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Abstract—Typical operators for the decomposition of Boolean
functions in state-of-the-art algorithms are AND, exclusive-OR
(XOR), and the 2-to-1 multiplexer (MUX). We propose a logic
decomposition algorithm that uses the majority-of-three (MAJ)
operation. Such a decomposition can extend the capabilities of
current logic decompositions, but only found limited attention in
the previous work. Our algorithm make use of a decomposition
rule based on MAJ. Combined with disjoint-support decomposi-
tion, the algorithm can factorize XOR-majority graphs (XMGs),
a recently proposed data structure which has XOR, MAJ, and
inverters as only logic primitives. XMGs have been applied in var-
ious applications, including: 1) exact-synthesis-aware rewriting;
2) preoptimization for 6-input look-up table (6-LUT) mapping;
and 3) synthesis of quantum circuits. An experimental evalua-
tion shows that our algorithm leads to better XMGs compared
to state-of-the-art algorithms based on XMGs, which positively
affects all of these three applications. As one example, our exper-
iments show that the proposed method achieves an average of
10% and 26% reduction on the LUTs size/depth product applied
to the EPFL arithmetic and random control benchmarks after
technology mapping, respectively.

Index Terms—Disjoint-support decomposition, functional
decomposition, logic synthesis, majority operation.

I. INTRODUCTION

THE ADVANCEMENT of electronic design automation
(EDA) tools and CMOS technologies are the main driving

forces of modern digital integrated circuits (ICs). As CMOS
dimensions are reaching their physical limits [1], the arrival
of post-CMOS nanotechnologies poses great challenges on
the innovation of EDA tools. Novel logic abstractions of new
devices and synthesis techniques are indispensable to unleash
the real power of the candidate nanotechnologies [2].

The building-block operations of most established computa-
tional paradigms are based on AND/OR/NOT, or NAND/NOR,
or their combinations with exclusive-OR (XOR), and the 2-to-1
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multiplexer (MUX). Algorithms using these operators are well
developed to synthesize current digital electronics. In recent
years, there has been a notable research effort into logic syn-
thesis using the majority-of-three function 〈xyz〉 = xy+xz+yz
(MAJ, [3]) and its combinations with XOR. The reasons can
be attributed to the following three aspects.

1) Nanotechnologies, such as Quantum-Dot Cellular
Automata [4], Spin Wave Devices [5], and
Nanomagnets [6], realize MAJ as primitive building
blocks.

2) In commonly used cost models for fault-tolerant quan-
tum computing, MAJ can be implemented at the same
cost as AND/OR, and the cost of an XOR gate can be
neglected [7].

3) Arithmetic functions make extensive use of AND and
XOR [8]. MAJ includes AND/OR, but it is more expres-
sive than them. Therefore, it would be advantageous to
enable logic synthesis methods to consider AND/OR
and XOR/MAJ representations to support different circuit
designs.

Logic representations that use MAJ and NOT as basic
logic primitives have been recently proposed for the synthe-
sis of Boolean logic functions [9]. The graph representation is
named as majority-inverter graph (MIG) and analogously to
and-inverter graph (AIG) [10]. The synthesis methods based
on MIGs demonstrated superior results for both standard
CMOS and emerging technologies [11]. In addition, intro-
ducing XOR as a logic primitive, the XOR-majority graph
(XMG, [12]) is proposed to obtain more compact logic
network. XMGs can speed-up exact synthesis since it has a
high computational complexity [13]. MIGs and XMGs have
been applied in various applications. Recent studies show how
the combination of exact synthesis and logic rewriting led to
improvements in AIG [10], [14], MIG [15], [16], and XMG
size optimization [12]. However, the existing exact synthe-
sis methods only exploit local logic networks for rather small
functions, which results in optimized global logic networks
for certain instances only.

The task of exact synthesis is to find an optimum logic
network for the given Boolean function. Take the Boolean
Satisfiability (SAT) technique as an example, exact synthesis
is executed by solving sequences of SAT formulas. Using size
as an optimization objective, the idea is to use an SAT solver
to check whether there exists a Boolean network of r gates
that realizes the given functions [17]. The algorithm starts with
r = 0 (for constants or projection functions) and incrementally
increases r until the SAT solver returns a satisfiable solution.
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Fig. 1. Size-optimum SAT-based exact synthesis starting from (a) lower
bound and (b) upper bound.

Fig. 2. Boolean functional decomposition.

This process is illustrated in Fig. 1(a). That means the search
for a size-optimum network with r gates requires to solve up
to r + 1 decision problems using an SAT solver.

Boolean functional decomposition that represents a (com-
plex) Boolean function in terms of a basis consisting of simple
subfunctions (shown in Fig. 2), provides potential advantages
for exact synthesis. The major drawback of exact synthe-
sis is the potentially long runtime of SAT executions [18].
Given an n-variable Boolean function f (x1, . . . , xn), the run-
time requirements to find an exact synthesis solution for f
grow significantly for a large n. Exact synthesis can be used
as a subroutine for synthesizing a large function. As shown
in Fig. 2, by decomposing f into smaller subnetworks using
disjoint-support decomposition (DSD) or support-reducing
decomposition techniques [19], the subfunctions g and h in the
decomposed network have fewer number of inputs, and exact
synthesis may therefore solve them more efficiently. Further,
by expanding a decomposed logic network using majority
logic decomposition, it can be used as the starting point and
an upper bound for exact synthesis. As shown in Fig. 1(b),
instead of starting from a lower bound to find an optimum
solution, the upper bound is provided as the starting point for
the SAT solver to enable incremental improvement. Given as
starting bound the size r of the decomposed logic network,
the algorithm tries to find a solution with r ← r − 1 gates
and incrementally decreases r until the SAT solver returns an
unsatisfiable solution. Then, the satisfiable solution of the last
satisfiable step is returned, that is a network with r+ 1 gates.

In this paper, we extend the capability of current logic
decomposition methods by additionally using MAJ. A pre-
liminary version of this paper was demonstrated in [20]. Our
contributions are as follows.

1) We make use of an MAJ decomposition which resembles
the well-known Shannon decomposition: we show that

under some conditions it is possible to write a function
f (x1, . . . , xn) as 〈zgh〉 such that Boolean functions g and
h do not depend on subfunction z (Section IV).

2) We propose a decomposition algorithm that combines
MAJ (both from top-down and bottom-up decomposi-
tion scenarios), DSD using other ordinary operators, and
Shannon decomposition to factorize an XMG from a
function provided as a truth table (Section V).

3) We improve exact-synthesis-aware logic rewriting, in
sense of deriving optimum or near-optimal XMGs
for each look-up table (LUT) in an LUT-network
(Section VI).

We conduct experiments on EPFL/ISCAS benchmark suites
as well as selected Boolean functions that frequently occur in
practical synthesis and technology applications. Using MAJ
enables more logic decomposition opportunities. For evalu-
ations on the Boolean functions, there is a 14% XMG size
and an 8% XMG depth improvement after introducing MAJ
decomposition. The experimental results over EPFL bench-
mark suites show that the proposed method achieves a better
size/depth product of both XMGs and its mapped LUTs.
Specifically, we obtained an average of 10% size/depth product
reduction on XMGs and 10% on LUTs for arithmetic bench-
marks part, compared with a 30% reduction on XMGs and
26% on LUTs for random control benchmarks part. Moreover,
the evaluation of ISCAS benchmarks shows our method results
in less LUTs, compared with using an AIG aggressive size
optimization script. Finally, we also demonstrate that the
proposed method is beneficial to the synthesis of quantum
circuits.

