
Algebraic and Boolean Optimization Methods
for AQFP Superconducting Circuits

Eleonora Testa
EPFL, Lausanne, Switzerland

Siang-Yun Lee
EPFL, Lausanne, Switzerland

Heinz Riener
EPFL, Lausanne, Switzerland

Giovanni De Micheli
EPFL, Lausanne, Switzerland

ABSTRACT
Adiabatic quantum-flux-parametron (AQFP) circuits are a family of
superconducting electronic (SCE) circuits that have recently gained
growing interest due to their low-energy consumption, and may
serve as alternative technology to overcome the down-scaling lim-
itations of CMOS. AQFP logic design differs from classic digital
design because logic cells are natively abstracted by the majority
function, require data and clocking in specific timing windows, and
have fan-out limitations. We describe here a novel majority-based
logic synthesis flow addressing AQFP technology. In particular, we
present both algebraic and Boolean methods over majority-inverter
graphs (MIGs) aiming at optimizing size and depth of logic circuits.
The technology limitations and constraints of the AQFP technology
(e.g., path balancing and maximum fanout) are considered during
optimization. The experimental results show that our flow reduces
both size and depth of MIGs, while meeting the constraint of the
AQFP technology. Further, we show an improvement for both area
and delay when the MIGs are mapped into the AQFP technology.

KEYWORDS
AQFP, superconducting electronics, majority logic, logic synthesis

1 INTRODUCTION
The growing interest in superconducting electronics (SCE) is related
to the search for a scalable computing technology that can match
and extend the current performances of CMOS at lower energy cost.
The CMOS technology, the main workhorse in electronic systems,
is showing increasingly higher fabrication costs and challenges in
downscaling transistor dimensions, with marginal improvements in
energy consumption at smaller technology nodes. Meanwhile, the
SCE technology will be relevant to the design of fast computing sys-
tems in the twenties, to address challenging complex computational
problems as, for example, those related to artificial intelligence, se-
curity, weather prediction and environmental modeling as well as
bio-med-discovery and drug design. Superconducting electronics
leverages computation at few degrees Kelvin (typically 4 K) where
resistive effects can be neglected. IBM pioneered this technology
in the 70s with the use of the Josephson junctions (JJs) [3]. Japanese

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7999-1/21/01.
https://doi.org/10.1145/3394885.3431606

supercomputer companies followed the lead and continued even
after IBM abandoned the JJ technology route in the 80s. At that time,
most companies indeed predicted and effected the downscaling of
CMOS technology, thereby benefitting from the constant power
density (as modeled by Dennard [9]) and thus riding Moore’s law
graphs until today. Note that SCE differs significantly from quan-
tum computing (QC, [4]). SCE design is based on superconductive
inductive loops and JJs. Logic design follows the principles (but
differs in the realization) of classic Boolean logic. QC operates at
10 mK for noise reasons, and leverages superposition and entangle-
ment provided by the quantum properties of the material. Thus, QC
design is based on a different logic abstraction and on logic gates
with different properties.

Various families of SCE circuits have been investigated over the
years. Likharev [18] proposed rapid single flux quantum (RSFQ)
circuits, where logic values (TRUE, FALSE) are represented by the
presence or absence of single flux quantum pulses. Junctions are
DC biased and when a pulse is applied to the junction, the small
associated current pulse can be sufficient to drive the current level
over its threshold and to generate a pulse that can be propagated
through the circuit. A specific feature of RSFQ circuits is that logic
gates are clocked, and that the overall circuit is pipelined [23].
The RSFQ technology evolved in many directions, e.g., energy-
efficient SFQ (eSFQ, [22]), reciprocal quantum logic (RQL, [13]) and
low-voltage RSFQ (LV-RSFQ, [30]). Dynamic rapid single flux quan-
tum (DSFQ) technology is a recent asynchronous realization lever-
aging majority logic in the design [17]. In the last decade, research
work has addressed technologies that target specifically low-energy
consumption. This can be achieved by using AC power (i.e., alter-
nating current supply), as in adiabatic quantum-flux-parametron
(AQFP) technology. The parametron is a resonant circuit with a
nonlinear reactive element [11]. In general, signal propagation in
AQFP circuits requires overlapping clock signals from neighboring
phases [8]. In AQFP, inductor loop pairs are used to store logic
information in terms of flux quanta depending on the direction of
an input current and to the magnetic coupling to other inductors. A
corresponding output current represents the output of a logic gate.

A major difficulty in switching from standard CMOS to super-
conducting electronics is the ability of realizing complex designs,
because of the limited availability of electronic design automa-
tion (EDA) tools. In the last two years, much progress has been
achieved in EDA for superconducting electronics. Recent research
on design tools have addressed the twomain families of SCE, namely
RSFQ [10, 14, 25] and AQFP [5, 8, 32] technologies. The common
salient feature of these technologies is that the logic evaluation
at each gate is triggered by a clock and/or bias. Thus, the clock

https://doi.org/10.1145/3394885.3431606

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan E. Testa, et al.

pulses and the inputs have to be present at the logic gates in spe-
cific timeframes for the computation to realize the desired Boolean
function. In early realizations, logic design was performed manu-
ally, by using padding techniques that can add delays so that logic
gates receive inputs and clocks appropriately. Unfortunately, hand
tuning is an error-prone operation and is not scalable. The goal of
realizing large-scale SCE has prompted some recent research. A
large collaborative project (in progress) is described in [10], dealing
with various aspects of SCE design as discussed in [24]. Researchers
at USC [14, 25] address the path balancing problem that is achieved
by inserting delay registers (DFF) in combinational paths so that
logic depth of each gate’s input is the same. The total number of
registers is later optimized by retiming. This contribution considers
also to use AND and OR gates with multiple (2-5) inputs and com-
plex cells, such as A+BC. Moreover it considers the efficient design
of splitters for fanout size larger than 2. Pasandi [26] describes a
technology-mapping algorithm (dubbed PBMap) based on dynamic
programming that decomposes a logic function into path-balanced
multi-stage logic.

