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Abstract—We present a flow for synthesizing quantum op-
erations that are defined by classical combinational functions.
The discussion will focus on out-of-place computation, i.e., Uf :
|x〉|y〉|0〉k 7→ |x〉|y⊕ f(x)〉|0〉k. Our flow allows users to express
this function at a high level of abstraction. At its core, there
is an improved version of the current state-of-the-art algorithm
for synthesizing oracles [1]. As a result, our synthesized circuits
use up to 25% fewer qubits and up to 43% fewer Clifford gates.
Crucially, these improvements are possible without increasing the
number of T gates nor the execution time.

Index Terms—quantum, design automation, compilation, syn-
thesis

I. INTRODUCTION

In this paper, we present an automatic compilation flow
for classically defined quantum operations, i.e., operations
with the behavior described by a classical function f :
{0, 1}n 7→ {0, 1}m. Many quantum algorithms make use of
such operations [2]–[4] and in particular oracular algorithms [5]–
[10], since their oracles are often classically defined.

We must implement these oracles in terms of elementary
quantum operations to run on a quantum computer—very much
like classical computer programs need to be expressed in terms
of low-level machine instructions. Furthermore, due to the
physical properties of quantum states, all quantum operations
need to be reversible. Therefore, a classical function that defines
the behavior of a quantum operation must be reversible.

Most often, however, real-world problems require the use
of oracles defined by functions that are both complex and
irreversible. Demanding an algorithm designer to deal with all
these constraints is impractical. Our work allows designers to
implement the complicated classical subroutines on a high
level of abstraction, and then automatically translate such
implementations into low-level quantum circuits.

Contributions: We present an automatic compilation flow
for classically defined quantum operations. We present its
core algorithm: An improved version of the current state-of-
the-art algorithm [1] for oracle synthesis. We present results
demonstrating that our flow is capable of reducing the number
of qubits by up to 24.95% and the number of Clifford gates
by up to 43.3% when compared to [1]. Crucially, these
improvements are possible without increasing the number of T
gates nor the execution time. Also, we explain why the authors’
implementation of Algorithm 1 in [1] does not properly handle
the general case Uf : |x〉|y〉|0〉k 7→ |x〉|y ⊕ f(x)〉|0〉k.
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II. PRELIMINARIES

As general notation, we are using [n] = {1, . . . , n}.
A. Logic networks

Let S = {i1, . . . , ik} ⊆ [n], then

FS(x) = f(xi1 , . . . , xik) (1)

is a Boolean function over the variables indexed by S. We
define F∅ = 0. For convenience we omit brackets when
explicitly writing the indexes, e.g., we write F1,3 instead of
F{1,3}.

We model a logic network for a Boolean function over the
variables xn, . . . , x1 as a sequence of r steps, where each step
has the form:

xi = FSi(x) (2)

for n < i ≤ n + r, where Si ⊆ [i − 1]. We call FSi a local
function. To represent the constant function, we define x0 = 0.
We define a sequence of primary outputs y0, . . . , ym in which
each element points to a step xj with 0 ≤ j ≤ n+ r.

B. Quantum Computing
Quantum computers consist of an array of quantum bits,

the so-called qubits, whose state can be modified by quantum
operations, typically referred to as quantum gates. A quantum
algorithm describes how to transform the state of a quantum
computer to solve a computational task. Such an algorithm
contains both classical operations and quantum operations, and
its execution takes place on a classical host that decides on
the sequence of quantum operations to send to the quantum
co-processor. We can depict this sequence as a quantum circuit.
Fig. 1c shows a quantum circuit diagram. This diagram is
read from left to right with each horizontal line representing
a qubit, and quantum gates represented as boxes/symbols on
these lines.

A classically defined quantum operation is a ‘black box’
unitary operation Uf . Without loss of generality, we will restrict
our discussion to operations described using a classical function
f : {0, 1}n 7→ {0, 1}m. We define the effect of operation on
all computational basis state by:

Uf : |x〉|y〉|0〉k 7→ |x〉|y ⊕ f(x)〉|0〉k, (3)

where the extra k qubits are used to store intermediate results
for the computation of f(x), the so-called ancillae qubits. Since,
like all quantum operations, Uf is linear in the state it acts on,
defining an operation in this way, i.e., for each computational
basis state |x〉|y〉, also defines how Uf acts for any other state.
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Fig. 1. Starting from the XAG, we first create a high-level XAG (a). We synthesize a quantum circuit with parity gates and Toffoli gates (b); Then we lower it
to a circuit consisting of CNOT and Toffoli gates (c), which, in turn, is lowered to a circuit over the Clifford+T gate set.

