Quantum Computing

@IEEE Transactions on,
uantumEngineering

Received March 3, 2021; revised June 29, 2021; accepted July 20, 2021; date of publication August 4, 2021;

date of current version August 30, 2021.

Digital Object Identifier 10.1109/TQE.2021.3101663

Efficient Boolean Methods for Preparing

Uniform Quantum States

FERESHTE MOZAFARI
MATHIAS SOEKEN (Member, IEEE), AND
GIOVANNI DE MICHELI™ (Life Fellow, IEEE)

(Member, IEEE), HEINZ RIENER (Member, IEEE),

Integrated Systems Laboratory, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland

Corresponding author: Fereshte Mozafari (email: fereshte.mozafari @epfl.ch).

This work was supported in part by the Swiss National Science Foundation under Grant 200 021-169 084 MAlJesty and in part by the

Google Fellowship.

ABSTRACT As each quantum algorithm requires a specific initial quantum state, quantum state preparation
is an important task in quantum computing. The preparation of quantum states is performed by a quantum
circuit consisting of controlled-NOT (CNOT) and single-qubit gates. Known algorithms to prepare arbitrary
n-qubit quantum states create quantum circuits in O(2") runtime and use O(2") CNOTs, which are more
expensive than single-qubit gates in NISQ architectures. To reduce runtime and the number of CNOTs, we
simplify the problem by considering an important family of quantum states, which are uniform quantum
states (UQSs). We map UQSs to Boolean functions and propose a UQS preparation (UQSP) method.
Preparing UQSs using Boolean functions allows us to utilize different representations of Boolean functions.
We utilize decision diagrams to reduce runtime and enable preparation for a larger number of qubits where
the state-of-the-art methods are not applicable. To further reduce the number of CNOTs, we utilize variable
reordering and functional dependencies among the variables. Our state preparation method requires an
exponential number of CNOTs in the worst case but it reduces CNOTs significantly for practical benchmarks.
Moreover, our method generates an exact representation of quantum states without using free-qubits. We
compare our algorithm with QisKit. The comparison shows that our UQSP method is capable to reduce the
average number of CNOTs by 75.31% for the practical benchmarks. The runtime is almost reduced by a
factor of 2.

INDEX TERMS Quantum compilation, quantum computing, quantum state preparation (QSP), uniform

quantum states (UQSs).

I. INTRODUCTION

Many quantum algorithms assume a certain initial quantum
state that needs to be loaded before the algorithm can per-
form its computation. A quantum state over n qubits is any
superposition of all basis states |0), |1}, ..., [2" — 1) rep-
resented by a vector of 2" amplitudes. Each squared am-
plitude indicates the probability of the qubits being in the
corresponding basis state. To load an initial quantum state, a
quantum circuit has to be constructed that brings the qubits
into the desired state. This process is called quantum state
preparation (QSP).

Multiple algorithms [1]-[8] have been proposed for
preparing arbitrary quantum states, which require an ex-
ponential number of CNOTs and runtime with respect to
the number of qubits [9]. To alleviate this complexity, re-
searchers either use free-qubits or prepare quantum states

VOLUME 2, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

approximately—both ways add overheads. To remove these
overheads, another way is to restrict the input space instead
of considering arbitrary quantum states.

We restrict our search to a special family of quantum
states, aiming for an efficient and exact implementation with-
out using free-qubits. As an important family of quantum
states, we consider uniform quantum states (UQSs) in this
article. These states are superpositions of basis states, where
all amplitudes are either zero or have the same value.

UQSs form an important class of quantum states and have
recently attracted attention from researchers. For example,
they have been used in effective quantum machine learning as
the quantum version of a uniform random sample [10]. Many
well-known quantum states are uniform, such as the uniform
superposition of all basis states, the Bell state, the GHZ
state [11], and the W state [12]. They also appear frequently

3103112

https://orcid.org/0000-0002-3054-3087
https://orcid.org/0000-0002-7827-3215

@IEEE Transactions on,
uantumEngineering

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

as initial states of important quantum algorithms, such as
the quantum random-search algorithm Grover walk [13],
quantum Byzantine agreement [14], and secret sharing [15],
which have large applications in quantum cryptography.
Hence, having an efficient algorithm for preparing UQSs
alongside arbitrary quantum states is important.

In this article, we propose a new algorithm for UQS prepa-
ration (UQSP). The central idea of our work is a characteriza-
tion of UQSs with Boolean functions. This characterization
simplifies the problem because one simple Boolean function
can describe an exponential number of amplitudes. More-
over, this enables us to apply well-understood and optimized
techniques from logic synthesis [16]. We develop the theory
and propose a functional decomposition method based on
cofactoring for synthesis.

Our decomposition method can be applied to any repre-
sentation of Boolean functions. We use truth-table-based,
and decision-diagram-based representations for smaller, and
larger numbers of qubits, respectively. In [17], we showed
how we use decision diagrams to prepare UQSs. Decision
diagrams enable a scalable quantum state preparation since
many Boolean functions of practical interest have small
representations, e.g., in terms of binary decision diagrams
(BDDs) [18].

Moreover, whereas [17] targets runtime reduction using
BDDs as a symbolic representation of Boolean functions,
we present here an orthogonal improvement that identifies
dependencies among variables of the Boolean functions and
determines an order in which the qubits should be prepared.
We show that, if a functional dependency can be identified,
the decomposition algorithm can be avoided in favor of more
efficient quantum circuit constructions. This idea allows us to
reduce the overall number of CNOT gates.

We develop the underlying theory of UQSP using Boolean
methods and demonstrate empirically that an implementation
of our approach outperforms a state-of-the-art algorithm for
preparing arbitrary quantum states [5] that is implemented in
an industrial framework, QisKit [19]. Our algorithm achieves
better quality (smaller circuits) in significantly less runtime.

The contributions of this article can be summarized as
follows.

1) We propose a Boolean algorithm to prepare UQSs
which simplifies the problem and enables us to apply
well-understood techniques from logic synthesis.

2) We apply our decomposition algorithm to the BDD
representation of Boolean functions to enable a fast
execution when the function representation is small
(the algorithm runs in polynomial time with respect
to the number of BDD nodes). Experimental results
show that by increasing the number of qubits to at most
30, our method prepares states in milliseconds whereas
QisKit cannot prepare states for more than 18 qubits.

3) We investigate the problems of identifying functional
dependencies among the qubits and determining the
best order for preparing the qubits of a UQS. We

3103112

present several heuristics for solving these two prob-
lems and show that we can construct quantum circuits
for UQSP with different tradeoffs between runtime and
the number of CNOTs. The comparison with QisKit-
shows that the proposed method achieves an average
reduction on the number of CNOTs by 75.31% for
practical benchmarks and the runtime is improved by
almost a factor of 2. Hence, our algorithm for preparing
UQSs can be integrated into QisKit to improve the
quality-of-results for this important family of quantum
states.

This article is organized as follows. In Section II, we
present related works. In Section III, we explain some pre-
liminaries on Boolean functions and quantum circuits. Our
motivation for preparing UQSs is shown in Section IV. In
Section V, we propose our Boolean algorithm using func-
tional decomposition. Next, in Sections VI and VII, we
present our optimization methods using decision diagrams
and functional dependency analysis, respectively. We eval-
uate our methods in Section VIII and compare their results
against QisKit. Finally, Section IX concludes this article.

Il. RELATED WORKS

The general problem of preparing arbitrary quantum states
requires quantum circuits with an exponential number of
CNOTs, and exponential depth and runtime in the worst case.
Multiple algorithms have been proposed for preparing them.

