
From Boolean functions to quantum circuits:
A scalable quantum compilation flow in C++

Bruno Schmitt, Fereshte Mozafari, Giulia Meuli, Heinz Riener, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland

Abstract—We propose a flow for automated quantum compila-
tion. Our flow takes a Boolean function implemented in Python as
input and translates it into a format appropriate for reversible
logic synthesis. We focus on two quantum compilation tasks:
uniform state preparation and oracle synthesis. To illustrate the
use of our flow, we solve IBM’s virtual hackathon challenge of
2019, called the Zed city problem, an instance of vertex coloring,
by using quantum search algorithms. The expressiveness of
Python in combination with automated compilation algorithms
allows us to express quantum algorithms at a high level of
abstraction, which reduces the effort to implement them, and
leads to better and more flexible implementations. We show that
our proposed flow generates a lower-cost circuit implementation
of the oracle needed to solve IBM’s challenge when compared to
the winning submission.

Index Terms—quantum, design automation, compilation, re-
versible logic synthesis

I. INTRODUCTION

A quantum oracle is a “black-box” operator that is used as
an input to another algorithm. Such an oracle can often be
understood as a classical computation specified by a Boolean
function. The oracle gives access to the Boolean function,
meaning that an algorithm can query the function on some
input and observe its output. Oracles are widely used for
studying the complexity of quantum algorithms1 [1]. Counting
the number of oracle queries needed to evaluate a function
is easier than counting the number of computational steps.
Thus, to try inferring nontrivial lower bounds more readily,
quantum algorithm researchers characterize the computational
complexity of an algorithm by the asymptotic growth rate of
the number of queries with growing input size—an analysis
that only assumes the existence of an oracle, and does not
require its implementation.

However, to execute a quantum algorithm on a quantum
computer, a concrete implementation has to be provided for
each oracle. Such implementations must consist of the ele-
mentary quantum operators that are supported by the specific
quantum computer. Also, due to the physical properties of
quantum computation [2], all quantum operators need to be
reversible. Therefore, a Boolean function that defines the
behavior of an oracle must be reversible. Real-world problems,
however, are often specified using oracles defined by complex
and irreversible functions.

In this paper, we propose an automated compilation flow
implemented in C++ to translate Boolean functions defined at

This research was supported by the EPFL Open Science Fund, by the
Swiss National Science Foundation (200021-169084 MAJesty) and by the
ERC project H2020-ERC-2014-ADG 669354 CyberCare.

1quantumalgorithmzoo.org/#oracular

Phase oracle (Pf)

Binary oracle (Bf)

2

2

2

2

2

2

2

|0〉

Uinit f D

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

|1〉 H

O(
√

2n) times

Fig. 1. Quantum circuit implementing a Grover’s algorithm: Uinit initializes
the search space; H plus the bit oracle Bf define the phase oracle Pf ; D
is the diffusion operator. The circuit performs O(

√
2n) iterations to find the

unique satisfying input assignment of the Boolean function f

a high level of abstraction into elementary quantum operators.
As an illustrative example, we solve IBM’s virtual hackathon
challenge of 2019, called the Zed city problem. We cast
the problem to an instance of Boolean satisfiability and use
Grover’s search algorithm [3], [4] to solve it. Our compilation
enables the programmer to describe quantum circuits by
defining each component at a high-level of abstraction, as,
e.g., shown in Fig. 1. In particular, the oracles are specified
by Boolean functions.

A Boolean satisfiability problem [5] consists of a set of
Boolean variables and a set of logical relations (or “con-
straints”). A solution is a variable assignment that maps every
variable to a Boolean value such that all constraints are satis-
fied, which we represent by a bit string. When using Grover’s
algorithm to solve such a problem, we need a Boolean function
f capable of recognizing solutions, an oracle—which takes as
input a variable assignment and evaluates to true only if it
satisfies all constraints. We map each variable assignment to
a quantum state. The algorithm starts the search by using Uinit
to create an uniform superposition of all such states. Then
it iterates over a quantum implementation of f that marks all
solution states, and a quantum operator D, known as diffusion,
that amplifies the amplitudes of these marked states. Finally,
since we amplified the amplitudes of the solution states, the
final measurements will return a solution with high probability.