The remainder of this paper is organized as follows.
Section II provides a literature review of functional decompo-
sition. In Section III, definitions on Boolean functions, logic
representations, DSD, exact synthesis, and NPN classifica-
tion are described. Then, in Section IV, we discuss the MAJ
decomposition theoretical properties from both top-down and
bottom-up decomposition scenarios. The decomposition algo-
rithm using MAJ combined with other ordinary operators is
presented in Section V. We further demonstrate the improved
exact-synthesis-aware logic rewriting in Section VI. Then, we
perform several experiments over selected Boolean functions
as well as EPFL/ISCAS benchmark suites and compare them
to the state-of-the-art in Section VII. Finally, we conclude this
paper in Section VIII.

II. RELATED WORK

DSD computation is a classical research subject of switch-
ing theory [21]. Since the first framework developed in the
1950s [22], the theory has quickly been implemented in the
area of digital circuit synthesis by Curtis [23] and Karp [24].
In the past decades, research concentrated on decomposition
algorithms and applying them to practical problems, such as
circuit restructuring and technology mapping [25]–[28].

The decomposition algorithms are developed based on dif-
ferent logic synthesis representation structures. Ashenhurst
introduced an algorithm to detect all the simple decom-
positions based on decomposition charts, which is effec-
tive up to six variables [22]. To reduce the computational
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complexity, Bertacco et al. [21], [29] used binary decision
diagrams (BDDs) to perform DSD. Their method can gen-
erate a very compact, canonical multilevel circuit directly
from a BDD representation. The BDD-based logic decom-
position tool, BDS [30], supports all types of decomposition
operations, including AND/OR/XOR and MUX. Minato and
De Micheli [31] presented a method to extract all sim-
ple disjunctive decompositions by generating an irredundant
sum-of-products (ISOPs) and applying factorization, which
requires the Minato-Morreale algorithm to produce the ISOP.
Recently, Mishchenko proposed the use of DSD structures to
efficiently manipulate Boolean functions represented as truth
tables and applying it to LUT mapping. Additionally, the
MUX is considered as a basic type of decomposition oper-
ation [25], [32]. Callegaro et al. [33] proposed a bottom-up
DSD approach based on cofactors and Boolean difference
analysis. The results demonstrated that it is faster compared
to the state-of-the-art decomposition strategies. However, these
works do not manipulate majority logic, thus missing further
optimization opportunities in both XOR/MAJ intensive circuits
and nanotechnology circuits which have the MAJ gate as a
primitive.

The early attempts to achieve MAJ logic decomposition
in 1960s were concerned with the existence of MAJ decom-
position based on truth tables or Karnaugh maps [34], [35].
Due to the intractable complexity of the algorithm, it failed
to gain interest in automated logic synthesis. Known recent
decomposition algorithms that yield MAJ operation are mostly
based on BDDs [3], [19], [36]. A constructive library-aware
multilevel logic synthesis approach using MAJ as one prim-
itive library is proposed in [19]. The synthesis flow is later
applied in the resynthesis loop under tight industry con-
straints [36]. Another work tries to decompose a function f
as 〈fafbfc〉, where fa, fb, and fc are pairwise orthogonal erro-
neous versions of f , by a constructive method using BDDs [3].
However, the solution space is large and one needs high-
effort computation to construct MAJ. The key difference of
this paper is that: 1) functional decomposition using MAJ
with one disjoint support is considered instead of library-aware
decomposition and 2) truth-tables and a tree-like data struc-
ture (Section III-B) are used to manipulate operations instead
of BDDs.

III. NOTATION AND DEFINITIONS

A. Boolean Functions

A single-output completely specified Boolean function of n
variables is a mapping f : Bn → B, where B ∈ {0, 1}. More
generally, a multioutput Boolean function f : Bn → Bm maps
n Boolean input values to m Boolean output values. Boolean
variables in an expression can either appear in positive form
xi or in complemented form x̄i.

Given a set of Boolean variables X = {x1, . . . , xn}, a
Boolean function f (X) can be represented by its truth table
which is a 2n size bitstring (b2n−1 . . . b0)2, where i ∈ [0, 2n−1]
is the bit position in the truth table and corresponds to the
respective input assignment to X. We write f = (b2n−1 . . . b0)2
to mean that the function of f is obtained from the truth table.

Example 1: The truth table of the 3-input parity function
x1 ⊕ x2 ⊕ x3 is f = (1001 0110)2 or 0x96 in hexadecimal
encoding.

Functions can be represented by truth tables or symbolic
representations, such as BDDs or SAT formulas. For functions
with up to 16 inputs, BDDs have almost never an advantage
to the truth table representation since the overhead for con-
structing the BDD and setting up all data structures outweighs
the benefit of the compact representation. In contrast, sym-
bolic representations are beneficial for larger function sizes.
Therefore, truth tables are adopted to represent functions with
up to 16 inputs.

The support Sf of f is the set of Boolean variables xi ∈ X
that have an impact on the output value of f (see [37]). The
support size |Sf | is the number of its elements. Two functions
g and h are called disjoint-support if they share no support
variables, i.e., Sg ∩ Sh = ∅.

The positive cofactor of f (x1, . . . , xi, . . . , xj, . . . , xn) with
respect to variable xi is fxi = f (x1, . . . , 1, . . . , xj, . . . , xn), and
the negative cofactor is fx̄i = f (x1, . . . , 0, . . . , xj, . . . , xn). The
identity

(fg)xi = fxigxi (1)

is used to calculate cofactors of a product function. A cube
cofactor operation is defined as the application of cofac-
tors with respect to different variables recursively, e.g.,
fxix̄j = f (x1, . . . , 1, . . . , 0, . . . , xn). Given two functions
f (x1, . . . , xi, . . . , xj, . . . , xn) and z(xi, xj), are the generalized
positive and negative cofactors of f with respect to function
z are fz = f (x1, . . . , z = 1, . . . , xn) and fz̄ = f (x1, . . . , z =
0, . . . , xn), respectively. Note that the generalized cofactors are
not unique, take fz as an example, it satisfies fz ⊆ fz ⊆ f + z̄.

The Boolean difference of f with respect to variable xi is
∂f /∂xi = fxi ⊕ fx̄i [38]. In general, the Boolean difference of f
with respect to variable set X = {x1, x2, . . . , xn} is denoted by

∂

∂x1

(
∂

∂x2
. . .

(
∂f

∂xn

))
= ∂f

∂x1x2 . . . xn
. (2)

Given a function f (X, Y) = h(g(X), Y)), where X∩Y = ∅, the
Boolean difference with respect to a variable xi ∈ X can be
obtained through the Boolean chain rule formulation, which is

∂f

∂xi
= ∂h

∂g

∂g

∂xi
(3)

where ∂h/∂g is the Boolean difference of h with respect to
the subfunction g.

The basic Boolean operations considered in this paper are
AND, OR, XOR, NOT, and MAJ. The MAJ can be expressed
in disjunctive, conjunctive normal form, and exclusive-or sum-
of-products (ESOPs) form as

〈xyz〉 = xy+ xz+ yz = (x+ y)(x+ z)(y+ z)

= xy⊕ xz⊕ yz (4)

where “⊕” is the XOR operation

x⊕ y = xȳ+ x̄y = (x+ y)(x̄+ ȳ). (5)

The MAJ operation is more expressive than AND/OR and
includes them as special cases: 〈0xy〉 = xy and 〈1xy〉 = x+ y.

Authorized licensed use limited to: Giovanni De Micheli. Downloaded on November 30,2020 at 09:47:49 UTC from IEEE Xplore.  Restrictions apply. 