Our work addresses specifically the AQFP technology, that has
been investigated mainly in Japan. Also in AQFP, gate inputs have
to be present in specific timing windows, due to the inherently
pipelined nature of the technology. It was shown that AQFP de-
sign can be made tractable by using simple libraries, where the
basic constituent is a buffer and where the parallel connection of
three buffers yields a majority-3 gate [29]. Moreover, buffers can
be simply altered to provide a permanent FALSE or TRUE value,
thus enabling the realization of AND and OR gates respectively.
A particular feature of AQFP buffers (and their combination) is
the ability of inverting an input (by reversing an inductor). Thus,
we can consider as logic primitives the family of majority gates
with complemented or uncomplemented inputs. As a result, from
this standpoint, any AQFP circuit can be abstracted by a majority-
inverter graph (MIG, [2]). Moreover, it has been suggested that
wider (say 5 or 7 input) majority gates can be used in the future.
Cai [8] proposed majority logic synthesis for realizing AQFP net-
works. Nevertheless, the efficient realization of AQFP networks
requires also solving the buffering problem, i.e., handling multiple
fanouts. Splitters and splitter trees cells of various type have been
used. We consider in the sequel the model based on the circuits
realized at Yokohama university, where splitters consist of a buffer
cell followed by a branch circuit [32]. The former is clocked, and
thus its synchronous delay has to be accounted for. The latter is
a combination of inductors, and it can have a fanout of 4 (even
though larger fanout design have been reported) [34]. Cai [7] de-
signed algorithms and tools to do splitter design, thus providing an
automated way to handle the fanout problem in AQFP. Ayala [5]
recently described an entire flow for AQFP.

The contribution of this paper is to apply both algebraic and
Boolean transformations to optimize AQFP combinational circuits
using majority logic. We leverage a large body of work in terms
of algorithms [2, 27], and software tools developed primarily for
CMOS and other technologies [6, 28]. Our algorithms go from al-
gebraic methods for depth optimization, to Boolean resubstitution
and refactoring for size improvement. In particular, we leverage
the MIG model as it captures well AQFP networks, and we study al-
gorithms that yield path-balanced circuits while respecting correct

buffer buffer bufferxi xo

a b c

d

(a) MAJ

buffer 0 bufferxi xo

a b c

d

(b) AND

inv 1 invxi xo

a b c

d

(c) NOR

bufferxi xo

a

b c d e

(d) Splitter

Figure 1: AQFP library: (a) MAJ cell, obtained using 3 buffers
with an output stage; (b) AND gate, achieved by replacing
the central buffer by one providing the 0 value; (c) NOR gate,
(b) a 4-way splitter (similar pictures in [29] [8])

.

fanout buffering. Our results demonstrate an improvement in both
size and depth of MIGs, while respecting the fanout limit of the
nodes. We also present results of MIGs when mapped into AQFP
cells. For this step, buffers and splitters insertion is considered in
order to build functionally correct circuits. Our algorithms result
into smaller number of buffers and splitters (15.7% on average),
improved area and delay up to 22.6% and 38.5%, respectively. The
work presented here focuses on algorithms and tools for SCE logic
synthesis to explore capabilities and limitations of logic transfor-
mations. Broader SCE design flows [5, 15] can benefit from our
techniques in their logic synthesis component. It is important to
remark that some of the techniques presented here can be ported to
RFSQ circuits. Nevertheless, the need of clocked inverters in RFSQ
changes the delay computation and the balancing algorithms. Thus,
this work focuses on AQFP technology only.

This paper is organized as follows. Section 2 presents the details
on the AQFP library, used to map circuits into the AQFP technol-
ogy, and the MIGs, involved as data structure for the proposed
algorithms. The complete flow (depth optimization, resubstitution,
and refactoring) is shown in Section 3, while Section 4 presents the
experimental results. Finally, Section 5 concludes the paper.

2 BACKGROUND
We detail here (i) the adiabatic quantum-flux parametron (AQFP)
technology library, and (ii) majority-inverter graphs (MIGs). The
AQFP library is used in Section 4.2 to map the networks into AQFP
circuits, while MIGs are used as data structure for the algorithms.