In Boolean satisfiability, there is often a degree of com-
monality between various non-solutions. For example, one
typically knows beforehand that some assignments (or combi-
nations of assignments) of the variables are inconsistent, i.e.,
violate one or more of the constraints, and cannot participate
in any solution. In our example, we characterize these com-
monalities using a Boolean function g and exploit them to
direct the search to a solution. In practice, we modify Uinit
to create a uniform superposition that rules out trivial non-
solutions states. This increases the cost of implementing Uinit,
but can substantially simplify the implementation of f and
decrease the number of iterations over f and D.

The framework allows both f and g to be defined in
Python. The Python functions are transformed into classical
logic networks which, in turn, are compiled into elementary
quantum operators. We delve into the details of the state-of-
the-art techniques used (1) to compile g and, thus, create Uinit
(i.e., a process called uniform quantum state preparation) and,
(2) to compile f into the oracle implementation.

II. BACKGROUND

A. Boolean Functions
A Boolean variable x is a variable that takes one of the two

values from the domain B = {0, 1}. A positive literal is the
Boolean variable x and a negative literal is its complement
x̄. The Boolean AND of k literals is a cube, or product, i.e.,
c = l1∧· · ·∧ lk (we may omit the symbol ∧ in forming cubes,
e.g., l1∧· · ·∧ lk = l1 · · · lk). If a variable is not represented by
a positive or negative literal in a cube, then its value is said to
be a don’t care literal. A minterm is a cube, in which every
variable is represented by either a negative or positive literal.
A cube with k don’t care literal covers 2k minterms.

For the sake of clarity, we limit our discussion to single-
output Boolean functions and formally define a Boolean func-
tion as a mapping f : Bn → B. A cofactor is the function de-
rived by substituting constant values for some of its variables.
For example, Boole’s expansion of a function f , often also
called Shannon’s expansion, is defined as f = xifxi + x̄ifx̄i

where fx̄i
= f(xi = 0) and fxi

= f(xi = 1) are the negative
and positive cofactors of the function f with respect to variable
xi, respectively.

B. Quantum Computing
Quantum computers are physical machines consisting of

an array of quantum bits, the so-called qubits, whose state
can be modified by quantum operators, typically referred
to as quantum gates. A quantum algorithm describes how
to transform the state of a quantum computer to solve a
computational task. Such an algorithm contains both classical
operations and quantum operators, and its execution takes
place on a classical host computer that decides on the sequence
of quantum operators to be send to a quantum co-processor.
This sequence is a quantum circuit. Fig. 1 shows a quantum
circuit diagram. This diagram is read from left to right with
each horizontal line representing a qubit and each box/symbol
on a line representing a quantum gate.

Formally, a qubit is in a quantum state that is a column
vector |ϕ〉 =

(
α
β

)
of two complex numbers α and β, called

amplitudes, such that |α|2 + |β|2 = 1. The squared amplitudes
|α|2 and |β|2 indicate, respectively, the probability that the
quantum state will collapse to one of the classical states 0
or 1 after the qubit is measured. Hence, |0〉 =

(
1
0

)
and

|1〉 =
(

0
1

)
are two orthonormal basis states, {|0〉, |1〉}, called

the computational basis states, that span the two-dimensional
linear vector space of a qubit. We model quantum operators
that modify the state of one qubit using 2×2 unitary matrices.
For example, the Hadamard gate H = 1√

2

(
1 1
1 −1

)
transforms

the computational basis state |0〉 into the state 1√
2

(
1
1

)
, which

is in the uniform superposition between |0〉 and |1〉.
Quantum states over n qubits are represented by a column

vector of 2n complex amplitudes αx with x ∈ Bn such that∑
x∈Bn |αx|2 = 1. Each squared amplitude |αx|2 indicate

the probability that after measurement the n qubits are in
the classical state x. Quantum states can be combined by
applying the Kronecker product to form larger ones, e.g.,(

1
0

)
⊗ 1√

2

(
1
1

)
= 1√

2

(
1
1
0
0

)
, which represents a 2-qubit state that

is in the uniform superposition between the classical states 00
and 01. Such operators act on n qubits and are represented in
terms of 2n × 2n unitary matrices.