1624 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 8, AUGUST 2020

B. Logic Representations

Typically, multilevel logic networks are represented as
directed acyclic graphs, called DAGs, in which terminal nodes
are input variables or constants, internal nodes are logic opera-
tions, and each internal node could potentially be the output for
multioutput networks. Homogeneous logic networks, which
restrict the nodes’ functions to be from a small set of functions,
have attracted more interest due to their simplicity and thus
optimization opportunities. Popular instances of homogeneous
logic representations include NAND and NOR circuits [39],
AIGs [40], and recently proposed MIGs [9]. XMGs are an
extension of MIGs which additionally use the XOR primitive.

A DSD structure is a data structure to manage the com-
putational operations of decomposition/composition functions,
which was first introduced by Mishchenko and Brayton [32].
In this paper, to obtain an XMG, we use a modified DSD
structure, referred to as mDSD structure, to manage the com-
putational operations. The critical difference is that the mDSD
structure is an extension of the DSD structure by introducing
the MAJ operator. An mDSD structure over the primary input
variables X = {x1, . . . , xn} is a DAG T = (V, E, Y) with:

1) a finite set of nodes V = X ∪ G, where G are internal
nodes representing the logic operations in the tree;

2) a finite multiset of edges E ∈ G × (V × B), where the
first element in the tuple is a source node and the second
element is a pair of a target node and a polarity bit to
indicate the edge complemented attribute;

3) and a finite multiset of outputs Y ∈ V ×B.
For each internal node in G, the operations can be basic gates
(AND, OR, XOR, and MAJ) or prime nodes. Each prime node
is associated with a truth table, which indicates it needs further
functional decomposition. A function is called prime function
if it cannot be disjointly decomposed by any of the basic gates.
The number of inputs to internal nodes depends on their oper-
ation types. AND, OR, and XOR nodes have two inputs, MAJ
nodes have three inputs, and prime nodes can have multiple
ordered inputs. If the resulting mDSD structure has no prime
nodes, it is isomorphic to an XMG, as it can be directly derived
from it. Consequently, the proposed logic decomposition algo-
rithm enables further opportunities in the synthesis with XMG
logic networks.

Example 2: Fig. 3 shows an example of the DSD structure
and its corresponding mDSD structure after one step majority
decomposition. The function with truth table 0xE2EE rep-
resented by DSD structure shown in Fig. 3(a) contains one
prime node which cannot be disjointly decomposed by any
operations using AND, OR, and XOR. After introducing MAJ
operator, we can write f = 〈x̄1gh〉, where g = x2 ⊕ x3 and
h = PRIME(x2, x3, x4). As shown in Fig. 3(b), the mDSD
structure contains a prime node with truth table 0xCA, where
dashed lines indicate the complemented attribute.

C. Disjoint-Support Decomposition

The decomposition of a logic function f (x1, . . . , xn) iden-
tifies a set of functions ai(xi) with no shared input variables,
and a function L [21] such that

f = L(a0, . . . , ai, . . . , an).

Fig. 3. (a) DSD structure represented function and (b) its corresponding
mDSD structure after one step majority decomposition.

Fig. 4. (a) Top-down DSD. (b) Bottom-up DSD.

The DSD is a special case of Boolean logic decomposition.
Function f has a disjoint decomposition when the two other
functions, say g and h, satisfy the equation

f (X) = h(X1, g(X2)), X1 ∪ X2 = X X1 ∩ X2 = ∅. (6)

Given a set of operations G, a logic function is called full-
DSD if it can be represented by operations in G with disjoint
supports. A function is non-DSD if it is a prime function with-
out any disjoint support. A function is partial-DSD if it can be
represented as the combination of operations in G with disjoint
supports and prime functions.

Example 3: Given a set of operations G, which consists of
2-input OR (AND), and XOR, the logic function f = x1⊕x2x3
is full-DSD, while g = PRIME(x2, x3, x4) with truth table
0xCA is non-DSD, since it cannot be represented by any dis-
joint support expression using operations in G. In contrast, the
function h = x1 ⊕ g is partial-DSD.

DSD can be implemented from both top-down (from outputs
to inputs) and bottom-up (from inputs to outputs) decompo-
sition scenarios. As show in Fig. 4(a), the top-down DSD
writes the function f (x1, . . . , xn) as f = x1 ◦ h(x2, . . . , xn),
where ◦ is one of the AND/OR/XOR operations. In contrast,
Fig. 4(b) indicates the bottom-up DSD that writes the function
f (x1, . . . , xn) as f = h(x1, . . . , xn−2, xn−1 ◦ xn).

D. Exact Synthesis

Exact synthesis is the task of finding an optimum
logic network representation for a given input specification
with respect to some cost criteria [41]. For instance, size
optimization is to find a network with the smallest num-
ber of nodes, while depth optimization is to find a network
with the smallest number of logic levels. Recent advances
in the implementation of exact synthesis algorithms make
the SAT-based exact synthesis an essential engine in logic
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synthesis framework. SAT formulas are generated based on
different underlying logic representations. They are distinct
in the number of encoding variables and clauses, each hav-
ing their own tradeoffs. We refer the reader to [42]–[44] for
detailed description.

In terms of runtime, most of the overall runtime is typically
required to prove an instance is unsatisfiable for small r. If
r is large enough, the solver will return the solution, if the
instance is satisfiable. Generally, a timeout value t is given
to ask whether the SAT solver can find an optimum solution
within t seconds. If not, the algorithm terminates, and other
strategies are required. Although exact synthesis is efficient
for small functions (having up to six variables), it can also be
implemented for large functions when being applied to small
subnetworks to guarantee local optimality [17].

E. NPN Classification

Two functions are NPN-equivalent, if one of them can be
obtained from the other by negating inputs, permuting inputs,
or negating the output [45].

Example 4: Given two functions f = ab+c and g = ā+bc̄,
they are NPN-equivalent because f can be transformed into g
by swapping variables a and c, while both of a and c are
negated.

All 22n
Boolean functions over n variables can be partitioned

into 2, 4, 14, 222, 616,126 NPN classes for n = 1, 2, 3, 4, 5,
while 200, 253, 952, 527, 185 NPN classes are needed for
n = 6 [46].

IV. MAJORITY LOGIC DECOMPOSITION

This section presents our method to implement MAJ logic
decomposition, from both top-down and bottom-up decompo-
sition scenarios.

A. Top-Down Decomposition

1) Conditions: This paper makes use of functional decom-
position based on the MAJ operation. The aim is to represent
f (x1, . . . , xn) as 〈zgh〉 such that g and h independent from sub-
function z. We make use of the following decomposition [35].

Theorem 1: Let f be a Boolean function and z a subfunction
with support Sz ⊆ Sf . Then

f = 〈zfzfz̄〉 if, and only if f̄zfz̄ = 0 (7)

where fz and fz̄ are the generalized positive and negative
cofactors of function f with respect to function z, respectively.

Proof: From Shannon’s decomposition (in XOR form), we
know that f = zfz ⊕ z̄fz̄. Also we have 〈zfzfz̄〉 = zfz ⊕ zfz̄ ⊕ fzfz̄
[see (4)]. We check for which condition these two equations
differ

zfz ⊕ z̄fz̄ ⊕ zfz ⊕ zfz̄ ⊕ fzfz̄
a⊕a=0= z̄fz̄ ⊕ zfz̄ ⊕ fzfz̄
āb⊕ab=b= fz̄ ⊕ fzfz̄

a⊕ab=ab̄= f̄zfz̄.

Hence, the equations only differ when f̄zfz̄ = 1. Because f̄zfz̄ =
0, f̄z and fz̄ have an empty intersection. Therefore, we can write
f = 〈zfzfz̄〉.

The subfunction z could be either with a single variable or
multiple variables. The cofactors with respect to a single vari-
able are unique, but are not uniquely determined for multiple
variables in general [47].