2.1 Adiabatic Quantum-Flux-Parametron
An AQFP circuit consists of an interconnection of primitive gates
and a related supply and clocking scheme. The achievement of
a design in AQFP is complex and requires several tasks [5]. We
consider here logic synthesis of combinational networks without

Algebraic and Boolean Optimization Methods
for AQFP Superconducting Circuits ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

memory elements. We require balancing of all reconverging paths
to satisfy the supply/clocking requirements. We assume the use of a
semicustom library [29] consisting of majority-3 (MAJ) gates with
(possibly inverted) inputs, buffers and splitters, which consist of
buffers and 1-to-4 branch circuits. These cells are depicted in Fig. 1.
We assume that a majority-3 gate can be constructed by combining
three buffers in parallel [29] and that 2-input AND and OR gates
can be achieved as degenerate majority-3 gates (i.e., by modifying
a buffer). Note that in Fig. 1(a), the output d is the majority of the
three inputs a, b, and c . Majority-3 gates and buffers have unit delay.
Thus, splitters driving up to 4 fanout have unit delay as well, and
splitter trees driving up to 16 fanouts have delay of 2. The splitter
is depicted in Fig. 1(d), where input a is split into the 4 signals b,
c , d , and e . We avoid computational nodes with fanout size larger
than 16, as deep splitter trees influence the circuit latency adversely.
We assume also that the area cost of the cells is dominated by the
number of JJs, which is equal to 2 for each buffer and splitter, and
thus 6 for a majority gate. Note that input inverters to a cell have
zero cost, as they are achieved by an internal interchange of the
terminals of an inductor. For details on AFPQ libraries, see [29, 32].

2.2 Majority-Inverter Graphs
In this work, we make use of MIGs [2] as the data structure for
our optimization flow and algorithms. MIGs are defined as directed
acyclic graphs (DAGs) where each internal node has in-degree three
and represents a majority-3 gate, and each directed edge is either
complemented or regular indicating the presence/absence of an
inverter. The central function in MIGs is thus the majority-of-three-
inputs (MAJ) function. The majority function of three Boolean
variables x , y, and z, denoted here as ⟨xyz⟩, evaluates to true if
and only if at least two of the three inputs are true. AND and OR
logic operations are included in the MAJ, i.e., ⟨x0y⟩ = x ∧ y and
⟨x1y⟩ = x∨y, where∧ and∨ are the logic AND andOR, respectively.
MIGs are thus universal representation forms and can efficiently
represent any Boolean function thanks to the expressiveness of the
majority operator. An example of MIG is depicted in Fig. 2 (a); it
has depth (number of levels) equal to 4 and size (number of nodes)
of 6.

In order to manipulate MIGs and reach advantageous MIG rep-
resentations, a dedicated Boolean algebra and transformation rules
were described in [2]. We report here the transformation rules that
are used in the rest of the paper:

Associativity−⟨xu⟨yuz⟩⟩ = ⟨zu⟨yux⟩⟩ (1)
Distributivity −⟨xy⟨uvz⟩⟩ = ⟨⟨xyu⟩⟨xyv⟩z⟩ (2)

Complementary Assoc.−⟨xu⟨yūz⟩⟩ = ⟨xu⟨yxz⟩⟩ (3)
Relevance −⟨xyz⟩ = ⟨xy/z̄yz⟩ (4)

where the ¯ symbol represents the complementation (inversion)
of the signal, and xy/z̄ is obtained by replacing all occurrences
of y with z̄ in x . A strong property of MIGs and their algebraic
framework is that by using a sequence of transformations, it is
possible to traverse the entire MIG representation space [2]. In
other words, given any two equivalent MIG representations, it is
possible to transform one into the other by using axioms from
the Boolean algebra. This result is of paramount interest to logic
synthesis because it guarantees that the best MIG, for a given target

0 x1x2x3 x4x5 x6

⟨⟩⟨⟩ ⟨⟩

⟨⟩

⟨⟩

⟨⟩

f

(a) MIG

0x1 x2 x3x4 x5 x6

⟨⟩ ⟨⟩⟨⟩

⟨⟩ ⟨⟩ ⟨⟩

⟨⟩

f

(b) Distributivity L → R

Figure 2: Example (a) of MIG when distributivity is applied.
If splitters are taken into account, the depth of (b) is equal
to 4 as one node (gray) has fanout size of 2.

metric, can be found by a sequence of transformations, even though
such transformations may be hard to find. We refer the reader to
paper [2] for an in-depth discussion on MIG optimization.

3 LOGIC SYNTHESIS FLOW
In this section, we describe our logic synthesis flow specifically
implemented to address the AQFP technology. In particular, since
the AQFP technology is abstracted as majority operation, the flow
works over MIGs. Furthermore, the flow consists of algebraic and
Boolean methods, interleaved to address both size and depth opti-
mization of MIGs. Most importantly, all the optimization steps are
implemented in order to take into account the fanout size increase
of each node. The fanout size is defined as the number of outgoing
edges from each node, and as a matter of fact, a fanout size increase
may result in higher depth, as more splitters may be needed. The
rationale of our approach is the following. Since the logic gates have
the same area cost, we leverage logic optimizations that maximize
the use of majority gates. Next, as shallower networks tend to use
fewer buffers, we privilege depth reduction of the MIG. Finally, as
splitter insertion induces delays, we perform path equalization.

Our novel flow consists of the following steps – that will be
presented in detail in the next sections:
• Create the initial MIG (Section 3.1);
• Depth optimization with algebraic rules of MIGs – limiting the
fanout size increase (Section 3.2);
• Size optimization with Boolean resubstitution – considering
fanout size limitations (Section 3.3);
• Refactoring – to further decrease the size (Section 3.4);
• Splitters insertion and path equalization with buffers (Section 4.2).