The algorithm presented in [8] prepares quantum states
with a divide-and-conquer strategy. Although it creates quan-
tum circuits with polylogarithmic depth, it uses additional n
free-qubits and increases the number of elementary quantum
gates. In [20], the authors present a way of preparing arbitrary
quantum states with / unique amplitudes for the purpose of
reducing T gates. To prepare a state, they start with a uniform
superposition. If / is not a binary power, they prepare the ini-
tial superposition using amplitude amplification. Afterward,
by loading data from quantum read-only memory (QROM),
they decide whether to keep the state or to alter it. Moreover,
they prepare states with the help of free-qubits. The authors
in [21] propose an algorithm to prepare only efficiently in-
tegrable probability distributions. Their algorithm requires
overheads by using additional free-qubits.

The authors in [6] and [7] propose algorithms without
using free-qubits, but they prepare quantum states approx-
imately. Approximate state preparation algorithms introduce
some inaccuracy, such that all computations are only correct
as long as a certain error threshold is not exceeded.

In this article, we are interested in algorithms that pre-
pare the initial quantum state exactly and without using free-
qubits, which reduce the implementation overhead. These
algorithms [1]—[5] to prepare arbitrary quantum states, how-
ever, require an exponential number of CNOTSs and runtime
with respect to the number of qubits [9]. To reduce runtime
and the number of CNOTSs, we propose a Boolean algorithm
and compare our results with [5] from this category.

VOLUME 2, 2021

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

@IEEE Transactions on,
uantumEngineering

IIl. PRELIMINARIES

A. BOOLEAN FUNCTIONS

Let B ={0,1}. A Boolean function f:B" — B of n
Boolean variables x = xg,...,x,—1 is a mapping of n
Boolean input values £ = Xy, ..., X,—; to a single Boolean
output value f(X). Each Boolean function is given as input
2" input assignments.

A literal is a Boolean variable xl.1 = X; Or its negation x? =
Xi. A product term (or cube) t(x) is a conjunction of literals.
The size |t| of a product term ¢ is the number of literals
appearing in ¢, and a product term in which all Boolean vari-
ables xo, ..., x,—1 appear exactly once is a minterm. Each
Boolean function f : B" — B can be uniquely represented
in its minterm canonical form

f = f0O,...,0) - %1 Yo+
+f(1"”71)'x}’l—1”'x0 (1)
where f ()20,; .., X,_1) are Boolean values, called discrimi-

nants, and x;”_’ll . .x)oco are product terms. Consequently, the
set

Minterms(f) = {x"}, ..., x| f(fo, ..., &) = 1} (2)

of all minterms of a Boolean function f characterizes the
function uniquely. A Boolean function f is represented by
its minterms. The size |f] of f is defined as the number of
minterms of f.

The positive cofactor f,, and negative cofactor f;, of a
Boolean function f denote f restricted to the subdomain
in which x; takes the value 1 and O, respectively. We use
cofactors to compute the influence of each variable on the
function’s output. To compute the probability of x; being 1
and 0 in f, we define

| fl o fEl
pf(-xl)_ /] and Pf(xz)— /]
respectively. Note that ps(x;) + ps(X;) = 1. Moreover, we
utilize Shannon’s decomposition theorem, which states f =
X; fx; + X fx, for variables x; of f. The intuition is that Shan-
non’s decomposition uses cofactors to partition a function
into two halves.

Each Boolean function can also be represented in many
semantically equivalent but structurally different exclusive-
or sum-of-products (ESOP) forms

J&x)=10(x)® - D ty—1(x) “4)

where 1, ..., t,_1 are product terms and m is a positive
integer called the degree of the ESOP form.

ESOP synthesis is the problem of finding an ESOP form
for a Boolean function f subject to a cost function. Exact
algorithms, such as [22] and [23], and heuristics, such as [24],
have been proposed for finding and minimizing the degree
of an ESOP form of a Boolean function f. These algo-
rithms have applications in quantum compilation flows since

3)

VOLUME 2, 2021

they allow us to decompose multiple-controlled single-target
gates into a sequence of generalized Toffoli gates [25], [26].

There are different representations for Boolean functions
but we consider representations as truth table and binary
decision diagram (BDD) in this article. For both of them,
we can compute Shannon’s decomposition efficiently. The
truth table of a Boolean function is a tabulation of its value
at each of the 2" input assignments. The BDD of a Boolean
function is a symbolic representation that shows a compact
representation for it.

A BDD [27] is a directed acyclic graph (V U f U {0, 1})
representing a Boolean function f, where V is the set of
nodes. For each v € V, the outdegree is two. For the root
node, the indegree is one. f points to the root node of the
BDD. {0, 1} are terminal nodes with zero outdegrees. The
two outgoing arcs of a node v € V are labeled as T and E.
T(v) and E(v) correspond to the one-child and zero-child
and are represented by a solid line and a dashed line, respec-
tively.

B. QUANTUM CIRCUITS

A quantum bit (qubit) is the elementary unit of information
in quantum computation. A quantum state |@) over n qubits
is characterized by

2"—1

o) = > eli) ()

i=0

a column vector of 2" amplitudes o; € C with |oo|® + - - - +
lapn_1|*> = 1. Each squared amplitude |o;|*> indicates the
probability that after measurement the n qubits are in the
classical state i.

A quantum circuit is a structural description of a quantum
program in terms of quantum gates connected by quantum
wires, indicating the passing of time. A quantum gate is
an operation applied to one or more qubits to change their
quantum state. A quantum gate that acts on n qubits can be
specified by a 2" x 2" unitary matrix U [28], [29]. A matrix
U is unitary if

viv=uu" =1 (6)

where U is the transposed complex conjugate of U. The
matrix product A - B, the direct sum A @ B, and the direct
product (also called Kronecker product) A @ B of two matri-
ces A and B, respectively, are defined as usual [29].

In this article, we divide elementary quantum gates into
two classes: The single-qubit gates with unitary matrices

% s 0 0 0
COS5 —1S8SIns5x COS 5 —SIn 5
R(0) = (24 92>, Ry(0) = (7 92>

—1S81n 3 COS 3 sin 5 COS 5

-0
e,
RZ(9>=(60 eig)

(N

3103112

@IEEE Transactions on,
uantumEngineering

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

with parameter 6 € [0, 2]

01 10
Nor=(Tg). 7= (5.%) ®)

and the controlled-NOT gate (CNOT) with unitary matrix

1 0 00

CNOT = 0 100 9)
0 0 0 1
0010

Additionally, we use the family of uniformly controlled
single-target gates [1], [30] that correspond to 2" x 2" ma-
trices

up 0
Ui=uy® - Qw1 = (10
0 U1

with one target qubit ¢; and n — 1 control lines. The matrices
can be decomposed into the direct sum of k = 2"~! unitary
2 x 2 matrices ug, ..., Ug_1.

IV. UQSP MOTIVATION
A. UQSP PROBLEM
In this work, we consider n-qubit quantum states that are
uniform superpositions over a nonempty subset of the basis
states |0), [1),...,]2" — 1). In such quantum states all am-
plitudes of the state vector are either O or have the same value
a = 1/./s, where s is the size of the subset of basis states.
We exploit the fact that such states can be characterized by
a Boolean function f : B" — B, such that f(x) = 1, if and
only if |x) is in the subset of the considered basis states, and
therefore its corresponding amplitude is nonzero.

Example 1: The uniform quantum state

1
lp) = —=(0,1,1,0,1,0,0,0)" (an
V3
which is the W state over 3 qubits, corresponds to the
Boolean function fy that has the truth table

fw (o, x1,x2) = (0,1,1,0,1,0,0,0)". 12)

Proposition 1: There is a one-to-one correspondence be-
tween uniform quantum states and Boolean functions. A uni-
form quantum state |¢s) corresponds to the normalized truth
table of f

_ S
|<Pf>—m Wi > .

xeMinterms(f)

Now, the UQSP problem refers to the problem of finding
a quantum circuit that prepares such a state, given as input a
Boolean function f in some representation. In the beginning,
all qubits are assumed to be in their zero states. Then, we are
searching for a construction that transforms a given unitary
matrix UQSP(f) into a circuit, where

UQSP(N)[0)®" = |gy). (13)

3103112

dn—1 |0> - —

n—o:|0) — -

m2 07 vase) [len)
0 : [0) I~

FIGURE 1. Problem of preparing the UQS corresponding to the given
Boolean function f as input.