Example 5: Given two functions that are f (x1, x2, x3, x4)

and z(x1, x2) = x1 + x2, the generalized positive cofactor
of f with respect to z is fz = f (z = 1, x3, x4). Because the
input assignments {x1 = 0, x2 = 1}, {x1 = 1, x2 = 0}, and
{x1 = 1, x2 = 1} for z produce the same output, therefore
fz can be obtained by any one of the following three cube
cofactors:

fx̄1x2 = f (0, 1, x3, x4)

fx1x̄2 = f (1, 0, x3, x4)

fx1x2 = f (1, 1, x3, x4).

However, these three cube cofactors may not be equal and thus
fz is not unique. In contrast, fz̄ = f (z = 0, x3, x4) is unique as
only the input assignment {x1 = 0, x2 = 0} makes z = 0, thus
fz̄ = f (0, 0, x3, x4).

To get the unique cofactors of the subfunctions with multiple
variables, the functional conditions of each candidate should
be checked. The functional conditions are derived from the
logical operations. The subfunction candidates with multiple
variables considered are 2-input OR (AND), 2-input XOR, and
3-input MAJ to factorize an XMG. Concerning the OR opera-
tion of two variables x1 and x2 as a subfunction, the functional
conditions are

fx̄1x2 = fx1x̄2 = fx1x2 . (8)

Similarly, the function conditions using 〈x1x2x3〉 and x1 ⊕ x2
as subfunctions should be

fx1x2x3 = fx1x2x̄3 = fx1x̄2x3 = fx̄1x2x3

fx̄1x̄2x̄3 = fx̄1x̄2x3 = fx̄1x2x̄3 = fx1x̄2x̄3 (9)

and

fx1x2 = fx̄1x̄2

fx̄1x2 = fx1x̄2 (10)

respectively.
Example 6: Given a truth table f =

(1111 1110 1110 0000)2 or 0xFEE0 representing the
function f (x1, x2, x3, x4), to check whether it can be written
as f = 〈zgh〉, where z = x1+ x2, we first check the functional
conditions of the subfunction z. The cube cofactors are
calculated as follows:

fx̄1x2 = f (0, 1, x3, x4) = (1111 1111 1111 0000)2

fx1x̄2 = f (1, 0, x3, x4) = (1111 1111 1111 0000)2

fx1x2 = f (1, 1, x3, x4) = (1111 1111 1111 0000)2.

Hence, (8) holds. Then we calculate fz and fz̄ as Example 5
does

fz = f (z = 1, x3, x4) = (1111 1111 1111 0000)2

fz̄ = f (z = 0, x3, x4) = (1111 0000 0000 0000)2.

One can verify that f̄zfz̄ = 0, thus (7) holds and we can write
f = 〈zfzfz̄〉.
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2) Cofactor Optimization: Due to satisfiability do not care
(SDC) conditions generated by the function between inputs
with shared support [47], it is possible to minimize the sub-
functions while maintaining the function validity. For our case,
the subfunction optimization is applied by exploiting the MAJ
operator functionality, which is on the basis of

f = 〈zgh〉 =
{

z = g if z = g
h if z �= g.

(11)

The optimization opportunity arises from the second case,
which means that the output value is determined by h if z and
g assume the opposite logic value. In this case, the actual val-
ues of z and g are not of interest, which opens up optimization
opportunity to balance the support size of z and g to reduce the
decomposition complexity. Therefore, the optimization can be
conducted by cyclic optimization over all subfunction com-
binations that are (z, g), (z, h), and (g, h). Since our MAJ
decomposition f = 〈zgh〉 makes g and h not depend on the
subfunction z, we just need to balance the support size of g
and h.

Next, we present a cofactor optimization method by encod-
ing the problem as an instance of the satisfiability modulo the-
ories (SMTs) problem. Modern SMT solvers support bitvec-
tors of arbitrary size, which is inherently suitable for truth
table representations. For clarity, we consider an n-variable
Boolean function f = 〈zfzfz̄〉, where z is a subfunction with
either multiple variables or a single variable. We introduce
two bitvectors g = (g2n−1 . . . g0)2 and h = (h2n−1 . . . h0)2
with size 2n to represent the two cofactors fz and fz̄, respec-
tively, where i ∈ [0, 2n−1] is the bit position of the bitvectors.
Note that we already have truth tables of z and f , our aim is to
minimize the total support size of g and h while maintaining
the MAJ functionality. Recalling the basis presented in (11),
we can derive the following properties.

1) If the logic values of the ith bit of z and f are opposite,
then gi and hi are determined by the logic value of f

(zi �= fi)→ (gi = hi = fi). (12)

2) If the logic values of the ith bit of z and f are the same,
then

(zi = fi = 1)→ (gi|hi = 1) (13)

(zi = fi = 0)→ (gi&hi = 0) (14)

where “|” and “&” are binary OR and AND operations,
respectively, bitwise.

Example 7: Let f = 〈x1x2x3〉 (truth table 0xE8) and
z = x1. The decomposition algorithm without cofactors
optimization produces the result f = 〈x1fx1 fx̄1〉, where fx1 =〈1x2x3〉 and fx̄1 = 〈0x2x3〉. The total support size of cofactors
is |Sfx1

| + |Sfx̄1
| = 4. We demonstrate how to optimize the

cofactors g = fx1 and h = fx̄1 using SMT. The truth tables are
the following.

According to (12)–(14), we write the constraints

g7|h7 = 1 g6 = h6 = 1

g5|h5 = 1 g4 & h4 = 0

g3|h3 = 1 g2 & h2 = 0

g1 = h1 = 0 g0 & h0 = 0.

All the above constraints are passed to an SMT solver for
satisfiability checking. By enumerating all solutions (we add
blocking constraints to prevent the solver to generate the same
result twice), we calculate the minimal total support size of
g and h. Finally, the optimal results are g = (1111 0000)2
and h = (1100 1100)2. These are the primary inputs x2 and
x3. Hence, the solution achieves the optimal total support size
that is |Sg| + |Sh| = 2 and we can write f = 〈x1x2x3〉.

The computation cost is expensive, since we enumerate
all the solutions. For instance, Example 7 has six undefined
entries out of eight, and each entry has three possible combi-
nations. Hence, the example has in total 36 = 729 solutions.
To make our method scalable, we should speed up the solving
time by symmetry breaking to discard equivalent solutions and
by exploiting Boolean properties to prevent worse solutions.

In terms of search space pruning, we add constraint

g �= h (15)

to indicate the two bitvectors g and h should not be equal.
Otherwise, it means f = 〈zgh〉 = g = h, which is the trivial
case that we can keep from happening during the majority
decomposition.

For symmetry breaking, according to MAJ commutativity
law, 〈zgh〉 = 〈zhg〉, therefore, if we already get the solution,
say g = X and h = Y , then we add constraints to discard
another solution g = Y and h = X

(g �= Y) ∨ (h �= X). (16)

To exploit Boolean properties, because our MAJ decompo-
sition produces 〈zgh〉, g and h do not depend on subfunction z,
which opens up an opportunity by adding more constraints on
the two bitvectors to prevent worse solutions.

Lemma 1: Given an n-variable function f (x1, . . . , xn) =
f (f2n−1, . . . , f0)2, if f does not depend on variable xi, i ∈ [1, n],
then there are 2n−1 pairs of bits in the truth table having the
same logic value.

Proof: As f does not depend on xi, then xi = 0 or xi = 1
will not change the output value of f . In a 2n length truth
table, there are 2n input combinations, therefore 2n · 2−1 pairs
of input combinations produce the same output, which makes
2n−1 pairs of bits in the truth table having the same logic
value.