3.1 Create the Initial MIG
The step consists of creating an MIG from a HDL description of
a combinational circuit. As we are addressing AQFP technology,
the MIG requires to not have any node with fanout size larger than
16. To obtain the starting point MIG, we thus implemented (i) the
method described in [12], followed by (ii) the method from [31], that
limits the fanout of nodes to 16. Method (i) is a rewriting algorithm,
that obtains a size-optimized MIG by implementing each k-LUT
using a optimum-size MIGs retrieved from a database. To limit the
fanout size of each node to a maximum of 16, we applied method

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan E. Testa, et al.

(ii) on top of the MIG obtained from (i). This method guarantees
all nodes to have fanout size ≤ 16, but could result in size increase.
For the benchmarks considered in Section 4, the largest fanout size
in the MIG obtained from (i) is equal to 35 (for benchmarks c432).
When limiting the fanout size with [31], the size increase is only
equal to 4 (from 174 nodes to 178). On average, less than one node
per circuit has fanout size > 16, resulting in a overall limited size
increase for all benchmarks.

3.2 Depth Optimization
In this section we describe the second step of the optimization flow.
Since we target the AQFP technology, this step is tuned to consider
the fanout size (i.e., splitters) of the nodes. It is worth highlighting
that for each fanout size larger than 1, a splitter needs to be inserted
in the MIG for the mapping into AQFP. Splitters have delay equal
to 1, thus they contribute to the final depth of the mapped-MIG.

In our flow, depth optimization is achieved by locally applying
the algebraic rules from (1) (2) (3). We make use these rules to pro-
duce an efficient depth optimization heuristic for MIGs that applies
local algebraic rules over the critical path to push up variables with
late arrival times (i.e., in larger levels). Two changes w.r.t. to classi-
cal MIG depth-optimization need to be stressed:
(i) The depth of MIGs is affected by the splitters, i.e., fanout size
larger than 1. Thus, the algorithm needs to work over an MIG that
considers different depth according to the fanout size of nodes. For
instance, a node with fanout size 1 has delay 1, a node with 2 ≤
fanout size ≤ 4 has delay 2, and nodes with 5 ≤ fanout size ≤ 16
have delay 3. Note that fanout size larger than 16 is not allowed.
(ii) The algebraic rules may not increment the fanout size of some
nodes, as this would result in larger depth. As splitter trees of 1
and 2 levels are considered (up to 4 and 16 outputs respectively), a
fanout size increase from 1 to 2, 4 to 5, and 16 to 17 could change the
depth of the MIG, and thus, should be avoided. On the other hand,
for instance, a fanout size increase from 3 to 4 would not change the
depth of the MIG, but only fill the outputs of the already existing
splitter. Consider as an example the distributivity rule from (2) ap-
plied from left to right (L → R): The fanout size of node x is always
increased by 1. Plus, if ⟨xyu⟩ or ⟨xyv⟩ are already present in the
MIG, they would also have their fanout sizes increased, and so on.
It means, if f anout_size (x) is equal to 1, 4 or 16 the distributivity
rule is not applied, as this would increase the depth of the MIG.
Consider as an example the MIG from Fig. 2. The distributivity is
applied (L → R) to go from (a) to (b). The depth of the MIG seems at
first reduced from 4 to 3. Instead, since the fanout size of ⟨x1x2x3⟩
is increased from 1 to 2, the depth of the MIG in (b) would be 4,
when splitters are considered. Similar considerations can be drawn
for the associativity and complementary associativity rules.

Our complete flow is depicted in Alg. 1. First, the MIG is updated
to consider the delay of the splitters; then, for all primary out-
puts (POs) on the critical path (i.e., that have their level equal to the
depth of the MIG), the depth is reduced by applying the algebraic
rules on all nodes in the transitive fanin (TFI) cone of the PO. We
make sure that the fanout size of the largest-level child of node n is
always equal to 1 – it is not needed anywhere else in the MIG. This
is done not to have size increase. For instance, in the distributivity
rule from (2), this would require the node ⟨uvz⟩ to have fanout

Input: MIG M , allow_area_increase
Output: Depth Optimized MIG M

1 M ← count_split ter s_delay (M);
2 max_depth ← depth (M);
3 foreach output po in M do
4 if level (po) < max_depth then continue;
5 foreach node n in topological order in TFI po do
6 children_2← child of n with largest level;
7 if f anout_size (children_2) > 1 then continue;
8 if try_associativity (n) then continue;
9 if try_compl_associativity (n) then continue;

10 if allow_area_increase then
11 if try_distr (n) then continue;

12 network-cleanup-and-sweeping(M);

Algorithm 1: Algebraic depth optimization of MIG

size equal to 1. First, associativity and complementary associativity
are attempted. If these are successful, the computation continues
with the next node. Otherwise, distributivity is tried. Note that
distributivity is tried as last option as it will always result in size
increase (even when the fanout size of children_2 is equal to 1). It is
worth mentioning that associativity, complementary associativity,
and distributivity from Alg. 1 are the modified versions of the rules
that take into account the fanout size as previously described.

3.3 Resubstitution
Resubstitution is a method usually adopted in modern logic syn-
thesis flows [21] to reduce the size of logic networks. It expresses
the function of a node n using other nodes (called divisors) already
present in the logic network. For size optimization, a resubstitution
is accepted if the new implementation has fewer nodes than the orig-
inal one. In our scenario, we always refer to “MAJ-resubstitution”,
highlighting the type of operator added to the network. Resubstitu-
tion is also usually classified according to the number of operators
that it adds to the logic network, e.g., 0-resubstitution, if it does not
add any new operator. When resubstitution adds k new nodes, size
improvement is achieved if l > k , where l is the number of nodes
in the maximum fanout free cone (MFFC, [20]) of node n.