C. Oracle access to Boolean functions

We say that the oracle gives access to a Boolean function,
meaning that an algorithm that uses the oracle only has access
to the function’s input and output, not its internal structure. In
the following, we describe two natural ways of implementing
an oracle characterized by a Boolean function f on a quantum
computer that are necessary to understand our flow and the
Grover search example.

a) Bit oracle: A bit oracle is a quantum operator Bf
specified by a Boolean function f for which the effect on all
computational basis states is given by

Bf : |x〉|y〉|0〉a 7→ |x〉|y ⊕ f(x)〉|0〉a, (1)

where ‘⊕’ is the logical exclusive-or operator and a ≥ 0
corresponds to the number of extra qubits used to store
intermediate results for the computation of f(x), the so-called
ancillæ qubits.

b) Phase oracle: A phase oracle is also a quantum
operator specified by a Boolean function f . However, its effect
on all computational basis states is given by

Pf |x〉 = (−1)f(x)|x〉. (2)

Eq. 2 means that if x is not a satisfying input, the oracle does
nothing to its corresponding state |x〉. Otherwise, it rotates the
states’ phase by π (or 180 degrees).

It turns out that these two oracle models are almost equiv-
alent: the phase oracle can be obtained from one use of the
bit oracle and the use of the Hadamard operator on the output
qubit as shown in Fig. 1.

D. Grover’s Algorithm

Grover has shown that, by using quantum mechanics, a
database of unsorted data can be searched quadratically faster
than any classical search [3]. Given a Boolean function f(x),

where x is a bit string of length n, which evaluates to true
for exactly one assignment x̂, i.e., f(x̂) = 1, the algorithm
determines x̂ with a high probability by querying f only
O(
√

2n). Classical algorithms for the same task require O(2n)
queries.

The basic idea of Grover’s algorithm is to invert the phase of
the desired basis state, and then invert all the basis states about
the average amplitude of all the states. The algorithm uses n+1
qubits, where the first n of them are initialized with |0〉 and
the last one is initialized with |1〉. The initialization operator
Uinit creates a uniform superposition of all classical states that
are inputs to the oracle function f and then repeatedly applies
two operators to the state: (1) The first operator is a bit oracle
of the Boolean function f that is cast into a phase oracle.
(2) The second operator

D = Uinit · (2|0n〉〈0n| − I2n) · U†init

is a 2n×2n diffusion operator. Here, |0n〉 is the classical state
represented by the bit string with n zeros, I2n is the identity
operator of size 2n × 2n, and U†init is the adjoint operator of
U†init. In Fig. 1, the last gates on the first n qubits denote a
measurement operation.

Note that Grover’s algorithm also works for Boolean func-
tions f that evaluate to true under multiple assignments [3],
[6]. In general, any search problem can be recast as the
problem of finding the value(s) of x at which an “oracle”
Boolean function f(x) evaluates to true.

III. EXAMPLE: THE ZED CITY PROBLEM

We will use a simple example to illustrate our compilation
flow, called the Zed city problem, which is an instance of vertex
coloring. In this section, we will first introduce the problem
and then show how to apply Grover’s search to solve it.

Vertex coloring is the problem of assigning colors to vertices
of a graph such that adjacent vertices are not of the same
color. Our example is a variation of this problem presented in
the final challenge of IBM’s virtual hackathon2: Zed city is a
newly established (fictitious) municipality in Tokyo composed
of 11 districts. Four convenience store chains A, B, C, and
D have each built their first store in this new city. The goal is
to use vertex coloring to distribute stores in the districts that
still do not have one yet, while ensuring that there is only one
store per district and that adjacent districts do not have stores
from the same chain. Fig. 2 shows Zed city as an undirected
graph.