Fig. 1 describes our problem formulation.

B. MOTIVATIONAL EXAMPLES

UQSs are used in several protocols in quantum communica-
tion and cryptography, for example, in the Quantum Byzan-
tine Agreement (QBA) [14], [31]. Byzantine agreement pro-
tocols are important algorithms that are robust to failures
in distributed computing. A group of n players must agree
on a bit despite the faulty behavior of some of the players.
QBA represents the quantum version of Byzantine agree-
ment which works in constant time [14]. It is shown that in
this protocol, for n players, we are required to prepare two
quantum states that are uniform, namely

1
|§01>—ﬁ

on n qubits, and

(10,0,...,0) +11,1,...,1)) (14)

3

1 n
=— 15
o = 75) (15)

on n qubits.

Although the quantum state in (14) represents the well-
known GHZ state and we can apply a template to prepare it,
the second state in (15) is more general and we require an
automated algorithm to prepare it.

As another example, the initial quantum state used in the
quantum coupon collector (QCC) [10] problem is also uni-
form. It is given as

1

= — [16

o) = = ij i) (16)

over the elements of an unknown k-element set S C
{1,...,n}, where k = |S| < n.

Moreover, UQSs are helpful when we want to extend a
problem. In this domain, we already have the results for
some parts of the problem and we only need to solve the
problem for a new part. Instead of preparing all possible input
assignments, we only need to prepare the input assignments
for the new part that are UQSs. As an example, consider the
Zed city problem introduced in [32], which is an instance of
vertex coloring. As some of the nodes are colored already, it
requires a UQS in the beginning to create the desired input
assignments for uncolored nodes.

Hence, all these applications show that having an auto-
mated algorithm to prepare UQSs efficiently is very impor-
tant.

VOLUME 2, 2021

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

@IEEE Transactions on,
uantumEngineering

Gn—1:10) 4 -
dna:10) | S i
. SP =
D V) UQsP(fa,_)| [vaspise, | [%7

q0 :|0) 4 o H

G(pf(-’z'n*l» ‘ \r T

FIGURE 2. Preparation of Boolean function f using functional
decomposition.

V. USING FUNCTIONAL DECOMPOSITION FOR UQSP

To prepare an n-qubit uniform quantum state |¢) that en-
codes the Boolean function f, we define a correspondence
between the qubits in the quantum circuit and the variables
in f. Hence, the uniform quantum state |¢s) and the qubit
g correspond to the Boolean function f and the variable x;,
respectively. In the remainder of this article, we will use these
symbols interchangeably.

Representing uniform quantum states as Boolean func-
tions allows us to apply Shannon’s decomposition to solve
the state preparation problem recursively.

To construct the desired quantum circuit corresponding to
the UQSP(f) block shown in Fig. 1, we iterate over the vari-
ables of the Boolean function in an order, and prepare them
one by one by applying the Shannon’s decomposition. For
each qubit g; (x;), we decompose UQSP blocks as follows.

1) A gate G(P) is applied, which is a unitary transforma-
tion and satisfies

G(P)|0) = ~/P|0) + ~/T — P|1). A7)

The parameter P represents the probability of g;(x;)
being zero in the current decomposed function (f),
which equals to p f(ii).

2) g;iseither zero or one. Hence, we construct new blocks
for the corresponding cofactors by applying negative-
control and positive-control, respectively.

Fig. 2 shows the construction of UQSP(f) using our func-
tional decomposition for one iteration, where i =n — 1. We
formulate the general idea of our state preparation algorithm
as

UQSP(/)|0)®" = (UQSP(f;,) ® UQSP(f:,))(G(ps (%))
® Ln_1)|0)®". (18)

By applying this procedure recursively for all variables,
we obtain the desired quantum circuit.

Example 2: Applying the proposed functional decompo-
sition algorithm for the Boolean function of Example 1 (f)
in the order xy, x1, xq, results in Fig. 3 . First, we decompose
f over the variable x,. We apply G(py(¥2)) and divide the
circuit into two parts corresponding to cofactors f;, and fy,
by adding negative and positive controls, respectively. Next,
we decompose with x1, leading to four cofactors fx,z,, frx,»
Sfrx> and fy,x, . Finally, the four cofactors are decomposed
with xg. The detailed structure is shown on the left-hand side
of the figure. It is visible that preparing each qubit requires
2K MC-gates with k controls with different polarities corre-
sponding to different cofactors.

VOLUME 2, 2021

By applying the definition in (3), the probability values
for G gates are computed as the right-hand side of the figure.
The target-qubit represented by G(—) specifies a division by
zero corresponding to the zero-probability (G(g)). This case
never happens and we do not insert any gate. Moreover, G(1)
shows that the qubit is always equal to the zero state and can
be safely ignored, too.

The resulted quantum circuit consists of a sequence of
multiple-controlled single-target gates with G(P) as target.
From the definition of Ry(€) and (17) one can readily derive
that

G(P) =R (2c0s™'(/P)). (19)

Consequently, by replacing all gates on the target-qubit by
Ry gates, we obtain a circuit consisting only of multiple-
controlled R, (MC-Ry) gates.

Example 3: Fig. 4 shows quantum gate realization of G
gates for UQSP(fw) in Fig. 3 using (19).

V1. LOGIC SYNTHESIS TECHNIQUE 1: USING DECISION
DIAGRAMS

In practice, it is infeasible to store Boolean functions using
truth tables for a large number of variables (typically more
than 15 variables). As an alternative, the proposed approach
can extract the quantum circuit for UQSP(f) when f is rep-
resented as a reduced ordered BDD (ROBDD, or BDD for
short) [27]. This is due to the fact that counting all minterms
and computing cofactors can be efficiently performed using
BDDs. The compact representation not only enables a scal-
able quantum state preparation, if the BDD representation for
fis small, but also reduces the number of multiple-controlled
single-target gates and maybe CNOTs.

Algorithm 1 shows the UQSP using decision diagrams.
First, in procedure ComputeZeroProbabilities, we traverse
the BDD in top-down post-order to compute zero proba-
bilities by dividing the number of ones of the zero-child
with the number of ones of the current node. The num-
ber of ones of the current node is equal to the summation
of the number of ones of the zero-child and the one-child.
To compute the number of ones of the zero-child and the
one-child, we consider the effect of reduced nodes between
these nodes and the current node using ComputeOnesFrom-
Child. Second, in procedure ComputeMCgates, we traverse
again in top-down post-order to extract multiple-controlled
single-target gates (MC-gates). For each node, we insert a G
gate with its zero probability. Next, we connect a negative-
control and a positive-control to the gates from the zero-child
and the one-child, respectively, using procedure ApplyCon-
trolToChildGates. We also consider the effect of the reduced
nodes in the path between the current node and its children.
Both children of the reduced nodes have ones in the Boolean
function, so we insert gates with 1/2 probabilities in proce-
dure InsertHalfGatesForRNodes. Finally, at the root-node,
we have all MC-gates.

3103112

@IEEE Transactions on,
uantumEngineering

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

g2 1 0) {(Glp; (22))) I t
q1:10) Glpgs, (@1) 0 Glpy,, (@1)

G(%) 0 0

90:10) [Glpgsye, @) [Glogs, o, (@0))] Clpsaye, @) | Glopye @)} ——— 6D [6D — (D) [o) |

FIGURE 3. Multiple-controlled single-target gates of UQSP(fy).

q2

f‘ 9,-
¥ a 9:

) ' L [i
N5 % [0) ———Je@HemE—em}

bw:/x‘\) c(/x‘) b
\ < .
\ |
Noq 1 10
[\‘1,1/\+1,1
d‘/o\‘ ew/xo\\ ¢
2 ALY

FIGURE 5. BDD representation of f; and the procedure of the preparing
it.