Our tool minimizes the number ofMAJ gates in the logic network,
but, at the same time, it specifically considers the fanout of nodes.
As in the previous case, state-of-the-art resubstitution algorithms
need to be re-investigated to take the fanout into account. Constant
inputs (TRUE and FALSE) do not take part in the cost, thus const-
resubstitution can always be adopted. In case of 0-resubstitution
and 1-resubstitution (majority based), the increase in the fanout
of the divisors needs to be limited to avoid adding new splitters.
Similar considerations as the one from Section 3.2 are adopted.
Alg. 2 presents the pseudocode. First, the procedure computes for
nodes in topological order, a reconvergent-driven cut and the MFFC
of n as in [27]. Divisors are collected by fixing a maximum number
of divisors (max_divs) and the maximum level (max_depth). In
particular, divisors with a level larger than the one of node n are not
considered. The procedure attempts different types of resubstitution.
const-resubstitution substitutes a node with a constant signal; while
0-resubstitution tries to substitute the node n with another node in

Algebraic and Boolean Optimization Methods
for AQFP Superconducting Circuits ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Input: MIG M , cut_size ,max_divs
Output: Size Optimized MIG M

1 M ← count_split ter s_delay (M);
2 l ist ← topoloдical_sor t_network (M) ;
3 foreach node n in list do
4 max_depth ← level (n) − 1;
5 cut ← f ind_r econverдent_cut (n, cut_size) ;
6 mf f c ← computeMF FC (n);
7 if |mf f c | > 0 then
8 div ← divisors (l ist, n,max_div,max_depth);
9 truth_tables (cut);

10 if try_const -resub(l ist , n, div) then continue;
11 if try_0-resub(l ist , n, div) then continue;
12 if try_r elevance-resub(l ist , n, div) then continue;
13 if try_1-resub(l ist , n, div ,mf f c) then continue;

14 network-cleanup-and-sweeping(M);

Algorithm 2: Resubstitution to reduce size of MIG

the network. Relevance-resubstitution substitutes a majority node
n using the relevance rule (4). In particular, it substitutes node
n with ⟨d0yz⟩, where d0 is one divisor meeting the relevance rule
requirement. For both 0-resubstitution and relevance-resubstitution,
the fanout size of the divisor d0 should not be increased by the
resubstitution. Finally, 1-resubstitution searches for divisors d0, d1,
d2 to replace n using one majority ⟨d0d1d2⟩. The size of the MFFC
is used for the size gain of the resubstitution transformation. In this
scenario, the splitters at the fanout of all the three divisors should
not be changed.

3.4 Refactoring
Refactoring is a logic synthesis technique that resynthesizes subnet-
works in a logic network without using existing nodes but instead
rebuilding them from scratch. Different refactoring algorithms have
been proposed [1, 19], depending on the data structure and opti-
mization goal. Since our flow works over MIGs, we implemented
the technique proposed in [1]. The method from [1] is an itera-
tive technique that builds majority gates from the truth table of a
Boolean function. It is important to highlight that (i) there is no
guarantee of any kind for this solution to be exact (in terms of
size and depth) and (ii) the scalability of this method is poor, i.e.,
functions of about 6 input should be used. Nevertheless, it has been
demonstrated (in our experiments) to be an effective technique to
reshape the network when local minima are encountered. The
refactoring procedure has been implemented following the general
implementation guidelines in [27]. The MFFC of each node in the
network is evaluated (with a limit on the maximum number of
primary inputs) and resynthesized using the method from [1]. If
the new implementation of the MFFC is better, the new MFFC is
substituted to the previous one, resulting in a new MIG network.
In this scenario, the cost of each MFFC implementation considers
the size, enriched with the fanouts information: Each node has the
cost obtained by examining the node and its splitters. For instance,
nodes with a fanout size of 1 have the lower cost, while nodes
with fanout size between 5 and 16 have the highest cost, as they
correspond to a larger depth. Furthermore, the refactoring is not

applied if it results in MIGs with larger depth or overall size. Our
modified Akers heuristic refactoring resulted for instance in an
improvement of 7% on top of the size improvement obtained by
the resubstitution technique, for the MCNC benchmark sqr6. This
improvement came without increasing depth, or nodes with more
than 16 fanouts nodes (i.e., fanout size limited to 16).

As last step of our MIG flow, we consider splitters insertion
followed by path balancing through buffers. This is an essential
step as it guarantees the correct behavior of the AQFP circuits. This
step will be described and detailed in Section 4.2 together with the
results of AQFP-mapped circuits.

4 IMPLEMENTATION AND RESULTS
All our techniques are implemented together to create a logic syn-
thesis flow addressing AQFP technology. In this section, we give
details of our implementation and experimental results. First, we
demonstrate an improvement of both size and depth of MIGs, which
at the same time does not result in increased fanout size. Then, we
map the MIGs into AQFP technology. For this second task, we add
a last step to our flow, being the splitters and buffers insertion.