For Boolean modelling, we assign to each vertex in the
graph a binary string that represents a color and formulate the
following constraints: (1) every vertex must have one color as-
signed to it and (2) two adjacent vertices cannot have the same
color. We define the four colors, A (‘00’), B (‘01’), C (‘10’),
and D (‘11’). For each vertex i = 0, . . . , 6, we create a variable
vi, which is a bit string of length 2. The problem can then be
modelled as an oracle, a Boolean function f(v0, . . . , v6) that
evaluates to 1 only for those variable assignment that represent
a graph coloring satisfying all constraints. Classically, we can
solve a vertex coloring problem that is model as such by

2github.com/quantum-challenge/2019/

A 0 1 B

2 3 4

C 5 6

D

Fig. 2. Zed city as an undirected graph: each district represented by a node,
an edge between two nodes indicates that two district are adjacent.

querying f with all input combinations until we find one for
which f evaluates to one. Hence, in the worst case, we will
query the oracle O(2n) times. As discussed in Section II-D,
however, a quantum computer can solve such a problem with
high probability by querying f only O(

√
2n).

We need to concretely implement the circuit in Fig. 1 to
execute it on a quantum computer. Naı̈vely, the initialization
creates the superposition of all classical states by applying the
Hadamard gate H to all qubits. Next, we synthesize Bf from
a high-level classical definition of f :

Listing 1. Python implementation of f
def f(v0, ..., v6 : BitVec(2)) -> BitVec(1):

c0 = (v0 != ’00’)
c1 = (v1 != ’01’) and (v1 != v0)
c2 = (v2 != ’00’) and (v2 != ’10’) and

(v2 != v0)
c3 = (v3 != ’00’) and (v3 != v0) and

(v3 != v1) and (v3 != v2)
c4 = (v4 != ’01’) and (v4 != v1) and (v4 != v3)
c5 = (v5 != ’11’) and (v5 != v2) and (v5 != v3)
c6 = (v6 != ’11’) and (v6 != v2) and

(v6 != v3) and (v6 != v4) and (v6 != v5)
return c0 and c1 and c2 and

c3 and c4 and c5 and c6

Clearly, this function returns 1 only when all vertices are
colored and no adjacent vertices have the same color. We can
simplify f by ensuring that we will never call it with input
combinations beforehand known to be inconsistent:

Listing 2. Hand-optimized Python implementation of f
def f(v0, ..., v6 : BitVec(2)) -> BitVec(1):

c1 = (v1[0] == v1[1]) and (v3 != v1)
c023 = ((v0 ˆ v2 ˆ v3) == ’00’)
c4 = (v4 != v1) and (v4 != v3)
c5 = (v5 != v2) and (v5 != v3)
c6 = ((v2 ˆ v3 ˆ v5 ˆ v6) == ’00’) and

(v6 != v4)
return c1 and c023 and c4 and

c5 and c6

IV. COMPILATION FLOW

The compilation of the circuit in Fig. 1 can be broken
into two tasks: (1) The compilation Uinit using an uniform
state preparation technique and (2) the compilation Bf using
oracle synthesis. We leverage the EPFL quantum compilation

libraries [7] Tweedledum3, Angel4, and Caterpillar5, to create
our flow. Tweedledum is a C++ library for synthesizing,
manipulating, and optimizing quantum circuits. It provides the
other libraries with the means to represent quantum circuits
in various levels of abstraction that can be part of the same
circuit. Angel is used to prepare a uniform quantum state
given as input a Boolean function. Caterpillar is used to
automatically translate the combinational parts of a quantum
algorithm into quantum gates. We interface the flow with
IBM’s Qiskit framework [8] to execute the compiled circuit
on a quantum computer or in a high-performance simulator.