Example 4: We illustrate the BDD-based synthesis algo-
rithm for the fy function as an example in Fig. 5 . The BDD
consists of 5 nodes. We traverse the BDD in top-down post-
order to count the number of ones and the zero probabilities
by dividing the number of ones from the zero-child (dashed
line) by the number of ones of the current node, for each
node. The number of ones and the probabilities for each node
are shown within the figure on the left-hand side in red and
blue colors, respectively.

To construct MC-gates, we again traverse the BDD in
top-down post-order. In a recursive manner, we construct
for each node a circuit that consists of one G(P) gate, a
negative-controlled application of the circuit constructed by
the zero-child, as well as a positive-controlled application
of the circuit constructed by the one-child. These gates are
located in the figure using boxes at the right-hand side of
each node with the same color. As an example, we explain
the construction of the gates for node “b” (green color). First,
we have to apply G(%) to the qubit corresponding to “b,”
then we connect the negative-control to the gates of node “d.”
The one-child is connected to constant zero, meaning that it
is not included in the minterms of the function and we do
not need to consider it, so we do not insert any gate for the
one-child.

3103112

Algorithm 1: UQSP Using Decision Diagrams.

Input: The root r of the BDD of the Boolean function f
Output: Quantum circuit QC

Proc UQSPpp(r):

p={}

ones ={}

ComputeZeroProbabilities(r, p, ones)

QC={}

ComputeMCgates(r, p, QC')

return QC'r|

Proc ComputeZeroProbabilities(v, p, ones):
if IsTerminal(v) or IsVisited(v) then

| return
ComputeZeroProbabilities(E (v), p, ones)
ComputeZeroProbabilities(T'(v), p, ones)
E_ones = ComputeOnesFromChild(v, E(v), ones)
T_ones = ComputeOnesFromChild(v, T'(v), ones)

_ E_ones
p[v] ~ E_ones+T_ones
ones[v] = E_ones + T _ones

return

Proc ComputeOnesFromChild(v, ¢, ones):
if IsZeroTerminal(c) then
| return0
R_nodes = NumberOfReducedNodes(v, ¢)
if IsOneTerminal(c) then
‘ return 25-nodes
return ones[c] x 2f-nodes

Proc ComputeMCgates(v, p, QC):
if IsTerminal(v) or IsVisited(v) then

| return
ComputeMCgates(E(v), p, QC)
ComputeMCgates(7'(v), p, QC)
InsertGgate(p[v], QC[v])
ApplyControlToChildGates(v, E(v), ‘Negative’, QC')
ApplyControlToChildGates(v, T'(v), ‘Positive’, QC)
InsertHalfPGatesForRNodes(v, E(v), ‘Negative’, QC')
InsertHalfPGatesForRNodes(v, T'(v), ‘Positive’, QC)
return

~

roc ApplyControlToChildGates(v, child, control_type, QC):
fori =0,...,n—1do

foreach MCgate with G on ¢; € QC|child] do
MCgate. AddControl(control_type, Index(v))
QC[v].AddMCgate(MCgate)

return

~

roc InsertHalfPGatesForRNodes(v, child, control_type, QC'):
for i = Index(v) + 1,..., Index(child) do

MCgate = CreateMCgate(%, qi)

MCgate. AddControl(control_type, Index(v))
QC[v].AddMCgate(MCgate)

return

VII. LOGIC SYNTHESIS TECHNIQUE 2: USING
DEPENDENCY ANALYSIS

For each qubit g;, the recursion generates 2¥ MC-gates. The
variable k denotes the number of already prepared qubits that

VOLUME 2, 2021

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

@IEEE Transactions on,
uantumEngineering

qn—1 : ‘0>
qn—2 * ‘0>

FIGURE 6. General structure of the sequential preparation of qubits
using uniformly controlled single-qubit gates.

can be used as control qubits for preparing the current qubit
gqi. The variable k can range from O to n — 1.

This sequence of multiple-controlled single-target gates
on the same target-qubit can be fused into a uniformly con-
trolled single-target gate U; per qubit. Applying this proce-
dure for all variables results in the structure depicted in Fig. 6,
where each qubit is prepared with a uniformly controlled
single-target gate in the order from n — 1 to 0.

On one hand, the structure of the quantum circuit pre-
sented in Fig. 6 shows that preparing qubits depends on all
previously prepared qubits. On the other hand, formulating
the UQSP problem using Boolean functions allows us to
identify functional dependencies among variables. If a de-
pendency function is recognized, meaning that a qubit de-
pends on a subset of previously prepared qubits, then often a
more compact quantum circuit structure can be synthesized.
This helps us to further reduce the number of control qubits
and CNOTs. An identified functional dependency for g; can
be utilized in three ways: 1) to reduce the number of control
qubits if ¢; depends only on a subset of the previously pre-
pared qubits, 2) to reduce the number of elementary quantum
gates if the functional dependency can be well expressed with
a library of hardware-supported quantum gates, and 3) to
reduce the number of control qubits for preparing other next
qubits.

Algorithm 2 shows the UQSP using functional dependen-
cies (UQSPgp) in pseudocode. As inputs, it takes a Boolean
function f that defines a uniform quantum state and two
strategies R4 and Dy4 for variable reordering and dependency
analysis. Both strategies can be either implemented as exact
or heuristic algorithms, which allow us to choose between
different runtime-quality tradeoffs.

From a bird’s-eye perspective, UQSPgpapplies the depen-
dency analysis algorithm Dy4 to the Boolean function f and
all reordered functions f’ of f suggested by R4. The algo-
rithm then synthesizes a quantum circuit by considering de-
pendency functions extracted from Dy, counts the number of
CNOTs, and returns the best quantum circuit realized for the
function. The considered cost function focuses on reducing
CNOTs which correlates with the reduction of rotation gates,
such that the algorithm minimizes CNOTSs and rotation gates.

The procedure SynthesizeQCrp shows how a quantum cir-
cuit is realized from a Boolean function f with a fixed order
of variables and a fixed set of functional dependencies D.
The procedure iterates one by one over the variable indices,
checks if a dependency function for this index is in D, and
then either synthesizes the quantum circuit for the given
dependency function or uses the recursive decomposition of

VOLUME 2, 2021

Algorithm 2: UQSP Using Functional Dependencies.

Input: Boolean function f, dependency analysis algorithm D 4,
variable reordering algorithm R 4
Output: Quantum circuit QC', qubits order
Proc UQSPrp(f,Ra,DA):
QC = SynthesizeQCrp(f, Da(f))
cost = CNOTs(QC)
foest = f
foreach reordered [/ € Ra(f) do
QCr = SynthesizeQCrp(f/, Da(f"))
costyr = CNOTS(QCf/)
if cost y1 < cost then

QC = ch/
cost = cost g1
fbesl = f/

return QC, Order(fyest)

o~

roc SynthesizeQCrp (f, D):
QC' = CreateNewQC()
n = NumberOfVariables(f)
fori =n—1,...,0do
QC .CreateQubit(z)
d; = D.FindDependency (%)
if d; # L then
‘ QC CreateGatesForDependencyFunction(s, d;)
else
| QC CreateGatesRecursively(i)
return QC

(18). Dependency functions are only computed if they are
guaranteed to reduce the number of CNOTs when compared
to the recursive decomposition.

The detailed explanation of dependency analysis methods
(Dy4), CNQOTs cost functions, and variable reordering meth-
ods (R4) are described next.

A. DEPENDENCY ANALYSIS METHODS

Suppose that f:B" — B is a Boolean function over
Boolean variables x = xy, ..., x,—; and y is a cost func-
tion that assigns integers to Boolean operators. We at-
tempt to compute a series go, - . . , go—1 of dependency func-
tions g;(Xj41, - .-, Xy—1), such that

Xxp—1) - fx)fori=0,...,n—2
(20)

X f(x) = gilxig1, ..

to minimize
n—1
v = v 1)
i=0

As the cost function, we consider the number of CNOTSs
required to prepare the qubits with the dependency functions
or the recursive construction of (18) if no dependency func-
tion exists.