The first step (Section 3.1) is obtained by running the ABC [6]1
command &if -a -K 4, with k equal to 4, to obtain the 4-LUT
mapping; while the database of optimum-size MIGs is implemented
using exact synthesis [16]. Algebraic depth optimization, resub-
stitution, and refactoring are implemented using the EPFL logic
synthesis library mockturtle2, and all networks are tested for equiv-
alence using ABC. Our flow run depth optimization, resubstitution,
and refactoring until convergence of the results. For AQFP tech-
nology, the depth optimization is of primary importance, as this
will consequently reduce the number of buffers. We thus allow
area increase (set allow_area_increase to TRUE) in our Alg. 1. For
resubstitution, themax_divs is set to 250 and the cut_size to 8. For
refactoring, the size of the MFFC is set to a maximum 6 to limit the
runtime complexity of the Akers algorithm.

4.1 Technology-Independent Results
In this section, we present results over MIG networks, by testing
the proposed flow on 18 benchmarks from the MCNC benchmarks
suite [33]. The results are listed in Table 1. The table reports the
name of each benchmark, together with results for the original MIG
and the optimized one. The starting point MIG (Original MIG) is
the one obtained with the algorithms from Section 3.1, and has
thus fanout size limited to maximum 16; while the Optimized
MIG is the result of running depth optimization, resubstitution,
and refactoring on top of the original MIG. For each MIG, Table 1
presents the size and the depth of the MIG. Note that both size
and depth here do not take into account AQFP technology, which
means splitters, fanouts, and buffers are not accounted for. The
column Max. F. shows the maximum fanout size of the MIG. As
previously mentioned, we first aim at reducing the depth of the
MIG, as this correlates with the number of buffers to be inserted by
the AQFP technology. Our flow reduces the depth of the MIG by
21.4% on average (column D.Impr.%), but carefully considers the
number of splitters that would be required (as will be demonstrated
1Available at: https://github.com/berkeley-abc/abc
2Available at: https://github.com/lsils/mockturtle

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan E. Testa, et al.

Table 1: Results for size and depth optimization over MIG

Original MIG Optimized MIG
Benchmark Size Depth Max. F. Size S. Impr. % Depth D. Impr. % Max. F.

5xp1 116 10 5 112 3.4 7 30.0 5
c1908 381 38 9 379 0.5 33 13.2 9
c432 178 44 16 176 1.1 30 31.8 16
c5315 1270 33 16 1257 1.0 29 12.1 15
c880 300 28 10 300 0.0 23 17.9 10
chkn 421 28 9 420 0.2 22 21.4 7
count 119 18 5 119 0.0 9 50.0 6
dist 535 16 7 514 3.9 13 18.8 8
in5 443 19 14 449 -1.4 15 21.1 15
in6 370 17 6 364 1.6 11 35.3 10
k2 1957 25 16 1934 1.2 23 8.0 16
m3 411 13 7 389 5.4 10 23.1 8
max512 713 17 9 672 5.8 14 17.6 11
misex3 1533 24 16 1515 1.2 23 4.2 16
mlp4 462 16 5 435 5.8 14 12.5 6
prom2 3484 22 16 3451 0.9 17 22.7 16
sqr6 138 13 3 126 8.7 9 30.8 4
x1dn 152 14 6 153 -0.7 12 14.3 7

Averages 2.2 21.4

Table 2: Area and delay costs for AQFP cells.

Area (# of JJs) Delay (Levels of JJs)

3-input MAJ 6 1
2-input AND 6 1
2-input OR 6 1
1:4 Splitter 2 1

Buffer 2 1

for the mapped results in Section 4.2). It also optimizes the size of
the benchmarks up to 8.7% (sqr6 - column S.Impr.%). Consider as
an example the sqr6 benchmark: The depth is reduced by 30.8%
(with a size improvement of 8.7%), but the maximum fanout size in
the MIG is only increased from 3 to 4.

4.2 AQFP-Mapped Results
In this section, we present the results when the MIGs are mapped
into AQFP circuits. For this purpose, we use the library cells pre-
sented in Fig. 1, and evaluate the area and delay in terms of JJs. Our
library consists of MAJ, AND, and OR logic cells, plus splitters and
buffers, while inverters are free of cost. The costs in terms of JJs
and JJ levels of each cell are summarized in Table 2. In our mapping,
splitters are inserted for all nodes with a fanout size larger than 1.
In particular, splitters with one input that splits into 4 outputs are
considered (compare to Fig. 1(b)). As we limit the maximum fanout
size to 16, it follows that we need at most 5 splitters (in 2 levels)
for each node. On the other hand, buffers are needed to balance
the paths of the circuit. Note that, since splitters may affect the
level of nodes and the depth, the buffers insertion is done after all
splitters have been inserted. The buffers insertion works as follows:
for each node n, buffers are inserted in each level between n and
its highest fanout node. Moreover, for each PO, buffer insertion is
done until its level matches the one of the critical path (i.e., depth)
of the MIG. For a node with fanout size larger than 1, buffers in
the same level can be shared; sharing of buffers is considered up
to 4 fanouts at each level. Fig. 3 shows an example of MIG after

0 x0x1x2x3 x4

⟨⟩ ⟨⟩

⟨⟩

⟨⟩

⟨⟩

⟨⟩

f

(a) MIG

0 x0x1 x2x3 x4x2 x4

⟨⟩⟨⟩

⟨⟩

⟨⟩

⟨⟩

⟨⟩

f

(b) Buffers and splitters

Figure 3: Buffers and splitters (blue) are inserted in the MIG
from (a) - note that dashed lines represent inversions. In (b),
splitters are inserted for each fanout size larger than 1, while
buffers are needed to balance the paths.

buffers and splitters are inserted. Fig. 3(a) illustrates the MIG of
the majority-of-five-inputs function, while Fig. 3(b) shows the MIG
with two splitters for nodes with fanout size larger than 1, and
buffers to balance the inputs of nodes. Note that when mapped into
AQFP, this circuit corresponds to an area of 46 JJs and a delay of 6.
In our model and experiments, we do not consider storage, I/O con-
version to other type of logic and I/O drivers, because technology
and circuit solutions are still under development. As a consequence
of the lack of standard models in the literature, we do not attempt
numerical comparisons of results to work of others.