A. Compiling Uinit

To use the optimized version of f , we need an initial
uniform quantum state |ϕinit〉 in which the amplitude of the
invalid classical input states are zero. For example, in the Zed
city problem, the states in which v0 = 00 are non-solutions.
We characterize the uniform quantum state |ϕinit〉 by a Boolean
function g(v0, . . . , v6) such that

|ϕinit〉 =
1√
|Min(g)|

∑
x∈Min(g)

|x〉, (3)

where x is the concatenation of the variables v0 to v6 into a
single bit string, and Min(g) is the set of all minterms of g.
We can define g on the same level of abstraction as f :

Listing 3. Python implementation of g
def g(v0, ..., v6 : BitVec(2)) -> BitVec(1):

return (v0 != ’00’) and (v1 != ’01’) and
(v2 != ’00’) and (v2 != ’10’) and
(v3 != ’00’) and (v4 != ’01’) and
(v5 != ’11’) and (v6 != ’11’)

Given an n-qubit uniform quantum state |ϕinit〉, the uniform
quantum state preparation problem asks for a quantum circuit
in terms of rotation gates and CNOTs, specified by quantum
operation

Uinit : |0〉⊗n → |ϕinit〉, (4)

that, when applied to the canonical n-qubit quantum state
|0〉⊗n transforms |0〉⊗n into |ϕinit〉.

Using the Boolean function g, our flow uses a technique
that employs the Shannon decomposition (g = xigxi

+ x̄igx̄i
)

to solve the state preparation problem, recursively. The tech-
nique described in [9] takes as input a Binary Decision
Diagrams (BDDs) [10] representation of g and constructs
the desired quantum circuit by iterating over the variables
of g in an given order. These variables xi correspond to the
qubits qi. We prepare the qubits one by one by computing
the probability of their corresponding variable being zero
given the probabilities of previously prepared qubits p(x̄i).
This computational step requires to count the number of ones
for each recursive cofactor of g. The probability is then the
number of ones of the current decomposed function divided by
the number of ones of its negative cofactor. In other words,

3github.com/boschmitt/tweedledum
4github.com/fmozafari/angel
5github.com/gmeuli/caterpillar

we can formulate the general idea of our state preparation
algorithm as

Uinit|0〉⊗n = (Uinitx̄i
⊕ Uinitxi

)(G(p(x̄i))⊗ I2n−1)|0〉⊗n

where G(p(x̄i) is a unitary transformation gate that satisfies

G(p(x̄i)|0〉 =
√
p(x̄i|0〉+

√
1− p(x̄i)|1〉. (5)

The resulting quantum circuit consists of a sequence of
multiple-controlled p(x̄i). From the definition of Ry(θ) one
can readily derive that

G(p(x̄i)) = Ry

(
2 cos−1(

√
p(x̄i))

)
. (6)

Consequently, by replacing all gates on the target line by
Ry gates, we obtain a circuit consisting only of multiple-
controlled Ry gates. Different decomposition methods exist
used to transform these gates into a sequence of elementary
quantum gates {CNOTs, Ry(θ)} [11]–[13].

B. Compiling Bf
In this section we describe how our framework tackles the

problem of compiling quantum circuits implementing Boolean
functions. As the native operations of quantum systems are
reversible, a reversible circuit must be derived from the
specification of the Boolean function. The literature presents
several algorithms for the the synthesis of reversible circuits,
nevertheless some of them require a reversible input Boolean
function [14], [15]. The methods described here are capable of
compiling the oracle even if it is specified by an irreversible
Boolean function.

Given an irreversible function f , it is known
that there must exist a reversible Boolean function
f ′ : {0, 1}n+1 7→ {0, 1}n+1 such that

f ′(x, y) = (x, y ⊕ f(x)),

where x = x0, . . . , xn and ‘⊕’ refers to the XOR operation.
Such an embedding is also referred to as Bennett embed-
ding [16], and implies the existence of the following quantum
operation:

Bf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉 (7)

The operation Bf is also known as a single-target gate.
Single-target gates describe complex operations that cannot
generally be implemented natively on a quantum computer,
hence the need to automatically compile them into quantum
gates. Tweedledum provides several techniques to directly
compile single-target gates. Among them, for our illustrative
experiments we will make use on an ESOP-based technique.
Starting from a functional representation of f , i.e., a truth
table, the technique synthesizes a special case of a 2-level
ESOP expression for f , a Pseudo-Kronecker expression [17].
The expression is used to decompose the single-target gate
into multiple-control Toffoli gates, that are then decomposed
using state-of-the-art techniques. This approach can perform
the decomposition using at most one ancilla. However, it is
only applicable to small Boolean functions as it can be both
very time consuming and generate quantum circuit with a
prohibitive number of gates [18], [19].

