synthesis algorithm and compare them with
the results obtained by the AQFP synthesis flow presented
in [9]. We compare with [9] as other flows [10], [11] are not
open source and hence their results cannot be reproduced. We
consider the same subset of 18 MCNC benchmarks [34] used
in that work.

Similarly, we also use the same AQFP cell library discussed
in Section III and use the number of JJs in the synthesized
network as the area measure and the number of levels in the
critical path as the delay measure. We construct two exact
synthesis databases assuming we have 1-to-4 splitters:

DB1 A database that uses DAGs with up to seven 3-input gates
without any 5-input gates.

DB2 DB1 extended with a) DAGs with up to three 5-input
gates and three 3-input gates with a limit of four on the
total number of gates and b) DAGs with up to three 5-
input gates, four 3-input gates, and three levels with a
limit of five on the total number of gates.

To generate the database, we used a cluster with 48 cores of
Intel Xenon E5-2680 v3 CPUs running at 2.5GHz, and 256GB
main memory, and each of the three steps was executed using
48 parallel threads. The generation of all DAGs for DB1 using
the method described in Section IV-A1 consumed ∼20 min-
utes, and the output consists of 440 million DAGs (including
different versions obtained by designating one leaf node as the
constant node). The cost computation step Section IV-A2 took
∼1.5 hours whereas enumerating computable NPN classes and
constructing the final database took ∼30 hours. Extending
DB1 to DB2 using the DAGs with the given constraints took
∼25 hours in total. After removing redundant input depths
patterns, DB1 and DB2 consist of only 5744 and 4317 DAGs
respectively over all 222 4-input NPN classes.

We perform two experiments with the two databases: In
the first experiment, we first synthesize the initial MIG as an

160



TABLE I: Results after 10 iterations of the proposed algorithm under the assumption that no splitter-buffer insertion is need
for primary inputs but primary outputs need path-balancing. The reference column shows the optimized results from [9].

Reference All iterations use DB1 Last iteration uses DB2
Area-Oriented Delay-Oriented Area-Oriented Delay-Oriented

Benchmark Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

Delay
(Levels)

Area
(#JJs)

Delay
Impr. %

Area
Impr. %

5xp1 8 824 8 716 0.00 13.11 8 742 0.00 9.95 8 674 0.00 18.20 8 730 0.00 11.41
c1908 53 5242 39 4512 26.42 13.93 36 5204 32.08 0.72 36 4082 32.08 22.13 32 4498 39.62 14.19
c432 50 2198 35 2178 30.00 0.91 36 2944 28.00 -33.94 32 1994 36.00 9.28 35 2696 30.00 -22.66
c5315 49 18932 33 14976 32.65 20.90 30 16312 38.78 13.84 31 14410 36.73 23.89 29 14850 40.82 21.56
c880 36 4520 24 3406 33.33 24.65 21 3678 41.67 18.63 22 3200 38.89 29.20 20 3402 44.44 24.73
chkn 28 4022 18 3312 35.71 17.65 14 3398 50.00 15.51 15 2900 46.43 27.90 13 2988 53.57 25.71
count 18 1426 13 1184 27.78 16.97 11 1346 38.89 5.61 13 1126 27.78 21.04 11 1326 38.89 7.01
dist 17 4208 13 3802 23.53 9.65 11 3990 35.29 5.18 12 3502 29.41 16.78 10 3480 41.18 17.30
in5 20 4312 15 3522 25.00 18.32 13 3754 35.00 12.94 12 3042 40.00 29.45 12 3116 40.00 27.74
in6 17 3472 12 2978 29.41 14.23 10 2952 41.18 14.98 10 2572 41.18 25.92 8 2552 52.94 26.50
k2 29 18294 19 16380 34.48 10.46 18 16306 37.93 10.87 16 14326 44.83 21.69 16 14372 44.83 21.44
m3 13 3118 12 2964 7.69 4.94 10 3016 23.08 3.27 10 2654 23.08 14.88 9 2680 30.77 14.05
max512 19 5536 14 5018 26.32 9.36 13 5334 31.58 3.65 13 4610 31.58 16.73 12 4636 36.84 16.26
misex3 29 14996 18 11922 37.93 20.50 15 12598 48.28 15.99 17 10580 41.38 29.45 14 10584 51.72 29.42
mlp4 19 3622 13 3222 31.58 11.04 11 3326 42.11 8.17 11 2938 42.11 18.88 10 2998 47.37 17.23
prom2 22 28774 16 26300 27.27 8.60 14 27302 36.36 5.12 14 24374 36.36 15.29 13 24586 40.91 14.55
sqr6 11 1102 9 962 18.18 12.70 8 978 27.27 11.25 8 896 27.27 18.69 7 902 36.36 18.15
x1dn 15 1296 11 1126 26.67 13.12 10 1148 33.33 11.42 10 988 33.33 23.77 10 1010 33.33 22.07