The results are depicted in Table 3. As in the previous set of
experiments, the starting point MIG (Original MIG) is the one
obtained with the step from Section 3.1, while theOptimized MIG
is the optimized one (i.e., when depth optimization, resubstitution,
and refactoring are applied). For the mapped MIGs, we compare
the number of buffers and splitters (column B&S), the area, and
the delay. The last two are computed in terms of JJs and shown
as columns Area (# JJs) and Delay (JJs Levels). The number of
buffers and splitters is reduced by 15.7% on average. For the in5 and
x1dn benchmarks, even though the MIGs size (number of nodes)
from Table 1 was not improved, the mapped MIG results into im-
proved area. Overall, the area of AQFP circuits is improved up to
22.6%, and the delay is improved by 20.9% on average.

5 CONCLUSION
We presented a novel logic synthesis flow addressing adiabatic
quantum-flux-parametron (AQFP) superconducting circuits. We im-
plemented a variety of algorithms ranging from algebraic depth op-
timization to Boolean resubstitution and refactoring. As AQFP tech-
nology efficiently implements the majority-of-three-inputs func-
tion, we leveraged the properties ofmajority-inverter graphs (MIGs)
to abstract and optimize combinational circuits. Moreover, our algo-
rithms specifically consider features of the AQFP technology such
as splitters (which depend on the fanout size of each node) and
buffers. Our results demonstrated both size and depth improvement
of MIGs, within the limit of the constraints set by the AQFP circuits.
In particular, we obtained an average improvement of 7.4% in area
and 20.9% in delay when mapping into AQFP circuits. We believe

Algebraic and Boolean Optimization Methods
for AQFP Superconducting Circuits ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 3: Results for area, delay, and number of buffers & splitters for MIGs mapped into AQFP technology

Original MIG Optimized MIG
Benchmark B. & S. Area (# JJs) Delay (JJs Levels) B. & S. Impr. B. & S. % Area (# JJs) Area Impr. % Delay (JJs Levels) Delay Impr. %

5xp1 139 974 13 76 45.3 824 15.4 8 38.5
c1908 1683 5652 59 1481 12.0 5236 7.4 53 10.2
c432 780 2628 64 732 6.2 2520 4.1 50 21.9
c5315 6109 19838 53 5674 7.1 18890 4.8 49 7.5
c880 1518 4836 42 1354 10.8 4508 6.8 36 14.3
chkn 831 4188 33 751 9.6 4022 4.0 28 15.2
count 464 1642 27 356 23.3 1426 13.2 18 33.3
dist 680 4570 23 562 17.4 4208 7.9 17 26.1
in5 907 4472 26 821 9.5 4336 3.0 20 23.1
in6 694 3608 20 649 6.5 3482 3.5 17 15.0
k2 3646 19034 36 3347 8.2 18298 3.9 29 19.4
m3 516 3498 18 387 25.0 3108 11.1 13 27.8
max512 879 6036 23 752 14.4 5536 8.3 19 17.4
misex3 3108 15414 33 2946 5.2 14982 2.8 29 12.1
mlp4 559 3890 22 506 9.5 3622 6.9 19 13.6
prom2 4881 30666 27 4008 17.9 28722 6.3 21 22.2
sqr6 241 1310 16 129 46.5 1014 22.6 10 37.5
x1dn 206 1324 19 189 8.3 1296 2.1 15 21.1

Averages 15.7 7.4 20.9

that the MIG-based transformations, supported by a formal model,
will be key for the optimization of AQFP and other SCE circuits.

ACKNOWLEDGMENTS
This research was supported by the SNF grant “Supercool: De-
sign methods and tools for superconducting electronics” - 200021_
1920981, and by the EPFL Open Science Fund. We also acknowledge
the support from Synopsys Inc.

REFERENCES
[1] Sheldon B. Akers. 1962. Synthesis of combinational logic using three-input

majority gates. In Annual Symp. on Switching Circuit Theory and Logical Design.
149–158.

[2] Luca G. Amarù et al. 2016. Majority-inverter graph: A new paradigm for logic
optimization. IEEE Trans. on Comp. Aided-Design of Int. Circuits and Systems 35,
5 (2016), 806–819.

[3] Wilhelm Anacker. 1980. Josephson computer technology: An IBM research
project. IBM Journal of research and development 24, 2 (1980), 107–112.

[4] Frank Arute et al. 2019. Quantum supremacy using a programmable supercon-
ducting processor. Nature 574, 7779 (2019), 505–510.

[5] Christopher L. Ayala et al. 2020. A semi-custom design methodology and envi-
ronment for implementing superconductor adiabatic quantum-flux-parametron
microprocessors. Superconductor Science and Technology 33, 5 (2020), 054006.