For a more scalable solution, we combine similar direct
methods with the hierarchical synthesis approaches provided
by Caterpillar. The latter allows us to achieve scalability by
decomposing the initial function and storing intermediate re-
sults on ancilla qubits. Given an irreversible Boolean function
f they find an (n+ 1 + a)-qubit quantum circuit that realizes
the unitary

Bf : |x〉|y〉|0〉a 7→ |x〉|y ⊕ f(x)〉|0〉a (8)

where a > 0, which means that the synthesis algorithm can
use the a additional qubits to store intermediate computations.
We describe here two of such hierarchical approaches.

a) XAG-based [20]: This technique is based on repre-
senting the Boolean function using a logic network over the
gate basis {¬,⊕,∧}, i.e. an Xor-And-inverter Graph (XAG).
Formally, an XAG is a logic networks in which each local
function is either a 2-input AND or a 2-input XOR, i.e., each
step has one of the two following forms:

xi = xj1i ⊕ xj2i or xi = xp1i

j1i
∧ xp2i

j2i
, (9)

where p1i and p2i are Boolean constants used to possibly
complement the gate’s fan-in.

The key idea in reference [20, Algorithm 1] is to look at
the two inputs of an AND gate as two parity functions over
variables that are either primary inputs or preceding AND
steps:

∧

xi

PS1i
PS2i

p(i) q(i) ,

where PS1i
and PS2i

are the parity functions over the set
of variables indexed by S1i, S2i ⊆ [1, . . . , i − 1]. Since the
parity functions are reversible, they can be easily computed in-
place, i.e., without the need for an extra qubit. The AND steps,
on the other hand, uses out-of-place computation in order to
exploit state-of-the-art quantum implementation of the logic
AND function with a reduced number of gates [21]–[23].

The algorithm starts by computing each AND step in
topological order in three simple steps: first, it computes the
input parity functions in-place, then it implements the logic
AND using a new ancilla, and finally it cleans up the parity
functions. Once all AND steps are computed, the states of
qubits holding the output steps are copied to the output qubits.
Finally, all ancillæ are restored to |0〉 by cleaning up all AND
steps in anti-topological order.

One of the major advantages of XAG-based synthesis is
that the resources required by the resulting quantum circuits
can be predicted by inspecting some structural properties of
the graph. This for example includes the number of ancillæ,
which depends on the number of AND steps in the XAG that
is commonly called multiplicative complexity. It follows that
we can rely on classical logic synthesis techniques to optimize
the multiplicative complexity of the initial XAG. Nevertheless,
as the problem of determining the multiplicative complexity
is intractable, a hard limit on the number of ancillæ may be
prohibitive for such approach. Then, one option provided is to

use SAT to find the best strategy to compute and uncompute
the required intermediate results using a target number of
qubits a. Such techniques are called pebbling strategies and
enables to explore the trade-off between qubits and gates.

b) LUT-based [24]: Another hierarchical method avail-
able in Caterpillar is based on k-LUT networks. The parameter
k provides a certain control over the number of ancillæ a.
The technique is based on the usage of k-feasible Boolean
logic networks (k-LUT networks), which consist of lookup-
tables (LUTs) with at most k inputs. Synthesis proceeds in
two steps: first, each k-LUT is translated to a single-target
gate with k control lines in a reversible logic network. Second,
each single-target gate is compiled. Note that by using bigger
LUTs, we can minimize the number of ancilla qubits. The
size of the LUTs, however, is limited by the scalability of
the single-target gate synthesis approach. As detailed in [24]
the k-LUT network must isolate LUTs with functions conve-
niently matched to generate fewer gates upon decomposition
of the corresponding single-target gate into quantum gates. For
example, when using Gray synthesis [25] to decompose single-
target gates, the LUT functions should contain few non-zero
coefficients into the Rademacher-Walsh spectrum.