Total 453 125894 322 108480 28.92 13.83 289 114328 36.20 9.19 290 98868 35.98 21.47 269 101406 40.62 19.45

TABLE II: Results after 10 iterations of the proposed algo-
rithm under the assumption that primary inputs need splitters
to support multiple fanouts and primary outputs need path-
balancing.

All iterations use DB1 Last iteration uses DB2

Area-Oriented Delay-Oriented Area-Oriented Delay-Oriented

Benchmark Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

5xp1 10 870 10 888 10 830 10 884
c1908 37 5972 37 6328 37 5580 35 5810
c432 41 4002 39 4200 37 3714 35 3944
c5315 31 17600 32 19518 30 17166 31 17914
c880 25 4984 24 5012 23 4070 23 4086
chkn 16 3812 16 3912 13 3496 14 3556
count 12 1632 12 1660 12 1574 12 1592
dist 14 4332 15 4456 13 4060 13 4036
in5 15 3942 14 4070 13 3544 13 3520
in6 12 3360 12 3292 11 3010 10 2930
k2 22 17634 22 17632 20 15696 19 15444
m3 13 3334 13 3320 13 3108 12 3168
max512 17 5798 15 5796 15 5324 14 5306
misex3 21 13160 20 13512 20 11928 19 11996
mlp4 15 3714 14 3820 13 3480 13 3538
prom2 19 29362 19 30238 18 27608 18 27946
sqr6 11 1154 10 1134 10 1084 9 1070
x1dn 12 1348 11 1356 10 1214 10 1214

Total 343 126010 335 130144 318 116486 310 117954

AQFP circuit using our proposed algorithm with DB1. Then
using the underlying MIG in the synthesized AQFP circuit as
the input, the same algorithm was repeatedly applied for a total
of 10 iterations, and considered the best result obtained among
all iterations. The second experiment is the same as the first
one except that we make sure the last iteration of the algorithm
is run with DB2. To elaborate, for each i ∈ 1, . . . , 10, we run
i− 1 iterations of the synthesis algorithm using DB1 and one
iteration with DB2, and we pick the best result out of the
10 versions. The reason not using DB2 in the intermediate
iterations is that, if it creates majority-5 gates, the subsequent
LUT mapping operation can potentially increase the overall
size since a single 4-LUT cannot compute majority-5.

The two experiments were done using both the area-oriented
and delay-oriented strategies for selecting an appropriate DAG
from the database. When using the area-oriented strategy, we
select the circuit with the minimum area over the 10 iterations
as the best result. Similarly, when using the delay-oriented
strategy, we select the circuit with the minimum critical-path
length as the best result.

We first perform all experiments under the same assump-
tions used by Testa et al. [9] that no splitters or buffers are
needed on primary inputs but all primary outputs have to be
path-balanced using buffers. The result are shown in Table I
together with the improvements as compared to the results of
Tests et al. [9]. As seen from Table I, the repeated application
of our proposed algorithm reduces the delay by 40.62% and
decreases the area by 19.45% when the delay-oriented strategy
was used, while achieving a 35.98% reduction in the delay and
a 21.47% decrease in area when the area-oriented strategy
was used. It is evident that having majority-5 gates in the
database allows the algorithm to achieve significantly better
area and delay improvements as compared to the case where
only majority-3 gates were allowed in the database.

In Table II, we present the results for the same experiments
under the assumption that splitters are needed for primary
inputs to support multiple fanouts and primary outputs have
to be balanced. We still assume that path balancing is not
needed for primary inputs. It is noteworthy that, even when
using splitters for primary inputs, our algorithm achieves better
area and delay as compared to the reference work that did not
use splitters on primary inputs. We also remark that our flow
supports other assumptions on the need of buffers and splitters
on primary inputs and outputs, but due to spaces constraints
we are unable to present the results.