We propose two algorithmic strategies to compute depen-
dency functions: 1) Pattern search and 2) SAT-based ESOP
synthesis. For a given Boolean function f : B" — B over
Boolean variables x = x, ..., x,_1, both strategies iterate
over the x;s for 0 <i <n — 1 and attempt to identify one
dependency function g;.

3103112

@IEEE Transactions on,
uantumEngineering

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

1y

2)

Pattern Search. We iterate over all k-tuples
(vo, ..., vg—1)of the set {x;41, ..., x,—1} over Boolean
variables for increasing values of k, | < k < K, where
K is a fixed upper bound, and test if

SV f) (22)

xi - f(x) = g(vo, ..
for all dependency functions g from some fixed set
of patterns. If the test succeeds, g(vg, ..., vp—1) iS a
dependency function for x;. We consider three different
types of dependency functions: The identity function
with a single argument to identify a dependency on a
single variable or its negation, the k-ary XOR function
to identify XOR relations between multiple variables
or their negations, and the k-ary AND function to iden-
tify AND relations between multiple variable or their
negations.

SAT-Based ESOP Synthesis. We attempt to compute a
dependency function in two steps.

Determining functional support: In the first step, we
decide on the support of the dependency function using
distinguishing bit-pairs [33]. We compute the distin-
guishing bit-pairs of #(x) = x; - f(x) and sort the vari-
ables xjy1,...,Xx,—1 by the number of distinguished
bit-pairs with respect to #(x). We accumulate a set S C
{xiy1, ..., x,—1} of variables in this order until #(x) is
guaranteed to be “reconstructable” using S, i.e., for
each distinguishing bit-pair in #(x), there is a variable
in § with the same distinguishing bit-pair.
Synthesizing structure: In the second step, we use SAT-
based synthesis [23] to derive an ESOP form g of the
dependency function with support S that satisfies (20).
Note that our cost function prioritizes XORs with many
fanins and ANDs with few fanins.

B. CNOT COSTS

We define a cost function y that counts the number of CNOTSs
required to realize a dependency function g;(x) as a quan-
tum circuit based on the general constructions proposed by
Schuch and Siewert [34], Welch er al. [35], and Mottonen
et al. [1]. We exploit the fact that, since in the beginning, all
qubits are zero, the relative phase of the rotation gates is zero,
which allows us to reduce the number of gates.

We distinguish three cases as follows.

1)

2)

XOR Clause. Let gi(x) =t(x) be an m-ary XOR
clause lo ® --- @ [,y of literals /;, 0 < j <m— L.
The qubit g; can be prepared by a quantum circuit using
y1(¢) CNOTs, where

Y1) = |t] (23)
is the number of literals.
Product Term. Let gj(x) =t(x) be a product term
t(x)=lp---ly—1 of literals /;, 0 < j<m— 1. The
qubit g; can be prepared using a quantum circuit which

3103112

3)

requires y» (1) CNOTs, where

lt] if 7] € {0, 1}

24
21 if 7] > 1. @4

Y2 (t) =

In the case of no dependency, the number of CNOTs
is zero. When the number of literals is one, it indicates
that there is an equality dependency, so the number of
CNOTs is one. For more than one literal, we express
the dependency pattern with a multiple-controlled Tof-
foli gate. If we consider a multiple-controlled Toffoli
gate and some identity gates, we can utilize the decom-
position method presented in [1] for uniformly con-
trolled single-target gates. Applying this decomposi-
tion method results in 2/l CNOTs.

ESOP Form. Let gi(x) =ty(x) D - - - B t,,—1(x) be an
ESOP form of product terms #;(x), 0 < j <m — L.
We express the dependency pattern by a sequence of
multiple-controlled Toffoli gates. Then, we propose
two different ways to decompose this sequence, which
require different numbers of CNOTs.
Multiple-controlled Toffoli gate decomposition pre-
pares the qubit g; using y3(fo D - - - D t,,—1) CNOTs,
where

m—1
Y3lto ® -+ ® 1) = yaltp) — valtp) + Y yalti)
i=0 -
with
t if || € {0, 1
and
J = argmax |y:(t;) — ya(t))l. (27)

i=0,...,m—1

As the initial state is zero in the beginning, we decom-
pose the first gate using [1] with fewer CNOTs and
its cost is represented in (24). For the rest we use the
methods presented in [34] and [35] that do not require
free-qubits. Their corresponding cost is represented in
(26). To reduce the number of CNOTSs, we bring the
gate with more controls to the beginning and its index
is computed by (27). As the summation Z;":_Ol y4(t;) in
(25) accumulates the cost for all gates, the first gate’s
cost (y4(t;+«)) is subtracted from the result.

Uniformly controlled single-target gate decomposition
is applicable if the literals of the product terms #; are
subsets of each other. Then, they can be considered as
controls of a uniformly controlled single-target gate.
In comparison to the recursive construction, using uni-
formly controlled single-target gates leads to fewer
controls and reduces the number of CNOT gates, which

are computed as follows:
Vsto @ - Dty—1) = y2(tjx) (28)

VOLUME 2, 2021

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

@IEEE Transactions on,
uantumEngineering

TABLE 1 List of Common Patterns of Dependency Functions, Their CNOT
Costs, and an Example of Their Realization as a Quantum Circuit (For
Two Inputs)

Cost Quantum circuit
(#CNOTs)| (for one and two inputs)

qz2 ¢ 10)
gi = lo 1 q1:0)
qo : 0)
g2 : |0)
gi = —lo 1 @10
0 :10)
g2 :10)
gi=lo®...Blm-1 m q1:0)
0 : 10)

g2+ 10) D:i

gi :—\(l()EB...GBlmfﬂ m q1:0) %
q2 : |0)
gi =lo- lm—1 2m a: o)
0 :10)
g2 :10)
o lm—1) 2m a1 :0)
0 :10)

Dependency function

gi ==(lo-
g2 : |0) {Ry(0.397) O >
a1 :0) Ry(3)
qo : |0) b0

FIGURE 7. Quantum circuit to prepare fiy by UQSPgpalgorithm.

where

J* = argmax |zj]. (29)
j=0,....m—1
For a given dependency function g; in the ESOP form,
we compute both y3(g;) and y5(g;), and return the min-
imum of them as the number of CNOTs.

Table 1 shows common cases of dependency functions,
their CNOT costs, and realizations as quantum circuits by
example.

Example 5: Consider fi in Example 1. We can represent
it with its minterms as

Jw (X0, X1, x2) = X2X1 X0 + X2X1 X0 + 02X Xp. (30)
We derive the dependency function
go(x1, x2) = —(x1 @ x2) (€29)
with the CNOT cost
y(8o) = 2. (32)

By considering the quantum circuit corresponding to the
XNOR dependency function in Table 1, we get the circuit in
Fig. 7 to prepare f using the UQSPgpalgorithm. Comparing
Fig. 4 and 7, shows that we reduce the number of CNOTs by
4. Note that the 2-controlled R (77) gate in Fig. 4 decomposes
into 6 CNOTs.

C. VARIABLE REORDERING METHODS
Variable reordering affects both extracting dependencies and
quantum state preparation, e.g., the AND operation is not

VOLUME 2, 2021

reversible, such that variable reordering changes dependency
extraction. Three variable reordering methods are evaluated
to reduce the number of CNOTs.

1) Exhaustive Reordering (ER) preforms quantum state
preparation for all permutations of the variables of the
Boolean function. For each variable order, a quantum
circuit is constructed. The quantum circuit with the
smallest number of CNOTs is returned. Exhaustive re-
ordering does not scale and is only practical for the
Boolean function of a few Boolean variables.