Corollary 1: If f (x1, . . . , xn) does not depend on xi, where
i ∈ [1, n], assume the 2n−1 pairs of bits are pj = {faj, fbj},
j ∈ [1, 2n−1], then the following conditions should be satisfied.

1) Indexes aj and bj in all pairs form a set [0, 2n−1], which
is consistent with 2n length truth table. The indices of
all pairs are distinct from each other.

2) aj + 2i−1 = bj.
Proof: Since f does not depend on xi, if two input combina-

tions just differ in xi, then the output value should be the same.
Considering the property of primary input xi represented by
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the truth table, the “0” and “1” logic values are repeated with
2i−1 bit positions interval. As an example, the truth tables of
the primary inputs xi where i ∈ [1, 3] are shown as follows:

x1 = (1010 1010)2

x2 = (1100 1100)2

x3 = (1111 0000)2.

The positions of logic value interval is the direct reason for
the output equivalence. If f does not depend on x1, one can
verify that p1 = {f0, f1} as the logic values of bit positions
0 and 1 in x2 and x3 are all the same. Similarly, the other
pairs are p2 = {f2, f3}, p3 = {f4, f5}, and p4 = {f6, f7}, which
satisfy the two conditions illustrated above. In terms of xi, one
can get the conclusions in the same way, which concludes the
proof.

Example 8: In Example 7, g and h do not depend on z =
x1, which is the ith input variable (i = 0). Hence, we add
following additional constraints:

g0 = g1 g2 = g3 g4 = g5 g6 = g7

h0 = h1 h2 = h3 h4 = h5 h6 = h7.

By symmetry breaking and exploiting Boolean properties, the
number of solutions of Example 7 is reduced from 729 to 2,
which results in 〈x1x2x3〉 and 〈x1〈0x2x3〉〈1x2x3〉〉. The former
case has smaller total support size, while the latter case is the
result before optimization. Finally, we selected 〈x1x2x3〉 as the
optimization result.

The proposed cofactor optimization method is outlined in
Algorithm 1. Given an mDSD structure 〈zfzfz̄〉, we first ini-
tialize the SMT solver s and the iteration number it. The two
bitvector variables g and h with length 2n are used as the
encodings of the cofactors. Next, we add SMT constraints to
generate SMT clauses based on (12)–(15) and Corollary 1.
The SMT solver enumerates all the solutions by dealing
with the clauses until the it reaches the limitation number
max_iteration. The iteration limitation is defined by consider-
ing that the solution space may still be unaffordable for some
extreme cases or functions with a large number of variables.
Finally, the solution with the minimal total support size is
returned as the optimization solution.

3) Complexity Analysis: Given an n-variable Boolean func-
tion f = (x1, . . . , xn), in order to estimate the computational
complexity of the proposed majority decomposition f = 〈zgh〉,
we first try to construct subfunction z with multiple variables
using 2-input AND, OR, and XOR operators, and 3-input MAJ
operator. For instance, we can construct the subfunctions as
z = x1x2, z = x1 + x2, z = x1 ⊕ x2, and z = 〈x1x2x3〉.
Considering all the combinations of input variables, there are(n

2

)
cases for 2-input operators, while

(n
3

)
cases for the MAJ

operator. If the majority decomposition using subfunctions
with multiple variables is not successful, we then try the sin-
gle variable functions that are z = x1, . . . , z = xn. Therefore,
the overall majority decomposition algorithm has a compu-
tational complexity of O(n3). For the subsequent cofactors
optimization, the complexity is depended on both the execu-
tion of the SMT solver and the frequency of the execution. The
worst case is that the solver is executed up to the maximum
number of iteration (max_iteration) times.

Algorithm 1: Cofactors Optimization Based on SMT
Input : An mDSD structure 〈zfzfz̄〉 with n variables
Output: An optimized mDSD structure

1 s← SMT solver, it← 0 ;
2 Declare two bitvectors g and h with length 2n in s;
3 Add SMT constraints to s based on(12), (13), (14), (15)

and Corollary 1;
4 while s.check() == SAT && it < max_iteration do
5 it ← it + 1;
6 Evaluate the current solution, say g = X, h = Y , and

record the best solution;
7 Add new constraints to s based on (16) to discard the

solution with the same quality;
8 Add new constraints (g �= X) ∨ (h �= Y) to s for

enumerating all the solutions;
9 end

10 Return the best solution;

B. Bottom-Up DSD

The aim of bottom-up DSD using MAJ is to represent
f (X, Y) = f (x1, . . . , xn) as f = h(g(X), Y), where X =
{xi, xj, xk}, g(X) = 〈xixjxk〉, and X∩Y = ∅. The necessary and
sufficient conditions to perform MAJ bottom-up DSD were
presented in [48]. We present a strategy based on cofactors
and Boolean difference to obtain such composition functions,
which is useful to update truth tables during the decom-
position. For clarity, we first revisit the theorem proposed
in [48].

Theorem 2: Let f (X, Y) be a Boolean function with X =
{x∗i , x∗j , x∗k } where x∗κ = xκ or x̄κ for κ ∈ {i, j, k}, X ∩ Y =
∅. There exists a function h(g(X), Y) = f (X, Y), where
g(X) = 〈x∗i x∗j x∗k 〉, if and only if the following conditions are
satisfied.

Condition 1:

∂f

∂xixj
= ∂f

∂xixk
= ∂f

∂xjxk
. (17)

Condition 2:(
∂f

∂xi

)
x̄jx̄k

= ai,

(
∂f

∂xj

)
x̄ix̄k

= aj,

(
∂f

∂xk

)
x̄ix̄j

= ak (18)

such that either all three of ai, aj, and ak are constant 0, or
two of ai, aj, and ak are equal and the third is constant 0.

Proof: See [48].
Corollary 2: If there exists a function h(g, Y), where

g(X) = 〈x∗i x∗j x∗k 〉, such that f (X, Y) = h(g(X), Y), X ∩ Y = ∅,
then the decomposition function h(g, Y) can be obtained as
follows:

h(g, Y) = fx̄∗i x̄∗j ⊕ g

(
∂f

∂xi

)
x̄∗j x∗k

. (19)

Proof: The Boolean function f can be decomposed using
positive Davio expansion with respect to xi, which is

f = fx̄i ⊕ xi
∂f

∂xi
. (20)
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By applying the positive Davio expansion of h with respect to
g, we obtain

h(g, Y) = hḡ ⊕ g
∂h

∂g
. (21)

In terms of hḡ, it can be obtained by finding an assignment
for x∗i , x∗j , and x∗k , such that g(X) = 〈x∗i x∗j x∗k 〉 = 0, since the
output of MAJ is dominated by two of its inputs, then all the
three assignments, {x∗i = 0, x∗j = 0}, {x∗i = 0, x∗k = 0}, and
{x∗j = 0, x∗k = 0} are satisfiable. Then it follows that:

hḡ = h(0, Y) = fx̄∗i x̄∗j . (22)

To calculate ∂h/∂g, we first obtain the Boolean difference of
g with respect to xi by definition and simplification

∂g

∂xi
= gxi ⊕ gx̄i

=
(

x∗j + x∗k + x∗j x∗k
)
⊕ x∗j x∗k

= x∗j ⊕ x∗k . (23)

Hence, if x∗j ⊕ x∗k = 1 holds, e.g., x∗j = 0 and x∗k = 1, then
∂g/∂xi = 1. Since f (X, Y) = h(g(x∗i , x∗j , x∗k ), Y), according to
the Boolean chain rule shown in (3) and the identity presented
in (1), we obtain(

∂f

∂xi

)
x̄∗j x∗k
=

(
∂h

∂g

)
x̄∗j x∗k

(
∂g

∂xi

)
x̄∗j x∗k

=
(

∂h

∂g

)
x̄∗j x∗k

1. (24)