III. STATE OF THE ART

The current state-of-the-art technique considers logic net-
works over the gate basis {¬,⊕,∧} [1]. Formally, a XAG is
a logic networks in which each local function FSi is either a
2-input AND or a 2-input XOR, i.e., each step has one of the
two following forms:

xi = xj1i ⊕ xj2i or xi = xp1i

j1i
∧ xp2i

j2i
, (4)

where p1i and p2i are Boolean constants used to possibly
complement the gate’s fan-in. (Note that in a generic logic
network these constants are unnecessary as the negation of a
fan-in can be incorporated into the local function.)

The key idea in reference [1, Algorithm 1] is to look at the
two inputs of an AND gate as parity functions over variables
that are either primary inputs or preceding AND steps:

∧

xi

⊕ ⊕
PS1i

PS2i

p(i) q(i)
,

where PS1i and PS2i are the parity functions over the set
of variables indexed by S1i, S2i ⊆ [i − 1]. Since the parity
function is reversible, the inputs can be easily computed in-
place, i.e., without the need for an extra qubit. The AND steps,
on the other hand, need out-of-place computation.

The algorithm starts by computing each AND gate in three
simple steps: First, it computes the input parity functions in-
place, then the AND gate in a new ancilla qubit, and then it
cleans up the input. After that, it copies the state of the qubit
holding the output step to the output qubit. Finally, it restores
the ancilla qubits to |0〉 by cleaning up all AND steps.

IV. COMPILATION FLOW

As shown before, when compiling a XAG, the synthesis
algorithm focuses on steps that need out-of-place computation—
i.e., the outputs and the AND steps. To simplify our algorithm
implementation, we represent the XAG in a higher level
of abstraction that does not use nodes to represent the in-
place XOR steps. We refer to this new and more general
representation as high-level XAG, e.g., see Fig. 1a.

The main contributions to the synthesis technique rest in
explicitly having a higher-level representation of the XAG and
the analysis we do on it, which enables savings in both the
number of qubits and the number of Clifford gates. Furthermore,
our flow lowers the level of abstraction in small steps: Starting
from a high-level XAG, we synthesize a quantum circuit with
parity gates and Toffoli gates, e.g., Fig. 1b; Then we lower
it to a circuit consisting of CNOT gates and Toffoli, which,
in turn, is lowered to a circuit over the Clifford+T gate set.
This progressive lowering process allows our flow to discover
more facts about the program, thus finding better optimization
opportunities.

A. High-level XAG

A high-level XAG is a logic network in which each local
function FSi

is either a 2-input AND or a 2-input XOR. The
inputs, however, are parity functions:

xi = PS1i
∧ PS2i

or xi = PS1i
⊕ PS2i

(5)

for n < i ≤ n+ r, where PS1i
and PS2i

are parity functions
over the set of variables indexed by S1i, S2i ⊆ [i− 1]. Note
that we can represent XOR steps as one parity function PS .
Also, we can merge XOR steps into the inputs of the AND
steps, except when they drive an output.



The logic level li of a primary input or step i is defined as the
earliest possible time in which it can be computed. Similarly,
we define the reverse logic level lri as the latest possible time
in which gate i must be computed while not increasing the
depth of the logic network

B. Synthesis

In the algorithms below, each step xi for 0 ≤ i ≤ n+ r has
attributes LR(i), L(i), R(i), FANIN(i), REF(i), LAST REF(i),
LVL(i), and TGT(i), which interact as follows: LR(i) is the
set of indexes of the variables that are common in both input
parity functions, i.e., LR(i) = S1i ∩ S2i. L(i) and R(i) are
the set of indexes of the variables that appear in only one
of the input parity functions, i.e., L(i) = S1i \ LR(i) and
L(i) = S2i \ LR(i). The FANIN(i) is a vector of indexes such
that FANIN(i) = S1i ∪ S2i

The REF(i) attribute tells the algorithm the number of
references to step xi, including cleaning up. For example,
given a step xk that uses xi in its input, if xk needs clean up,
then two references are added to xi: one for the computation
of xk and one for its clean up. However, if xk does not need
cleanup (e.g., an output step), then just one reference is added.
LAST REF(i) tells the index of the last reference.