2) Random Reordering (RR) generates prior fixed num-
bers of different random permutations of the vari-
ables relying on an implemented pseudorandom num-
ber generation.

3) Greedy Reordering (GR) generates the set of all vari-
able orders obtained by locally swapping two variables
of the function. The algorithm evaluates the number
of required CNOTSs to synthesize the quantum circuit
under the considered orders and repeats its task using
the variable order with the lowest costs as the starting
point. The algorithm proceeds until a local optimum is
found and the number of CNOTs cannot be improved
by swapping variables.

VIIl. RESULTS AND DISCUSSION

We compare the proposed UQSP using decision diagrams
and dependency analysis methods with QisKit [19] which
implements the method presented by Iten er al. [5]. Both
methods are implemented in an open-source tool.! We spec-
ify the maximum level of optimization in QisKitto generate
the circuit with the minimum number of CNOTs. All experi-
ments are conducted on an Intel Core 17, 2.7 GHz with 16 GB
memory. We show, by comparing to QisKit, that our algo-
rithm UQSP, specialized for uniform quantum states, is more
scalable and can substantially reduce the number of CNOTs
over methods for arbitrary state preparation. In this section,
we introduce the practical benchmarks for our experiments.
Afterward, we evaluate our UQSP using decision diagrams
and functional dependencies, respectively. In UQSP using
functional dependencies (UQSPgp), we examine the effect of
using different dependency analysis and variable reordering
methods and construct a tradeoff between them. Finally, we
select our UQSPgpas an improved algorithm and compare
our results with the results extracted from QisKit for the
practical benchmarks.

A. BENCHMARKS

We present experiments for a large set of uniform quantum
states including the well-known quantum states GHZ and W.
We also evaluate our algorithm to prepare uniform quantum
states required by the QBA and QCC problems. Moreover, as
we map uniform quantum states to Boolean functions and we

' A C++ library for quantum state preparation that will be published after
notification.

3103112

@IEEE Transactions on,
uantumEngineering

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

TABLE 2 Experimental Results Regarding Different Dependency Analysis Methods

Baseline [17]

Pattern search SAT-based ESOP synthesis

Bench #Qs #functions #CNOTs Time (s) #CNOTs Improvement (%) Time (s) #CNOTs Improvement (%) Time (s)
EPFL 4 367 4272 0.01 3990 6.60 0.02 3972 7.02 0.03
EPFL 5 1954 47430 0.12 45086 4.94 0.30 44714 5.73 0.42
EPFL 6 6424 289036 0.72 276424 4.36 2.62 272753 5.63 3.17
EPFL 7 14334 1208777 3.62 1087473 10.04 18.02 1065106 11.89 21.96
EPFL 8 23904 4137028 10.50 3525308 1479 91.68 3488039 15.69 91.09
ISCAS 4 225 2358 0.01 2266 3.90 0.01 2248 4.66 0.02
ISCAS 5 676 14441 0.04 13527 6.33 0.09 13266 8.14 0.18
ISCAS 6 1150 48655 0.12 44874 7.77 0.44 43495 10.61 0.88
ISCAS 7 1452 124255 0.32 101603 18.23 1.72 97912 21.20 3.36
ISCAS 8 1571 273233 0.50 210139 23.09 491 203904 25.37 7.42

use some techniques from logic synthesis, we extract several
Boolean functions from the EPFL and ISCAS benchmarks,
which are frequently used in logic synthesis.

B. USING DECISION DIAGRAM
The advantage is that we can use UQSPppfor preparing a
larger number of qubits.

When using BDD as the function representation, we can
enable a fast and scalable quantum state preparation with
respect to the size of the decision diagram. Experimental
results show that the proposed approach can achieve a sig-
nificant reduction in runtime as compared to QisKit. By in-
creasing the number of qubits to 30, our method prepares
states in milliseconds whereas QisKitcannot prepare states
for more than 18 qubits. Moreover, the results show that we
can reduce the number of elementary quantum gates over
QisKitby removing redundancies in the BDD. The detailed
results are available in [17].

C. USING DEPENDENCY ANALYSIS

We evaluate UQSPgpin terms of runtime and the number of
synthesized elementary quantum gates. We primarily focus
on the number of CNOTs which are more expensive than
single-qubit gates for NISQ quantum computers, but we also
reduce rotation gates. We use the EPFL and ISCAS bench-
marks to evaluate our dependency analysis and variable re-
ordering methods to construct a good tradeoff between them
regarding runtime and the number of CNOTs. Next, we com-
pare our final results by UQSPgpwith QisKit for the practical
benchmarks such as the GHZ state, W state, and uniform
quantum states required by the QBA and QCC with different
k values (k-QCC).

1) DEPENDENCY ANALYSIS METHODS
We compare the general functional decomposition method,
presented in Section V, against UQSPgpwith two different
functional dependency methods. We implemented all meth-
ods using the same truth table package to represent Boolean
functions. Truth tables are an effective representation for
Boolean functions of up to 16 variables. For larger states with
more variables, symbolic representations such as decision
diagrams have to be used.

Table 2 presents the results of the general functional de-
composition method as the baseline, and UQSPgpwith the

3103112

proposed dependency analysis methods, pattern search, and
SAT-based ESOP synthesis. The state preparation is done
for one fixed variable order n — 1, ..., 0. For each bench-
mark, the number of CNOTs and the runtime in seconds
are shown accumulated over all functions. The CNOT re-
duction increases with the number of qubits. The number
of CNOTs are reduced by up to 14.79% and 15.69% for
the EPFL benchmarks and by up to 23.09% and 25.37% for
the ISCAS benchmarks with pattern search and SAT-based
ESOP synthesis, respectively. The comparison between pat-
tern search and SAT-based ESOP synthesis shows that the
ESOP-based approach reduces the number of CNOTs further
at the cost of requiring more runtime. Selecting the strategy
allows users to trade runtime for quality of results depending
on the application scenario.

2) VARIABLE REORDERING METHODS

We further examine the impact of the proposed variable re-
ordering methods, ER which considers all n! orders, RR with
n? different randomly chosen orders using a fixed random
seed, and GR which dynamically reorders until no further lo-
cal improvement is achieved, considering SAT-based ESOP
as the dependency strategy.

The experimental results using ESOP-based dependency
analysis with ER, RR, and GR are summarized in Table 3.
For each reordering method, we show the number of CNOTs,
the relative improvement over the baseline, and the required
runtime in seconds. Exhaustive reordering reaches the best
result, but requires too much runtime and can only be applied
to small functions in practice. Comparison of RR and GR
shows that the CNOTs are reduced using RR and runtime
is increased because the number of considered orders using
RR are more than GR. But as CNOTs reduction is more
important for us and runtime consumption using RR is still
less, we select RR over GR. As aresult, to set the best tradeoff
between the number of CNOTSs and runtime, for a small
number of qubits, we do preparation using ER and for a large
number, using RR.