As ∂h/∂g is not supported by xj nor by xk, therefore

∂h

∂g
=

(
∂h

∂xi

)
x̄∗j x∗k
=

(
∂f

∂xi

)
x̄∗j x∗k

. (25)

By substitution of (22) and (25) into (21), the proof is con-
cluded. Due to the symmetry properties of MAJ operator, note
that (22) can be also written as

hḡ = h(0, Y) = fx̄∗i x̄∗k = fx̄∗j x̄∗k (26)

and (25) can be also written as
∂h

∂g
=

(
∂h

∂xj

)
x̄∗i x∗k
=

(
∂f

∂xj

)
x∗i x̄∗k

(27)

=
(

∂h

∂xk

)
x̄∗i x∗j
=

(
∂f

∂xk

)
x∗i x̄∗j

. (28)

Corollary 3: If Theorem 2 is satisfied for variables x∗i , x∗j ,
x∗k , and in Condition 2 aκ = 0, then x∗δ and x∗σ have the same
polarities, where κ ∈ I = {i, j, k}, {δ, σ } ∈ I, δ �= σ �= κ .
Otherwise, if aκ �= 0, x∗δ and x∗σ have the opposite polarities.

Proof: Without loss of generality, we take ai as an exam-
ple, assume f (X, Y) = h(g(X), Y) and g(X) = 〈x∗i x∗j x∗k 〉, then
according to (3)

ai =
(

∂f

∂xi

)
x̄∗j x̄∗k
=

(
∂f

∂xi

)
x∗j =0,x∗k=0

(29)

=
(

∂f

∂g

∂g

∂xi

)
x∗j =0,x∗k=0

(30)

=
(

∂f

∂g

(
x∗j ⊕ x∗k

))
x∗j =0,x∗k=0

. (31)

Since ∂f /∂g is not zero, if ai = 0, it indicates that x∗j ⊕x∗k = 0,
then both {xj, xk} and {x̄j, x̄k} are acceptable. Therefore, if ai =
0, x∗j and x∗k have the same polarities. Otherwise, if ai �= 0, it
indicates that x∗j ⊕ x∗k = 1, then both {x̄j, xk} and {xj, x̄k} are
acceptable. Hence, x∗j and x∗k have the opposite polarities. The
conclusion can be easily applied to aj and ak.

Example 9: Given a function f (x1, x2, x3, x4) = x̄1x2 +
x2x3 + x̄1x3 + x4, to check whether it can be decomposed
as f = h(〈x∗1x∗2x∗3〉, x4), we first check the condition presented
in (17)

∂f

∂x1x2
= ∂

∂x1

(
∂f

∂x2

)
= ∂

∂x1

(
fx2 ⊕ fx̄2

)

= ∂

∂x1
((x̄1 ⊕ x3)x̄4) = x̄4. (32)

Also, we can compute ∂f /∂x1x3 and ∂f /∂x2x3 in the same
way, and (17) holds

∂f

∂x1x2
= ∂f

∂x1x3
= ∂f

∂x2x3
= x̄4. (33)

To check Condition 2, we compute

∂f

∂x1
(x2 = 0, x3 = 0) = a1 = 0

∂f

∂x2
(x1 = 0, x3 = 0) = a2 = x̄4

∂f

∂x3
(x1 = 0, x2 = 0) = a3 =

(
x1 ⊕ x2

)
x̄4|x1=x2=00 = x̄4.

Therefore, Condition 2 is satisfied as a2 = a3 and a1 = 0. We
can write f = h(〈x∗1x∗2x∗3〉, x4). The polarities of the x∗1, x∗2, and
x∗3 are determined by Corollary 3. Because a1 = 0, then x∗2 and
x∗3 have the same polarities, which are both distinct from x∗1,
then both {x1, x̄2, x̄3} or {x̄1, x2, x3} are acceptable polarities.
Take the former case as an example, the composition function
h can be obtained based on (19)

h(g, Y) = fx̄∗1 x̄∗2 ⊕ g

(
∂f

∂x1

)
x̄∗2x∗3

= fx̄1x2 ⊕ g

(
∂f

∂x1

)
x2x̄3

= 1⊕ gx̄4 = gx̄4 = ḡ+ x4 = 〈x1x̄2x̄3〉 + x4. (34)

For the latter case, one can verify that h(g, Y) = 〈x̄1x2x3〉+x4,
complies with the inversion propagation rule of MAJ, that is
〈x̄1x2x3〉 = 〈x1x̄2x̄3〉.

V. FUNCTIONAL DECOMPOSITION USING MAJORITY

This section describes our proposed functional decompo-
sition algorithm. The input to the algorithm is a Boolean
function f : Bn → B represented as a truth table. The output
is an mDSD structure, which is isomorphic to an XMG.

The algorithm is outlined in Algorithm 2. Given a Boolean
function f , an mDSD structure is initialized with just one
prime node, which is associated with the truth table of f .
Then, the algorithm uses recursive_decomp(f ) for an exhaus-
tive evaluation of all prime nodes until the nodes cannot be
decomposed. The computational results are manipulated by
the mDSD structure.
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Algorithm 2: Functional Decomposition
Input : A Boolean function f : Bn → B

Output: An mDSD structure R

1 X: the set of all input variables of f ;
2 Xm: the set of input variables in X that satisfy (7);
3 function recursive_decomp (f )
4 R←mDSD_initialize(f );
5 repeat
6 R←func_decomp (R);
7 until exist_no_prime_node(R);
8 return R;
9 function func_decomp (R)

10 for each prime node n in R do
11 h←truth table of n;
12 ys ← min(|Sfxi

| + |Sf x̄i |), xi ∈ X;
13 ym ← min(|Sfxj

| + |Sf x̄j |), xj ∈ Xm;
14 if is_basic(h) then update_basic(n,R);
15 else if is_DSD(h) then update_DSD(n,R);
16 else if |Sf | ≤ l then update_exact(n,R);
17 else if h satisfy (7), h = 〈zfzfz̄〉 then
18 if (|Sz| > 1) or (|Sz| == 1 && ym ≤ ys) then

update_MAJ(n,R);
19 else update_Shannon(n,R);
20 end
21 return R;

The decomposability of the prime node is checked
according to the following conditions sequentially by
func_decomp(R). Given a set of input variables X, we record
the variables that satisfy Boolean properties (7) as Xm. Initially,
we obtain the truth table of the prime node (line 11) and calcu-
late the minimum total support size of cofactors of X (line 12)
and Xm (line 13), which are recorded as ys and ym, respectively.

1) If the truth table equals the basic functions, such as
two-input AND, OR, and XOR operators, and three-input
MAJ operator, then the prime node will be replaced by
these basic gates (line 14).

2) For each input of the prime node, we traverse all input
variables to check whether it can be DSD-decomposed
(line 15). Note that the bottom-up MAJ DSD described
in Section IV-B is implemented.

3) If no DSD exists, the prime node must be a prime func-
tion, if the prime function has up to l variables, we call
the exact synthesis routine described in [41] (line 16).

4) If the three previous conditions do not hold, we
try the MAJ top-down decomposition demonstrated in
Theorem 1 to exploit the opportunity of rewriting f =
〈zfzfz̄〉 (line 17). Note that we first try to construct the
subfunction with multiple variables. If unsuccessful, we
then try the single-variable subfunctions. As the single-
variable subfunction that satisfies (7) may not be unique,
we also consider a heuristic approach to make a selection
between majority logic decomposition and the subse-
quent Shannon decomposition. This is motivated by the
support-reducing technique which is effective to control
the subsequent size and depth of the mDSD struc-
ture. Hence, we add the additional condition ym ≤ ys

Fig. 5. Decomposition example manipulated by mDSD structure. (a) Initial
mDSD structure. (b) MAJ top-down decomposition. (c) DSD using OR and
MAJ top-down decomposition. (d) Replace prime nodes by basic gates.

for majority logic decomposition using single-variable
subfunctions (line 18).