Finally, LVL(i) is simply the reverse logic level lri , and
TGT(i) indicates the target qubit of a step. Initially, TGT(i) is
∅ for all steps.

The synthesis process begins by assigning qubits to the
primary inputs and primary outputs. The assignment is trivial
for the inputs but more complicated for the outputs. For the sake
of clarity, we look at the assignment as a separate algorithm.

Before delving into the details of the assignment algorithm,
however, let’s understand what are the complications with the
primary outputs. Suppose we are given a high-level XAG with
m outputs. An output can be: (1) The constant x0, (2) a primary
input, (3) a AND step, (4) a XOR step, or the complement of
one of those. We can also have one step driving more than
one output. Cases (1), (2), and (3) are simple:
(1) Either do nothing or add a NOT gate to the output qubit.
(2) Use a CNOT gate to copy the classical state.
(3) Compute the AND step directly on the output qubit—

saving a qubit and the gates that would be necessary to
clean up the AND step.

Careful handling of case (4) also allows us to save qubits
and gates. We compute the XOR step on the output qubit.
This direct computation saves us nothing, since all explicit
XOR steps are outputs. To save resources, we look among the
inputs of the XOR step for AND steps that we can compute
on directly on the output qubit.

We now present the algorithm to assign qubits to the inputs
and outputs:

Algorithm A: Given a high-level XAG with n inputs and
m outputs, a quantum circuit, and a set of n + m qubits Q,
this algorithm assigns target qubits to the primary inputs and
primary outputs. The set Q is implemented as a vector where
the first n elements identify the qubits used as primary inputs
and the last m the primary outputs.

A1. [Assign PI.] Set the target qubits of all primary input
steps, that is, TGT(i)← Q[i− 1], for 1 ≤ i < n.

A2. [Assign AND PO.] For each primary output i, if
TGT(i) = ∅ and ◦i = ∧, then set TGT(i) ← Q[n +
(i− 1)].

A3. [Assign XOR PO.] For each primary output i in which
◦i = ⊕ and TGT(i) = ∅. Set TGT(i)← Q[i−1] and look
for a AND step among its inputs: First, we create vector
A of all the AND that have not being assigned a qubit
among the inputs of i, i.e., for j ∈ FANIN(i), if ◦j = ∧
and TGT(j) = ∅, then add j to A. Now, for k ∈ A, if
REF(i) = 1 or SIZE(A) = 1, and LVL(LAST REF(k)) ≤
LVL(i); then set TGT(k)← TGT(i), REF(k)← REF(k)−
1.

In the following algorithm, we use functions that have the
same name as quantum gates to denote the addition of the
respective gate to the quantum circuit.

Algorithm B: Given a high-level XAG with n inputs and
m outputs, a quantum circuit, and a set of n + m qubits Q,
this algorithm assign target qubits to the primary inputs and
primary outputs.

B1. [Initialize.] Execute Algorithm A.
B2. [Compute level.] We process the nodes of the

high-level XAG level by level. We set lmax ←
max {li ∈ 0 ≤ i < n}. For 1 ≤ h < lmax, we do: for
all nodes i such that LVL(i) = h, if i is an XOR node,
i.e., ◦i = ⊕, execute step B3; Otherwise execute step
B4.

B3. [Compute XOR] We directly compute the gate on its tar-
get qubit: PARITY({TGT(j) : j ∈ FANIN(i), TGT(j) 6=
TGT(i)}, TGT(i)). Then we update the reference counters
of all nodes used by i: REF(j) = REF(j) − 1 for
j ∈ FANIN(i).

B4. [Compute AND] If TGT(i) = ∅, we request an
ancilla a and set TGT(i) ← a. If |L(i)| < |R(i)|,
we swap them L(i) ↔ R(i). We choose two qubits
k and v to hold the in-place computation of the
inputs. We set k to be an element of L(i). If LR(i)
is not empty, then we choose v ∈ LR(i); Otherwise,
we pick v ∈ R(i). We execute step B4 and add a
Toffoli: TOFFOLI({TGT(k), TGT(v)}, TGT(i). We also
update the reference counters of all nodes used by i:
REF(j) = REF(j)−1 for j ∈ FANIN(i). Lastly, we clean
up the inputs by executing B5 in reverse oder.