VI. CONCLUSION

As seen from the results in Section V, our proposed
algorithm for the exact synthesis of AQFP circuits achieves

161



much improved circuits in terms of both area and delay. These
improvements are enabled by holistic and simultaneous opti-
mizations of logic and path balancing resources that capture
more optimization opportunities compared to prior work in
the field. The exact synthesis method employed in this work
is able to use unbalanced splitter trees effectively in most parts
of the circuit, and the balanced splitter tree assumption is used
only on outputs of blocks of logic.Our results also demonstrate
that having majority-5 gates can help significantly improve the
resource usage.

Moreover, our database generation method is not restricted
to using the number of JJs as the area cost. Instead, it can also
work with more general cost functions such as the cell area
and consider multiple types of splitters with varying branching
factors and area with minor modifications to Algorithm 1.

Finally, we note that we can improve our database by
considering more DAG structures at the expense of the one-
time computational cost of generating the database. Also,
the current algorithm depends on an external LUT mapping
algorithm and hence a better LUT mapping algorithm can yield
better overall results. Alternatively, it is interesting to see if we
can directly integrate the database with a technology mapper
to achieve even better results.

ACKNOWLEDGMENTS

This research was supported by the SNSF grant Supercool
200021 1920981 and the EPFL Open Science Fund.

REFERENCES

[1] S. R. Whiteley and J. Kawa, “Progress toward VLSI-capable EDA tools
for superconductive digital electronics,” in 2019 IEEE International
Superconductive Electronics Conference (ISEC), 2019, pp. 1–3.

[2] D. S. Holmes, A. M. Kadin, and M. W. Johnson, “Superconducting
computing in large-scale hybrid systems,” Computer, vol. 48, no. 12,
pp. 34–42, 2015.

[3] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new
josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Transactions on Applied Superconductivity, vol. 1, no. 1,
pp. 3–28, 1991.

[4] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp.
760–769, 2011.

[5] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis, “Ultra-
low-power superconductor logic,” Journal of applied physics, vol. 109,
no. 10, p. 103903, 2011.

[6] M. Tanaka, A. Kitayama, T. Koketsu, M. Ito, and A. Fujimaki, “Low-
energy consumption RSFQ circuits driven by low voltages,” IEEE
transactions on applied superconductivity, vol. 23, no. 3, pp. 1 701 104–
1 701 104, 2013.

[7] G. Krylov and E. G. Friedman, “Asynchronous dynamic single-flux
quantum majority gates,” IEEE Transactions on Applied Superconduc-
tivity, vol. 30, no. 5, pp. 1–7, 2020.

[8] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic
quantum flux parametron as an ultra-low-power logic device,” Supercon-
ductor Science and Technology, vol. 26, no. 3, p. 035010, 2013.

[9] E. Testa, S.-Y. Lee, H. Riener, and G. De Micheli, “Algebraic and
Boolean optimization methods for AQFP superconducting circuits,” in
Proceedings of the 26th Asia and South Pacific Design Automation
Conference, ser. ASPDAC ’21, New York, NY, USA, 2021, p. 779–785.

[10] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A buffer
and splitter insertion framework for adiabatic quantum-flux-parametron
superconducting circuits,” in 2019 IEEE 37th International Conference
on Computer Design (ICCD). IEEE, 2019, pp. 429–436.

[11] C. L. Ayala, R. Saito, T. Tanaka, O. Chen, N. Takeuchi, Y. He, and
N. Yoshikawa, “A semi-custom design methodology and environment
for implementing superconductor adiabatic quantum-flux-parametron
microprocessors,” Superconductor Science and Technology, vol. 33,
no. 5, p. 054006, 2020.

[12] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E. Gail-
lardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay
synthesis,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 352–359.

[13] L. Amarù, P. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2014, pp. 1–6.

[14] C. Ayala and N. Yoshikawa, personal communication.
[15] S. B. Akers, “Synthesis of combinational logic using three-input majority

gates,” in 3rd Annual Symposium on Switching Circuit Theory and
Logical Design (SWCT 1962). IEEE, 1962, pp. 149–158.