5) If all the above conditions do not hold, Shannon decom-
position is applied (line 19).

Note that when any of these conditions is satisfied, we
create a corresponding operator node and new prime nodes
with updated truth tables and support sets. Finally, the result-
ing mDSD structure, which is isomorphic to an XMG due to
the introduction of Shannon decomposition, is returned as the
solution.

The conditions and updating schemes for MAJ decomposi-
tions are demonstrated in Section IV. For the conditions and
updating schemes of DSD, readers can refer to [21] and [33]
for further details.

Example 10: Given the function 0x5FF3, the steps of the
decomposition are shown in Fig. 5. We initialize the mDSD
structure in Fig. 5(a), then we perform the MAJ top-down
decomposition and create two new prime nodes with updated
truth tables and support sets in Fig. 5(b). The decomposi-
tion continues to decompose the two prime nodes using DSD
with the OR operator and MAJ top-down decomposition in
Fig. 5(c). Finally, as the truth tables of the three prime nodes
are consistent with basic gates, we obtain the final mDSD
structure in Fig. 5(d), which is isomorphic to an XMG.

VI. LUT-BASED EXACT SYNTHESIS

In this section, we describe the application scenario to LUT-
based size optimization, in which logic decomposition can be
employed.

A. Brief Review of LUT-Based Optimization

LUT-based mapping is a special case of technology map-
ping in which logic networks are covered by k-input LUTs
(k-LUTs). It provides an attractive way to identify the sub-
networks. Given an input network N, the approach proposed
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in [12] first maps the network into k-LUTs, e.g., in size- or
depth-oriented manner. Each k-LUT represents a k-variable
Boolean function which is then used as input for exact syn-
thesis. The results of exact synthesis are saved in a database
that stores the optimum representations of the NPN classes,
which is referred to as Boolean function mining. Finally, the
locally optimum networks are merged to construct an opti-
mized, functionally equivalent network N′. The optimization
process may be iterated on N′ to improve results.

The approach is fast for 4-LUT mapping, as all optimum
local subnetworks are precomputed. For k-LUT mappings,
where k > 4, the exact synthesis may take a long time to
find an optimum subnetwork by enumerating of all k-variable
Boolean functions. In the context of LUT-based mapping that
has thousands of LUTs, the execution time and quality of exact
synthesis are both critical issues.

B. Improving Exact Synthesis by Logic Decomposition

The computational complexity of LUT-based exact synthe-
sis is proportional to k. LUT mapping with larger k is of
high interest as it increases the size of the subnetworks and
therefore enables better optimization results.

As we stated in Section I, functional decomposition brings
new opportunities for exact-synthesis-aware logic rewriting.
Take the function shown in Fig. 2 as an example, instead of
dealing with an n-variable function f (x1, . . . , xn) directly, the
decomposed function f = h(x1, . . . , xn−2, g(xn−1, xn)) has two
subfunctions h and g, both of which have fewer inputs to lever-
age the computational complexity of exact synthesis. However,
this kind of decomposition is effective only when the DSD
or support-reducing decomposition exist. For the networks
that cannot be disjointly decomposed, the decomposed logic
network represented by XMG can serve as the starting point
for exact synthesis to achieve incremental improvement, the
process which is illustrated in Fig. 1(b).

The exact synthesis algorithm is shown in Algorithm 3,
which consists of two parts. In lines 2–7, we start from a lower
bound to check whether there exists an optimum network
within a given timeout limit. If the timeout is exceeded, the
first part stops and reports a timeout, we then try a heuris-
tic approach in lines 8–15 to improve the upper bounds
incrementally. The two functions are as follows.

1) has_xmg(f , r) returns an XMG, if the SAT solver
checked that Boolean function f can be realized by a
Boolean network of r gates.

2) has_xmg_to(f , r, t) acts the same as has_xmg(f , r),
but terminates with no results after t seconds.

Note that different timeout strategies are used in the
two parts. The timeout value is set to control the loop
(lines 2–7) in the first part, while it controls each call of
has_xmg_to(f , r, t) in the second one. Starting from r = 0,
the former case behaves as if has_xmg(f , r) returns unsatis-
fiable and increments r by 1. Once r is large enough such that
the problem is satisfiable, an optimum solution may be found
within the time limit. In contrast, given r as an upper bound of
XMG size, we decrease r by 1 to incrementally improve the
XMG size if has_xmg_to(f , r, t) returns a satisfiable solu-
tion within t seconds. Concerning line 16 in Algorithm 2, we

Algorithm 3: Exact Synthesis
Input : A Boolean function f : Bn → B

Output: An mDSD structure

1 function exact_syn (f )
// Start from a lower bound

2 r← 0;
3 repeat
4 res = has_xmg(f , r);
5 if res �= nil then return res;
6 else r← r + 1;
7 until timeout;

// Start from an upper bound
8 res← recursive_decomp (f );// Algorithm 2
9 r← size_of(res) −1;

10 while true do
11 res_new← has_xmg_to(f , r, t);
12 if res_new �= nil then
13 r← r − 1; res← res_new
14 else return res;
15 end

set the exact synthesis threshold l = 4, because the optimal
XMGs of all 4-variable functions are precomputed.

The complete flow of exact-synthesis-based decomposition
is shown in Algorithm 4. The function f is first checked for
its DSD-decomposability. If f can be written as the compo-
sition of subfunctions g and h, the decomposition process is
recursively applied to g and h. Otherwise, the exact synthesis
routine in Algorithm 3 is invoked for f .

VII. EXPERIMENTAL RESULTS

We have evaluated the proposed functional decomposition
method in the following sections. All experiments have been
carried out on an Intel i7-4870HQ CPU at 2.50 GHz with
16 GB of main memory.

A. Evaluation on DSD Benchmarks

We have implemented our logic decomposition approach in
C++ on top of the logic synthesis framework CirKit.1 The
functions considered are partial-DSD or non-DSD functions
that frequently occur in practical technology mapping appli-
cations [49]. Each function set contains 1000 functions. The
name of the function set indicates the type and number of
function inputs, e.g., “pdsd6” means 1000 partial-DSD decom-
posable 6-input functions, “ndsd8” means 1000 non-DSD
decomposable 8-input functions. Our decomposition results
are verified by simulating the truth tables of the resulting
mDSD structure or XMG.

To exploit the decomposition capability of MAJ decom-
position, in this experiment we first disable exact synthesis
and Shannon decomposition in Algorithm 2. The experimental
results are shown in Table I. Columns 2–7 give the num-
bers and percentages of functions that contain no prime nodes
(FULL, isomorphic to an XMG), just one prime node (NONE,
no decomposition exist), and the others which do not belong to

1github.com/msoeken/cirkit

Authorized licensed use limited to: Giovanni De Micheli. Downloaded on November 30,2020 at 09:47:49 UTC from IEEE Xplore.  Restrictions apply. 