B5. [Compute inputs] Do:
– PARITY({TGT(j) : j ∈ L(i), j 6= k}, TGT(k))
– PARITY({TGT(j) : j ∈ LR(i), j 6= v}, TGT(v))
– If LR(i) is not empty: PARITY({TGT(v)}, TGT(k))
– PARITY({TGT(j) : j ∈ R(i), j 6= v}, TGT(v))

B6. [Recursively try to cleanup] For j ∈ FANIN(i), if
REF(i) = 0, then we compute j using step B3 and
try to cleanup the inputs j using this step.

B7. [Missing outputs.] This step takes care of any primary
output that might not have been computed. For example,
a primary output that is a primary input. Set i = n. For
each primary output o: We do PARITY({TGT(i)}Q[i])
if Q[i] 6= TGT(o) and o 6= 0, and then i← i+ 1.

B8. [Complement outputs.] Set i = n. For each primary
output: We do X(Q[i]) if the output is complemented,
and then i← i+ 1.



V. EXPERIMENTAL RESULTS

We implemented the flow in Tweedledum1. We use various
arithmetic and random-control functions from [11] as well as
cryptographic functions and IEEE floating-point operations [12]
as benchmarks. For the EPFL benchmarks, we list the currently
best-known results for multiplicative complexity obtained from
the state-of-the-art optimization approaches in [13]. We compile
the functions into quantum operations of the form given by
Eq. 3. The resulting quantum circuit representation uses the
Clifford+T gate set.

In [1], the authors provide a C++ implementation of their
algorithm that does not properly handle the general form, Eq. 3.
The problem lies with the measurement-based cleanup [14].
Their implementation might apply this technique on Toffoli
gates acting on the output qubits, thus destroying the initial state
|y〉. We modify their implementation to correct this behavior.

We report the results in Figure 2. Note that we don’t
ignore any Clifford gates. (In [1], the Clifford gates in the
decomposition of Toffoli gates to a Clifford+T gate set are
ignored.) Also, we report the number of Clifford gates for
the worst case, i.e., we assume that all measurement-based
cleanups fail.

Fig. 2. Percentage improvements in the number of qubits and in the number
of Clifford gates when compared against the current state of the art [13].

EPFL benchmarks: On these benchmarks our flow im-
proves, on average, 4.07% the number of qubits and 8.72%
the number of Clifford gates. The largest improvement is of
24.95% in the number of qubits and 43% in the number of
Clifford gates, and occurs for the adder, when synthesizing for
the general form, i.e., Eq. 3. Such impressive gain is due to
Algorithm A, which is able to correctly identify that all Toffoli
gates can be directly computed on the output qubits, and, thus,
don’t need to be cleanup.

Cryptographic functions & IEEE floating-point: We were
unable to obtain results for all crypto benchmarks due to
memory constraints. The state-of-the-art fails on Keccak-f,
SHA-256 and SHA-512. Our method, on the other handle,
can handle SHA-256 because of its multilevel intermediate
representation, which is more memory efficient. The other
results show a significant improvement on the number of

1https://github.com/boschmitt/tweedledum

Clifford gates: 22.21% on average. On the IEEE floating-point
operations we also observe an important gain in the number
of Clifford gates.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work we presented a compilation flow for classically
defined quantum operations that are expressed by means of a
XAG. We focused on XAGs with minimal number of AND
nodes. The impact of the number of XOR nodes in the graph,
on the other hand, should be better studied in the future. In
our experiments, we have seen that the relation between the
number of XOR steps and the number of CNOT gates is not
straightforward.

Our technique achieves better results compared to other state-
of-the-art automatic compilers [13]. Indeed, we can reduce the
number of qubits by up to 24.95% and the number of Clifford
gates by up to 43.3%. Crucially, these improvements were
possible without increasing the number of T gates nor the
execution time.

In addition, our multilevel intermediate representation (IR)
allowed us to manipulate bigger circuits more efficiently. For
example, we were able to deal with a benchmark that required
to much memory when represented using a low-level IR.
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