[16] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric
methods,” IRE Transactions on Electronic Computers, vol. EC-11, no. 1,
pp. 89–90, 1962.

[17] S. Amarel, G. Cooke, and R. O. Winder, “Majority gate networks,”
IEEE Transactions on Electronic Computers, vol. EC-13, no. 1, pp. 4–
13, 1964.

[18] L. Amarú, P. Gaillardon, and G. De Micheli, “Majority-inverter graph: A
new paradigm for logic optimization,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 35, no. 5, pp. 806–819, 2016.

[19] L. Amarú, P.-E. Gaillardon, A. Chattopadhyay, and G. De Micheli,
“A sound and complete axiomatization of majority-n logic,” IEEE
Transactions on Computers, vol. 65, no. 9, pp. 7. 2889–2895, 2016.

[20] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient
superconducting computing—power budgets and requirements,” IEEE
Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 1 701 610–
1 701 610, 2013.

[21] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
parametron cell library adopting minimalist design,” Journal of Applied
Physics, vol. 117, no. 17, p. 173912, 2015.

[22] R. Cai, O. Chen, A. Ren, N. Liu, C. Ding, N. Yoshikawa, and Y. Wang,
“A majority logic synthesis framework for adiabatic quantum-flux-
parametron superconducting circuits,” in Proceedings of the 2019 on
Great Lakes Symposium on VLSI, 2019, pp. 189–194.

[23] S.-Y. Lee, H. Riener, and G. De Micheli, “Irredundant Buffer and Splitter
Insertion and Scheduling-Based Optimization for AQFP Circuits,” in
[Proceedings of the 30th International Workshop on Logic & Synthesis
(IWLS 2021)], no. CONF, 2021.

[24] S. Muroga, Threshold Logic and its Applications. New York: Wiley-
Interscience, 1971.

[25] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification,” in 2013 International Confer-
ence on Field-Programmable Technology (FPT), 2013, pp. 310–313.

[26] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.

[27] E. Davidson, “An algorithm for NAND decomposition under network
constraints,” IEEE Transactions on Computers, vol. C-18, no. 12, pp.
1098–1109, 1969.

[28] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in International Conference on Theory and
Applications of Satisfiability Testing. Springer, 2009, pp. 32–44.

[29] D. E. Knuth, The art of computer programming, volume 4A: combina-
torial algorithms, part 1, 2011.

[30] W. J. Haaswijk, “SAT-based exact synthesis for multi-level logic net-
works,” Ph.D. dissertation, EPFL, Lausanne, 2019.

[31] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. on CAD of Integrated Circuits and Systems, pp. 1–1, 2019.

[32] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 24–40.

[33] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in 2007 IEEE/ACM Inter-
national Conference on Computer-Aided Design, 2007, pp. 354–361.

[34] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

162



adding up the complexity of the nodes:

group complexity =
2l−1∑
h=0

C(h, 2l) (35)

The computational complexity of a whole row is obtained
with respects to the complexity of the groups and the number
of groups in a row:

row complexity = 2(log2
n
2 −l) ×

2l−1∑
h=0

C(h, 2l) (36)

The computational complexity of the PC block is obtained
by adding up the complexity of all rows:

complexity[PC] =

log2(n)−1∑
l=0

2(log2
n
2 −l) ×

2l−1∑
h=0

C(h, 2l)


=

9

14
n4 +

23

4
n3 +

93

4
n2 +

15

2
n log2 n−

415

14
n (37)

Finally, the overall computational complexity of a Ladner-
Fischer adder is calculated by adding up the complexity of
the three stages in Eq. (14), Eq. (18), and Eq. (37). Based
on the calculated complexity, we can observe that the order
of the verification complexity is O(n4). Therefore, proving
correctness of a Ladner-Fischer adder using BDDs has quartic
time complexity.

E. Verification Complexity of a Kogge-Stone adder
The Kogge-Stone adder is another parallel prefix adder

with a parallel tree of prefix operators (see Fig. 4). The
computational complexity of each prefix operator is shown
in Fig. 8 as a C function. Note that if the inputs of a
prefix operator are (G[i:k], P[i:k]) and (G[k−1:j], P[k−1:j]), the
complexity can be calculated by C(i− k, k − j).