3) COMPARISON TO QISKITFOR THE PRACTICAL QUANTUM
STATES

The experimental results for the quantum state preparation
of the practical quantum states are presented in Table 4.
As benchmarks, the Boolean functions for the GHZ and W

VOLUME 2, 2021

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

@IEEE Transactions on,
uantumEngineering

TABLE 3 Experimental Results Regarding Different Variable Reordering Methods

ER with n! orders

Bench#Qs #functions #CNOTs Improvement (%) Time (s)

EPFL 4 367 3646 14.65 0.44
EPFL 5 1954 39509 16.70 24.03
EPFL 6 6224 232679 19.50 953.33
EPFL 7 14334 730474 39.57 36257.95
ISCAS 4 225 2064 12.47 0.30
ISCAS 5 676 12043 16.61 10.13
ISCAS 6 1150 38828 20.20 233.99
ISCAS 7 1452 72043 42.02 5170.97

RR with n2 orders GR
#CNOTs Improvement (%) Time (s) #CNOTs Improvement (%) Time (s)
3686 13.72 0.25 3938 7.82 0.11
39895 15.89 3.89 44247 6.71 1.91
237048 17.99 4546 270673 635 16.73
790067 34.64 325.38 1035187 1436 136.11
2080 11.79 0.17 2238 5.09 0.07
12104 16.18 1.49 13248 8.26 0.78
39294 19.24 10.83 43226 11.16 4438
76162 38.71 4255 94305 24.10 2241

TABLE 4 UQSPgpResults in Comparison to QisKitResults for the Practical Quantum States

UQSPrp (ESOP+RR)

QisKit Improvement (%)

Bench #Qs #CNOTs #Rot. gates Time (s) #CNOTs #Rot. gates Time (s) #CNOTs #Rot. gates Time (s)
GHZ 10 9 1 0.00 1013 1023 6.36 99.11 99.90 100.00
GHZ 12 11 1 0.00 4083 4094 25.63 99.73 99.98 100.00
GHZ 15 14 1 0.00 32752 32767 246.81 99.96 100.00 100.00
\% 10 519 512 0.01 1013 1023 7.09 48.77 49.95 99.86
w 12 2057 2048 0.01 4083 4095 28.73 49.62 49.99 99.96
\% 15 16396 16384 0.01 32752 32767 24491 49.94 50.00 99.99
QBA 12 289 289 7.56 435 515 28.21 33.56 43.88 73.20
QBA 15 1438 1439 22.52 32620 32632 45531 95.59 95.59 95.05
QBA 16 0 12 44.58 180 302 518.01 100.00 96.03 91.39
QBA 18 2343 2343 345.41 114643 114656 4138.01 97.96 97.96 91.65
64_QCC 8 127 128 0.15 247 255 2.25 48.58 49.80 93.33
3996_QCC 12 4094 4095 5.45 4063 4069 48.96 -0.76 -0.64 88.87
1024_QCC 14 16382 16383 13.14 16367 16380 205.62 -0.09 -0.02 93.61
256_QCC 16 32766 32768 40.7 65365 65248 912.32 49.87 49.78 95.54
total 76445 76404 479.54 309616 309826 6868.22 75.31 75.34 93.02

states as well as QBA and k-QCC are considered, over n
qubits (#Qs). We consider the Boolean functions for different
numbers of qubits in the range 8—18 qubits. Our approach
improves the number of CNOTs, rotation gates, and runtime
over QisKit. The proposed method converges to the opti-
mum circuit for the GHZ state, whereas QisKituses a fixed
precomputed optimal template for this state. Note that in
Table 4, QisKit’s results come from applying their algorithm,
not using a template. For the W state, our approach reduces
CNOTs significantly whereas QisKit’s results are close to the
upper bound of 2"* — 2.

The QBA benchmark consists of a sequence of 1-bits in
the beginning and a sequence of 0-bits for the rest in its truth
table. This means we can divide qubits into three parts. We
have all input assignments for the first part of qubits that
we can prepare them using only rotation gates without any
control qubits. For the second part, we need control qubits
to prepare them as we do not have all input assignments
for them but we can utilize dependencies to reduce control
qubits. For the third part, we do not have any input assign-
ment so these qubits will be in zero state. Results in Table 4
show that our method can deal better over QisKit for this
benchmark. For example, our method prepares QBA with 16
qubits [QBA(16)] only with 12 rotation gates whereas QisKit
requires 180 CNOTs. From (15), QBA(16) consists of 212
1-bits that shows we have all input assignments for the first
12 qubits. This shows that our method prepares QBA state
efficiently.

For the k-QCC benchmark, we select four different bench-
marks with different k values randomly. As shown in the

VOLUME 2, 2021

table, for some cases we reduce the number of CNOTs by
exploiting dependencies between qubits. But for some other
cases, for example 3996-QCC and 1024-QCC, there is not
any dependencies between qubits and our results are close
to the upper bound whereas the QisKit’s results are a lit-
tle bit better. This is due to the fact that QisKit uses post-
optimization methods whereas we do not apply any postop-
timization.

In total, UQSPgpreduces CNOTs, rotation gates, and run-
time for quantum states of up to 18 qubits in average by
75.31%, 75.34%, and 93.02%, respectively.

IX. CONCLUSION

To address the general problem of preparing quantum states,
a Boolean method specialized for preparing uniform quan-
tum states is proposed, called UQSP. Uniform quantum states
are an important family of states that are frequently used
in quantum algorithms, e.g., quantum cryptography. Our
method uses Shannon’s decomposition and cofactoring. We
implemented UQSP using both truth table and BDD repre-
sentations as we can efficiently apply Shannon’s decompo-
sition to them. Using BDDs helps us to reduce runtime and
prepare quantum states with larger number of qubits where
state-of-the-art methods are not applicable.

To reduce the number of CNOTs, we identify functional
dependencies among qubits and use them to construct op-
timized quantum circuits. We added functional dependen-
cies as an extension to our UQSP, called UQSPgp. We im-
plemented UQSPgpusing truth tables. The experimental re-
sults show that preparing uniform quantum states using this

3103112

Q

uantumEngineering

IEEE Transactions on

Mozafari et al.: EFFICIENT BOOLEAN METHODS FOR PREPARING UNIFORM QUANTUM STATES

specialized method reduces both CNOTs and runtime over
QisKit as the state-of-the-art method. These results clearly
indicate that specialized procedures for preparing quantum
states improve over general methods for preparing arbitrary
quantum states. As future works, we will focus on identify-
ing other families of quantum states that can be efficiently
prepared.

ACKNOWLEDGMENT
The authors would like to thank S.-Y. Lee for giving feedback
on the manuscript.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

9

[10]

[11]

[12]

[13]

[14]

[15]

M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Trans-
formation of quantum states using uniformly controlled rotations,” Quan-
tum Inf. Comput., vol. 5, no. 6, pp. 467-473, 2005, doi: 10.26421/QICS5.6-
5.

V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of
quantum-logic circuits,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 6, pp.1000-1010, Jun. 2006,
doi: 10.1109/TCAD.2005.855930.

P. Kaye and M. Mosca, “Quantum networks for generating arbitrary
quantum states,” in Proc. Int. Conf. Quantum Inf., 2001, Art. no. PB 28,
doi: 10.1364/1CQI.2001.PB28.

P. Niemann, R. Datta, and R. Wille, “Logic synthesis for quantum state
generation,” in Proc. IEEE 46th Int. Symp. Multiple-Valued Log., 2016,
pp. 247-252, doi: 10.1109/ISMVL.2016.30.

R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, “Quantum
circuits for isometries,” Phys. Rev. A, vol. 93, no. 3, 2016, Art. no. 032318,
doi: 10.1103/PhysRevA.93.032318.

A. Zulehner, S. Hillmich, I. L. Markov, and R. Wille, “Approxima-
tion of quantum states using decision diagrams,” in Proc. 25th Asia
South Pacific Des. Automat. Conf., 2020, pp. 121-126, doi: 10.1109/ASP-
DAC47756.2020.9045454.

C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial
networks for learning and loading random distributions,” NPJ Quantum
Inf., vol. 5, no. 1, 2019, Art. no. 103, doi: 10.1038/541534-019-0223-2.

I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-
conquer algorithm for quantum state preparation,” Sci. Rep., vol. 11, 2020,
Art. no. 6329, doi: 10.1038/s41598-021-85474-1.

M. Plesch and C. Brukner, “Quantum-state preparation with universal gate
decompositions,” Phys. Rev. A, vol. 83, no. 3, 2011, Art. no. 032302,
doi: 10.1103/PhysRevA.83.032302.

S. Arunachalam, A. Belovs, A. M. Childs, R. Kothari, A. Rosmanis,
and R. de Wolf, “Quantum coupon collector,” in Proc. 15th
Conf. Theory Quantum Comput., Commun. Cryptography. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020, pp. 10:1-10:17,
doi: 10.4230/LIPIcs. TQC.2020.10.