As for the XAG-based technique, we can incorporate peb-
bling strategies to further trade-off the number of qubits for
quantum operators.
This section described how the techniques available in our
tools can control the number of generated ancillæ a. Never-
theless, the existence of a compilation technique that takes a as
an input parameter and guarantees to return a quantum circuit
that satisfies the space requirement is still to be determined.

V. EXPERIMENTAL RESULTS

We evaluate our flow by solving the Zed city problem in
IBM’s challenge, which further imposes a constraint on the
number of qubits: a solution must use at most 32 qubits. We
use IBM’s challenge as an example and evaluation because
highly-optimized handcraft solutions are available. We use
these solutions as a baseline. First, we compare the code
readability: The oracle in Listing 1 is objectively simpler to
understand and implement than any of the submitted solutions.
The hand-optimized version, Listing 2, is more involved, but
arguably less complicated than the top submissions6, which
define Uinit and Bf in terms of primitive quantum operators.

In Table I, we report the results of compiling Bf when
using both the hand-optimized and non-optimized versions of
f . As baseline, we use IBM’s sample solution and the winner
submission from team Whit3z with the same cost function
as in the challenge, i.e., cost = n1q +10 ·n2q, where n1q is the
number one-qubit operators and n2q the number of two-qubit
operators.

First, obverse that the non-optimized implementation only
meet the 32-qubit constraint when synthesized with pebbling.
The results for our hand-optimized oracle have a slightly lower
cost than the handcrafted solutions. As expected, we obverse
a trade-off between the number of operations and the number
of qubits.

6github.com/quantum-challenge/2019/tree/master/top ten submissions

TABLE I
QUALITY OF RESULTS FOR Bf (HAND-OPTIMIZED AND NON-OPTIMIZED)

Hand-optimized Non-optimized

Qubits cost Qubits cost

IBM’s solution 32 5004
Whit3z solution 32 2474
XAG-based flow 31 2202 56 4347
XAG-based flow with pebbling 21 4497 30 7737

The use of our hand-optimized oracle has a significant
impact on the implementation of Uinit since it requires ensuring
that the amplitude of computational basis states corresponding
to known non-solutions is zero. Due to its generality and lack
of high-level information, Angel’s uniform state preparation
technique generates a high-cost implementation of Uinit.

VI. CHALLENGES AND CONCLUSIONS

We presented a design flow for automated quantum compi-
lation of Boolean functions. Our flow takes as input a quantum
program implemented in Python and translates it using logic
synthesis techniques. Automated compilation enables rapid
design-space exploration and gives designers the flexibility to
optimize for a variety of different cost metrics such as the
number of T gates or the number of qubits.

Particularly, we focused on two quantum compilation tasks:
uniform state preparation and oracle synthesis. To illustrate our
flow, we use them to solve IBM’s virtual hackathon challenge
of 2019. The expressiveness of Python in combination with
scalable compilation algorithms allows us to express quantum
algorithms at a high level without being burdened with specify-
ing each single quantum operation in detail. Ultimately, this (1)
simplifies the implementation task, since the tedious manual
compilation of combinational components is automatized, and
(2) enables rapid development of more complex algorithms
by using abstract high-level constructs. These capabilities are
absent in existing approaches for quantum circuit compilation.

Several challenges remain and are awaiting satisfactory
solutions. Automated compilation of large functions requires
reversible logic synthesis methods that need additional qubits.
Typically, the execution of the compilation algorithm deter-
mines the number of ancilla qubits, i.e., it cannot be bounded
apriori. Techniques that find a solution without exceeding a
given number of ancillæ are still rare. Advances in automated
state preparation are required to raise the level of abstraction
and to identify world-level relation among input bits in order
to minimize the cost of initializing an input quantum state—an
ubiquitous operation in quantum algorithms.

REFERENCES

[1] A. Ambainis, “Understanding quantum algorithms via query complex-
ity,” arXiv preprint arXiv:1712.06349, vol. 244, 2017.

[2] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation, 2nd ed. Cambridge University Press, 2010.