CHU et al.: ADVANCED FUNCTIONAL DECOMPOSITION USING MAJORITY AND ITS APPLICATIONS 1631

Algorithm 4: Exact-Synthesis-Based Decomposition
Input : A Boolean function f : Bn → B

Output: An mDSD structure

1 function xmg_by_dec (f )
2 if is_DSD(f ) then
3 g, h← Execute DSD of f ;
4 return xmg_by_dec (g); xmg_by_dec (h);
5 end
6 else
7 return exact_syn (f ); // Algorithm 3
8 end

TABLE I
DECOMPOSITION RESULTS ON DSD BENCHMARKS

FULL and NONE (PART, the combination of prime nodes and
basic gates). For partial-DSD functions, an averagely 94.5%
functions can be decomposed into XMGs (FULL) and 5.5%
functions are still partial-DSD (PART). In contrast, the non-
DSD functions exhibit higher difficulty than the partial-DSD
functions. After introducing MAJ decompositions, 60.6% of
the non-DSD functions can be fully decomposed, 37% of the
functions are transformed into partial-DSD, and only 2.4%
functions still remain as non-DSD. As the number of input
variables increases, the amount of fully decomposed functions
also decreases. For example, our method can fully decompose
98.6% of the partial-DSD functions of the set dsd6 (6-input
functions), whereas this number falls to 44% for the set of
non-DSD functions dsd10 (10-input functions).

To evaluate the performance of MAJ decomposition on the
XMG size and depth, we enable all decomposition types in
Algorithm 2 and set l = 4 for exact synthesis. The experi-
mental results are shown in Table II, where size and depth
are the total amounts of nodes and depth of XMGs by logic
decomposition. The baseline is obtained by evaluating the
XMGs which are generated by logic decomposition method
without MAJ decomposition. By introducing MAJ decompo-
sition, it is shown that our method can improve the size and
depth of XMGs by 14% and 8%, respectively. Concerning
the CPU time, the decomposition using MAJ is much slower
than the non-MAJ decomposition, this is because the MAJ
top-down decomposition has a computational complexity of
O(n3), while the SMT-based cofactors optimization is com-
putationally expensive for some extreme cases. Hence, more
CPU time is required to compute each function for the MAJ
decomposition.

B. Evaluation on EPFL Benchmarks

We implemented the method described in Section VI
to show the effectiveness of the exact synthesis-based

TABLE II
XMG DEPTH AND SIZE IMPROVEMENT BY MAJ DECOMPOSITION

optimization approaches to 6-input LUT (6-LUT) mapping.
Although we can process the functions with up to 16 inputs,
we choose 6-LUT mapping for demonstration. This is because
the experiments conducted on k-LUT mapping (k >6) show
that a larger k is not always performing better due to the
overlapping in the subject graph.

We use the EPFL combinational benchmark suite2 for a
comparison with [12]. Both our method and the method in [12]
start with the same input networks, containing only AND
gates. We set l = 6, and the timeout value to 1 min in
Algorithm 3. To perform k-LUT mapping, we use the ABC
command if -K 6.

As shown in Table III, the first ten benchmarks are arith-
metic circuits, while the remaining ten are random control
circuits. XMG size or depth can be improved by 19 out of 20
benchmarks, except Decoder, in which we got an increase
in both XMG size and depth. By computing the average
size/depth product, our method improves by 10% and 30%
versus [12] concerning EPFL arithmetic and random con-
trol benchmarks. We also compare the results after 6-LUT
mapping. Generally, XMG size optimization advantage carries
over also to LUT mapping improvements. The results show
that both LUT size and depth can be improved. In total, our
method achieves 10% and 26% reduction of LUT size/depth
product versus [12] for EPFL arithmetic and random control
benchmarks. However, as recent research pointed out [50],
optimization of the size and depth of a logic network may
not necessarily result in reduced LUT size and depth. The
statement also holds for our experiments. For instance, Sine
performs less well on XMG size but improves LUTs count. In
contrast, Multiplier can be optimized in terms of XMG size
and depth, whereas it results in an increment of LUT size with
the same LUT depth.

The CPU time listed in Table III ranges from less-than-1
to 129545 s. The CPU time is related to the LUT size as
each 6-LUT represents a 6-variable function for decompo-
sition. During decomposition, the CPU time used for each
function varies considerably. As an example, Adder is mapped
into 192 6-LUTs but the total CPU time is less than 1 s. In
contrast, Memory controller is mapped into 11558 6-LUTs,
while the total CPU time is up to 129545 s, which means
11 s are required on average to process a single function. The
CPU time variation can be explained as follows according to
Algorithm 4.

2lsi.epfl.ch/benchmarks
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TABLE III
USING EXACT SYNTHESIS AND LOGIC DECOMPOSITION FOR XMG-SIZE OPTIMIZATION

TABLE IV
RESULTS ON ISCAS’85 BENCHMARKS COMPARED TO AIG REWRITING

1) If a function is full-DSD or partial-DSD with a prime
function that has a small number of input variables, then
the solution can be returned immediately.

2) If a function is non-DSD, our exact synthesis algo-
rithm first starts from a lower bound to find an optimum
representation for this function. If the timeout happens
after 1 min, we call the functional decomposition to
obtain an XMG, which is an upper bound for the exact
synthesis. During the process of incremental improve-
ment, the CPU time is positively related to how much
size improvement can be achieved as we check the
satisfiability for each improvement step within 1 min.

C. Evaluation on ISCAS Benchmarks

To compare the XMG-based synthesis method with
AIG rewriting for size optimization, we applied the AIG
optimization script “resyn; resyn2” iteratively to the
ISCAS benchmark suite in ABC until convergence. Table IV
shows the results of both the size and depth of AIGs and
XMGs. After optimization, we report the LUT size and depth

using k-LUT mapping. The LUT size can be reduced for 8
out of 10 benchmarks, except c432 and c2670. The most sig-
nificant improvement is c1355, while the LUT size is reduced
from 78 by AIG rewriting to 60 by our method. In terms
of LUT depth, the last three benchmarks result in a small
increase. The CPU time listed in the last column of Table IV
shows that our method obtained better results at the cost of
more computational efforts.

D. Evaluation on Quantum Reciprocal Operation

In [7], a synthesis algorithm called direct XMG synthe-
sis (DXS) has been proposed to realize quantum circuits
based on XMGs. The general idea is to map each gate in
an XMG into a small quantum circuit and then compose
these circuits. However, quantum computers are limited to per-
form reversible computations, which requires them to store
intermediate results on auxiliary qubits. Besides the number
of qubits, the cost of a quantum circuit is measured in terms
of the number of T gates. The T gate accounts for the far most
complex execution in a quantum computer [51]. We show how
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TABLE V
RESULTS ON QUANTUM CIRCUITS REALIZATION OF RECIPROCAL OPERATION (INTDIV(n))

the improved XMGs affect the quality of the network by apply-
ing DXS to XMGs obtained from [12] and from the proposed
method. As benchmarks we used the integer reciprocal design
INTDIV(n) for n = 16, 32, 64, 128 [7]. Table V lists the
results, where “Qb” means the number of qubits and “Tg”
means the number of T gates. DXS comes in two variants:
Normal and Bennett. The latter typically leads to fewer qubits
for the sake of a higher number of T gates. It can be seen that
due to the more compact XMGs both the qubits and number
of T gates improve (except for the 128-bit version, for which
the amount of T gates slightly increases).

VIII. CONCLUSION

In this paper, we proposed a logic decomposition algo-
rithm using majority operator (MAJ) and utilized it in several
applications. Given a Boolean function represented by a truth
table, we first exploit decomposition properties using majority
both from top-down and bottom-up decomposition scenarios.
Then, we propose an algorithm that combines the decompo-
sition using MAJ with conventional DSD decomposition to
derive XMGs. The algorithm is applied to exact-synthesis-
aware rewriting and quantum circuit synthesis. Compared to
state-of-the-art algorithms based on XMGs over EPFL bench-
mark suites, the proposed algorithm enables a 10% (26%)
size/depth product reduction for arithmetic (random control)
benchmarks in 6-LUT circuits mapped by ABC.
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