For an n-bit Kogge-Stone adder, the depth (i.e., number of
rows) and the number of nodes in each row are:

depth = log2(n),

nodes in row = n− 2l (38)
where l is the row number. Please note that the equations are
exact for all word lengths being a power of 2 (i.e., n = 2m) [2].

We divide the nodes in each row into two groups based
on the input values of the C functions. In the first group
(green boxes in Fig. 8), the input values of the C functions are
identical, i.e., C(2l−1, 2l). In the second group (red boxes in
Fig. 8), the first input values are exactly the same and equal
2l − 1. However, the second value is equal to h + 1 for the
hth node in the group.

The number of nodes in the first group (group1) and second
group (group2) are as follows:

nodes in group1 = n− 2l+1 + 1,

nodes in group2 = 2l − 1 (39)
The computational complexity of each group is obtained by

adding up the complexity of the inside nodes:
group1 complexity = (n− 2l+1 + 1)× C(2l − 1, 2l),

group2 complexity =
2l−2∑
h=0

C(2l − 1, h + 1) (40)

TABLE I
RUN-TIME OF VERIFYING ADDERS (SECONDS)

Size
Benchmarks

serial prefix Ladner-Fischer Kogge-Stone
1024 1.28 1.64 1.84
2048 6.37 7.56 8.37
3072 15.24 17.94 21.60
4096 27.21 33.59 39.01
5120 43.05 49.85 69.89
6144 67.87 78.07 104.47
7168 97.36 114.06 142.42
8192 129.78 153.67 177.43
9216 164.53 184.33 234.78
10240 200.45 241.49 315.52

We can add the complexity of the first and second group to
get the computational complexity of a row. The computational
complexity of the PC block is obtained by adding up the
complexity of all rows:
complexity[PC] =

log2(n)−1∑
l=0

(n − 2
l+1

+ 1) × C(2
l − 1, 2

l
) +

2l−2∑
h=0

C(2
l − 1, h + 1)

 =

81

70
n
4
+

111

14
n
3
+ 22n

2
+ 6n log2 n −

321

7
n +

517

35
(41)

By adding up the complexity of the three stages in Eq. (14),
Eq. (18), and Eq. (41), the overall complexity is obtained.
After calculating the computational complexity, we can con-
clude that the order of the BDD-based verification complexity
is O(n4). Therefore, proving correctness of a Kogge-Stone
adder has quartic time complexity.

IV. EXPERIMENTAL RESULTS

We have implemented the BDD-based verifier in C++. The
tool takes advantage of the symbolic simulation to obtain the
BDDs for the primary outputs. Then, the BDDs are evaluated
to see whether they match the BDDs for an adder. In order to
handle the BDD operations, we used the CUDD library [20].
The benchmarks for the three prefix adders are generated using
GenMul [21]. All experiments are performed on an Intel(R)
Core(TM) i7-8565U with 1.80 GHz and 24 GByte of main
memory.

Table I reports the verification times for adders. The first
column Size denotes the size of the adder based on the
inputs’ bit-width. The run-time (in seconds) of the BDD-
based verification method is reported in the second column
Benchmarks for the three prefix adders.

It is evident in Table I that the BDD-based verification
reports very good results for prefix adders. A Kogge-Stone
adder with 10240 bits per input, which consists of more than
400K gates, can be verified in less than 6 minutes. Thus, the
experimental results for the three prefix adders confirm the
scalability of the BDD-based verification method.

In order to check the correctness of the complexity bounds
obtained in Section III, we first show the results of Table I
as three graphs in Fig. 9. Then, we fit a curve to the points

185


	做文档0
	QED and Symbolic QED Dramatic Advances in Hardware
	Boolean Rewriting Strikes Back
	From Logic to Gates A Versatile Mapping
	Structure Aware Partitioning for Mixed Logic
	Exploring Logic Gates Susceptibility and Circuit
	Circuit Learning A Classical Problem from a Modern Perspective
	RUCA RUntime Configurable Approximate Circuits
	A method to join the On-set and Off-set of an
	On the Rectification of Finite Field Arithmetic
	Introduction
	Preliminaries
	Modeling Circuits with Polynomial Ideals

	Rectification Check
	Computing Rectification Functions
	Greedy Approach for MFR
	Don't Care Conditions for MFR
	Computing Rectification Functions with Don't Cares
	Synthesizing Rectification Functions