[3] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, 1996, pp. 212–219. [Online]. Available: https:
//doi.org/10.1145/237814.237866

[4] ——, “Quantum mechanics helps in searching for a needle in a
haystack,” Physical Review Letters, vol. 79, no. 2, pp. 325–328, 1997.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.79.325

[5] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[6] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on
quantum searching,” Fortschritte der Physik, vol. 46, no. 4-5, pp. 493–
505, 1998.

[7] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
arXiv preprint arXiv:1805.05121v2, 2019.

[8] H. Abraham et al., “Qiskit: An open-source framework for quantum
computing,” 2019.

[9] F. Mozafari, M. Soeken, H. Riener, and G. De Micheli, “Automatic uni-
form quantum state preparation using decision diagrams,” in IEEE Inter-
national Symposium on Multiple-Valued Logic, ISMVL 2020, Miyazaki,
Japan, November 9-11, 2020, 2020, p. to appear.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 35, no. 8, pp. 677–691, 1986. [Online]. Available:
https://doi.org/10.1109/TC.1986.1676819

[11] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Quan-
tum circuits for general multiqubit gates,” Physical Review Letters,
vol. 93, no. 13, p. 130502, 2004.

[12] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Physical Review
A, vol. 93, no. 2, p. 022311, 2016.

[13] M. Soeken, F. Mozafari, B. Schmitt, and G. De Micheli, “Compiling
permutations for superconducting QPUs,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
1349–1354.

[14] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Confer-
ence, 2003. Proceedings. IEEE, 2003, pp. 318–323.

[15] A. De Vos and Y. Van Rentergem, “Young subgroups for reversible
computers,” Advances in Mathematics of Communications, vol. 2, no. 2,
pp. 183–200, 2008. [Online]. Available: http://dx.doi.org/10.3934/amc.
2008.2.183

[16] C. H. Bennett, “Logical reversibility of computation,” IBM Journal
of Research and Development, vol. 17, no. 6, pp. 525–532, 1973.
[Online]. Available: http://ieeexplore.ieee.org/document/5391327/

[17] M. Davio, A. Thayse, and J. P. Deschamps, Discrete and switching
functions. McGraw-Hill, 1978.

[18] B. Schmitt, M. Soeken, G. De Micheli, and A. Mishchenko,
“Scaling-up ESOP synthesis for quantum compilation,” in 2019 IEEE
49th International Symposium on Multiple-Valued Logic (ISMVL).
IEEE, 2019, pp. 13–18. [Online]. Available: https://ieeexplore.ieee.org/
document/8758744/

[19] H. Riener, R. Ehlers, B. d. O. Schmitt, and G. De Micheli, “Exact
synthesis of ESOP forms,” in Advanced boolean techniques. Springer,
2020, pp. 177–194.

[20] G. Meuli, M. Soeken, E. Campbell, M. Roetteler, and G. De
Micheli, “The role of multiplicative complexity in compiling
low T -count oracle circuits,” in Proceedings of the International
Conference on Computer-Aided Design, ICCAD 2019, Westminster,
CO, USA, November 4-7, 2019, 2019, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/ICCAD45719.2019.8942093

[21] C. Jones, “Low-overhead constructions for the fault-tolerant Toffoli
gate,” Phys. Rev. A, vol. 87, no. 2, p. 022328, 2013.

[22] P. Selinger, “Quantum circuits of T -depth one,” Phys. Rev. A, vol. 87,
p. 042302, 2013.

[23] C. Gidney, “Halving the cost of quantum addition,” Quantum, vol. 2,
no. 74, pp. 10–22 331, 2018.

[24] G. Meuli, M. Soeken, M. Roetteler, and G. De Micheli, “ROS: Resource
constrained oracle synthesis for quantum circuits,” in Quantum Physics
and Logic, 2019.

[25] M. Amy, P. Azimzadeh, and M. Mosca, “On the controlled-NOT
complexity of controlled-NOT–phase circuits,” Quantum Science and
Technology, vol. 4, no. 1, p. 015002, 2019.