D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s
theorem,” in Bell’s Theorem, Quantum Theory and Conceptions of the
Universe. Berlin, Germany: Springer, 1989, pp. 69-72, 10.1007/978-94-
017-0849-4_10.

W. Diir, G. Vidal, and J. I. Cirac, “Three Qubits can be entangled in Two
inequivalent ways,” Phys. Rev. A, vol. 62, no. 6, 2000, Art. no. 062314,
doi: 10.1103/PhysRevA.62.062314.

N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk
search algorithm,” Phys. Rev. A, vol. 67, no. 5, 2003, Art. no. 052307,
doi: 10.1103/PhysRevA.67.052307.

M. Ben-Or and A. Hassidim, “Fast quantum Byzantine agreement,”
in Proc. 37th Annu. ACM Symp. Theory Comput., 2005, pp. 481-485,
doi: 10.1145/1060590.1060662.

M. Hillery, V. BuZek, and A. Berthiaume, “Quantum
sharing,” Phys. Rev. A, vol. 59, no. 3, 1999, Art. no.
doi: 10.1103/PhysRevA.59.1829.

secret
1829,

3103112

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

G. De Micheli, Synthesis and Optimization of Digital Circuits. New York,
NY, USA: McGraw-Hill, 1994, doi: 10.5860/choice.32-0950.

F. Mozafari, M. Soeken, H. Riener, and G. De Micheli, “Auto-
matic uniform quantum state preparation using decision diagrams,” in
Proc. IEEE 50th Int. Symp. Mult.-Valued Log., 2020, pp.170-175,
doi: 10.1109/ISMVL49045.2020.00-10.

R. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. 100, no. 8, pp. 677-691, Aug. 1986,
doi: 10.1109/TC.1986.1676819.

G. Aleksandrowicz et al., “Qiskit: An open-source framework for quantum
computing,” 2019, doi: 10.5281/zenodo.2562110.

R. Babbush e al., “Encoding electronic spectra in quantum circuits with
linear t complexity,” Phys. Rev. X, vol. 8, no. 4, 2018, Art. no. 041015,
doi: 10.1103/PhysRevX.8.041015.

L. Grover and T. Rudolph, “Creating superpositions that correspond
to efficiently integrable probability distributions,” 2002, arXiv:quant-
ph/0208112.

T. Sasao, “An exact minimization of AND-EXOR expressions using re-
duced covering functions,” in Proc. Synth. Simul. Meeting Int. Inter-
change, 1993, pp. 374-383.

H. Riener, R. Ehlers, B. deO.Schmitt, and G. De Micheli, Exact Syn-
thesis of ESOP Forms. Cham, Switzerland: Springer, 2020, pp. 177-194,
doi: 10.1007/978-3-030-20323-8.

A. Mishchenko and M. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” in Proc. Int. Workshop Appl. Reed—Muller
Expansion Circuit Des., 2001, pp. 242-250.

M. Soeken, G. Meuli, B. Schmitt, F. Mozafari, H. Riener, and
G. De Micheli, “Boolean satisfiability in quantum compilation,” Phi-
los. Trans. Roy. Soc. A, vol. 378, no. 2164, 2020, Art. no. 20190161,
doi: 10.1098/rsta.2019.0161.

G. Meuli, B. Schmitt, R. Ehlers, H. Riener, and G. De Micheli, “Evaluating
ESOP optimization methods in quantum compilation flows,” in Proc. Int.
Conf. Reversible Comput., 2019, pp. 191-206, doi: 10.1007/978-3-030-
21500-2.

S. B. Akers, “Binary decision diagrams,” IEEE Comput. Ar-
chitecture Lett., vol. C-27, no. 06, pp.509-516, Jun. 1978,
doi: 10.1109/TC.1978.1675141.

R. P. Feynman, “Quantum mechanical computers,” Foundations Phys.,
vol. 16, no. 6, pp. 507-531, 1986, doi: 10.1007/BF01886518.

M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000,
doi: 10.1017/CB0O9780511976667.

V. Bergholm, J. J. Vartiainen, M. Mo6ttonen, and M. M. Salomaa, “Quan-
tum circuits with uniformly controlled one-qubit gates,” Phys. Rev. A,
vol. 71, no. 5, 2005, Art. no. 0 52330, doi: 10.1103/PhysRevA.71.052330.
Wikipedia, “Quantum Byzantine agreement,” Accessed on: Nov. 18, 2020.
[Online]. Available: https://en.wikipedia.org/wiki/Quantum_Byzantine_
agreement

B. Schmitt, F. Mozafari, G. Meuli, H. Riener, and G. De Micheli, “From
Boolean functions to quantum circuits: A scalable quantum compilation
flow in C++,” in Proc. Des., Automat. Test Eur. Conf. Exhib., 2021,
pp. 1044-1049, doi: 10.23919/DATE51398.2021.9474237.

J.-H. R. Jiang, and R. K. Brayton, “Functional dependency for verification
reduction,” in Proc. Int. Conf. Comput. Aided Verification Proc. Int. Conf.
Comput. Aided Verification, 2004, pp. 268-280, doi: 10.1007/978-3-540-
27813-9.

N. Schuch and J. Siewert, “Programmable networks for quantum al-
gorithms,” Phys. Rev. Lett., vol. 91, no. 2, 2003, Art. no. 027902,
doi: 10.1103/PhysRevLett.91.027902.

J. Welch, D. Greenbaum, S. Mostame, and A. Aspuru-Guzik, “Effi-
cient quantum circuits for diagonal unitaries without Ancillas,” New
J. Phys., vol. 16, no. 3, 2014, Art. no. 033040, doi: 10.1088/1367-
2630/16/3/033040.

VOLUME 2, 2021

https://dx.doi.org/10.26421/QIC5.6-5
https://dx.doi.org/10.1109/TCAD.2005.855930
https://dx.doi.org/10.1364/ICQI.2001.PB28
https://dx.doi.org/10.1109/ISMVL.2016.30
https://dx.doi.org/10.1103/PhysRevA.93.032318
https://dx.doi.org/10.1109/ASP-DAC47756.2020.9045454
https://dx.doi.org/10.1038/s41534-019-0223-2
https://dx.doi.org/10.1038/s41598-021-85474-1
https://dx.doi.org/10.1103/PhysRevA.83.032302
https://dx.doi.org/10.4230/LIPIcs.TQC.2020.10.
https://dx.doi.org/10.1007/978-94-017-0849-4_10
https://dx.doi.org/10.1103/PhysRevA.62.062314
https://dx.doi.org/10.1103/PhysRevA.67.052307
https://dx.doi.org/10.1145/1060590.1060662
https://dx.doi.org/10.1103/PhysRevA.59.1829
https://dx.doi.org/10.5860/choice.32-0950
https://dx.doi.org/10.1109/ISMVL49045.2020.00-10
https://dx.doi.org/10.1109/TC.1986.1676819
https://dx.doi.org/10.5281/zenodo.2562110
https://dx.doi.org/10.1103/PhysRevX.8.041015
https://dx.doi.org/10.1007/978-3-030-20323-8
https://dx.doi.org/10.1098/rsta.2019.0161
https://dx.doi.org/10.1007/978-3-030-21500-2
https://dx.doi.org/10.1109/TC.1978.1675141
https://dx.doi.org/10.1007/BF01886518
https://dx.doi.org/10.1017/CBO9780511976667
https://dx.doi.org/10.1103/PhysRevA.71.052330
https://en.wikipedia.org/wiki/Quantum_Byzantine_agreement
https://dx.doi.org/10.23919/DATE51398.2021.9474237
https://dx.doi.org/10.1007/978-3-540-27813-9
https://dx.doi.org/10.1103/PhysRevLett.91.027902
https://dx.doi.org/10.1088/1367-2630/16/3/033040

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