	Experimental Results
	Conclusion
	References

	Two-Level Approximate Logic Synthesis
	On A Design of Multi-Layer LUT Networks
	Henkin Synthesis DQBF meets Machine Learning
	Introduction
	Preliminaries
	Background
	Related Work
	Overview
	Algorithmic Description
	Example
	DepManthan as DQBF solver
	Limitations of DepManthan

	Experimental Results
	Comparison with Henkin Functional Synthesis Engines
	Comparison with DQBF Solvers
	Improvement in Virtual Best DQBF Solver

	Conclusion
	References

	Two Methods Based on AIG Constant Propagation
	Unit Time Modelling of Asynchronous and
	A Supervised Learning Approach for Technology Mapping
	Quantized Neural Network Synthesis for Direct
	RL-Guided Runtime-Constrained Heuristic
	Introduction
	Fundamentals
	And-Inverter Graph
	Majority-Inverter Graph
	Markov Decision Process

	Related Work and Motivation
	Related Work
	Motivation

	Methodology
	Reinforcement Learning Framework
	MDP Formulation
	State Space
	Action Space
	Reward Function

	Reinforcement Learning Algorithm
	Graph Convolutional Network
	Neural Network Architecture
	Runtime Indicator and Inference Framework

	Experimentation
	Env 1 (Baseline script: compress2rs) 
	Env 2 (Baseline script: compress2rs - without balance)
	Env 3 (Baseline script: compress2rs; dch; balance -l)
	Env 4 (Baseline script: compress2rs; dch; balance -l)
	Env 5 (Baseline script: 10 runs of balance; rewrite)

	Results
	Conclusion

	Superconducting accelerators circuits, design and synthesis
	Irredundant Buffer and Splitter Insertion and
	Abstract
	1 Introduction
	2 Background
	2.1 Adiabatic Quantum-Flux Parametron
	2.2 Terminology

	3 Technology Assumptions
	3.1 Path-Balancing of PIs
	3.2 Path-Balancing of POs
	3.3 Branching of PIs
	3.4 Branching and Inversion of POs
	3.5 Problem Formulation

	4 Irredundant Buffer Insertion
	5 Optimization on Depth Assignment
	5.1 Obtaining an Initial Depth Assignment
	5.2 Chunked Movement

	6 Experimental Results
	6.1 Balancing of PIs and POs
	6.2 Branching of PIs and Splitting Capacity

	7 Conclusion and Future Work
	Acknowledgments
	References

	Constraint-based hierarchical placement for FPGAs
	Linear Feedback Shift Register Reseeding for Stochastic Circuit
	Optimizing Adiabatic Quantum-Flux-Parametron
	Introduction
	Motivation
	Background
	MIG-based logic synthesis
	AQFP logic circuits
	NPN Equivalence
	Exact synthesis

	AQFP Resynthesis Approach
	Generation of the database
	Generating DAG structures
	Computing Area of DAGs
	Enumerating NPN classes and constructing the database

	Synthesis Algorithm

	Experimental Results
	Conclusion
	References

	A Circuit-Based SAT Solver for Logic Synthesis
	Introduction
	Preliminaries
	Boolean Satisfiability
	SAT Solving Framework
	And-Inverter Graph
	SAT Solving with Structural Guidance

	Contributions
	Activity-Based Justification
	Management of Activity Values
	Non-Chronological Restoration of J-frontier
	Engineering J-watch into CDCL framework
	Interpreting Implication Graph On-the-fly
	Topological Abstraction for Solving Scope

	Experimental Results
	The Effect of J-Heap and J-Watch

	Conclusions
	References
	Appendix A: User manual
	Foreword
	A Hands-On Example
	Summary


	Compatible Equivalence Checking of X-Valued Circuits
	Polynomial Formal Verification of Prefix Adders
	Introduction
	Preliminaries
	Prefix Adders
	Binary Decision Diagrams

	Complexity of Verifying Prefix Adders
	First and Third Stage Complexity
	Prefix Operation Complexity
	Verification Complexity of a Serial Prefix Adder
	Verification Complexity of a Ladner-Fischer adder
	Verification Complexity of a Kogge-Stone adder

	Experimental Results
	Conclusion
	References