[6] Robert K. Brayton et al. 2010. ABC: An academic industrial-strength verification
tool. In Computer Aided Verification. 24–40.

[7] Ruizhe Cai et al. 2019. A buffer and splitter insertion framework for adiabatic
quantum-flux-parametron superconducting circuits. In ICCD. 429–436.

[8] Ruizhe Cai et al. 2019. A majority logic synthesis framework for adiabatic
quantum-flux-parametron superconducting circuits. In GLSVLSI. 189–194.

[9] Robert H. Dennard et al. 2007. Design of ion-implanted MOSFET’s with very
small physical dimensions. IEEE Solid-State Circuits Society Newsletter 12, 1 (2007),
38–50.

[10] Coenrad J. Fourie et al. 2019. ColdFlux superconducting EDA and TCAD tools
project: Overview and progress. IEEE Trans. Appl. Supercond. 29, 5 (2019), 1–7.

[11] Eiichi Goto. 1959. The parametron, a digital computing element which utilizes
parametric oscillation. Proceedings of the IRE 47, 8 (1959), 1304–1316.

[12] Winston Haaswijk et al. 2017. A novel basis for logic optimization. In ASPDAC.
[13] Quentin P. Herr et al. 2011. Ultra-low-power superconductor logic. Journal of

applied physics 109, 10 (2011), 103903.
[14] Naveen K. Katam et al. 2018. Logic optimization, complex cell design, and retiming

of single flux quantum circuits. IEEE Trans. Appl. Supercond. 28, 7 (2018), 1–9.

[15] Jamil Kawa. 2020. The challenges of automating the design flow of supercon-
ducting electronic circuits. Presentation at IWLS (2020).

[16] Arist Kojevnikov et al. 2009. Finding efficient circuits using SAT-solvers. In Int’l
Conf. on Theory and Applications of Satisfiability Testing. 32–44.

[17] Gleb Krylov et al. 2020. Asynchronous dynamic single flux quantum majority
gates. IEEE Trans. Appl. Supercond. (2020).

[18] Konstantin K. Likharev et al. 1991. RSFQ logic/memory family: A new Josephson-
junction technology for sub-terahertz-clock-frequency digital systems. IEEE
Trans. Appl. Supercond. 1, 1 (1991), 3–28.

[19] AlanMishchenko et al. 2001. An algorithm for bi-decomposition of logic functions.
In DAC. 103–108.

[20] Alan Mishchenko et al. 2006. DAG-aware AIG rewriting a fresh look at combina-
tional logic synthesis. In DAC. 532–535.

[21] Alan Mishchenko et al. 2006. Scalable logic synthesis using a simple circuit
structure. In IWLS. 15–22.

[22] Oleg A. Mukhanov. 2011. Energy-efficient single flux quantum technology. IEEE
Trans. Appl. Supercond. 21, 3 (2011), 760–769.

[23] Oleg A. Mukhanov et al. 1995. Design and operation of RSFQ circuits for digital
signal processing. In Supercond. Electron. Conf. 27–30.

[24] Louis C. Muller. 2015. RSFQ digital circuit design automation and optimisation.
Ph.D. Dissertation. Doctoral Thesis dissertation, Stellenbosch University.

[25] Ghasem Pasandi et al. 2018. SFQmap: A technology mapping tool for single flux
quantum logic circuits. In ISCAS. 1–5.

[26] Ghasem Pasandi et al. 2019. A dynamic programming-based path balancing
technology mapping algorithm targeting area minimization. In ICCAD.

[27] Heinz Riener et al. 2019. Scalable generic logic synthesis: One approach to rule
them all. In DAC.

[28] Mathias Soeken et al. 2019. The EPFL logic synthesis libraries.
arXiv:1805.05121v2.

[29] Naoki Takeuchi et al. 2015. Adiabatic quantum-flux-parametron cell library
adopting minimalist design. Journal of Applied Physics 117, 17 (2015), 173912.

[30] Masamitsu Tanaka et al. 2013. Low-energy consumption RSFQ circuits driven by
low voltages. IEEE Trans. Appl. Supercond. 23, 3 (2013), 1701104–1701104.

[31] Eleonora Testa et al. 2017. Inverter propagation and fan-out constraints for
beyond-CMOS majority-based technologies. In Annual Symp. on VLSI. 164–169.

[32] Qiuyun Xu et al. 2017. Synthesis flow for cell-based adiabatic quantum-flux-
parametron structural circuit generation with HDL back-end verification. IEEE
Trans. Appl. Supercond. 27, 4 (2017), 1–5.

[33] Saeyang Yang. 1991. Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC).

[34] Nobuyuki Yoshikawa et al. 2017. Recent research developments of adia-
batic quantum-flux-parametron circuitstechnology toward energy-efficient high-
performance computing.

	Abstract
	1 Introduction
	2 Background
	2.1 Adiabatic Quantum-Flux-Parametron
	2.2 Majority-Inverter Graphs

	3 Logic Synthesis Flow
	3.1 Create the Initial MIG
	3.2 Depth Optimization
	3.3 Resubstitution
	3.4 Refactoring

	4 Implementation and Results
	4.1 Technology-Independent Results
	4.2 AQFP-Mapped Results

	5 Conclusion
	Acknowledgments
	References

