
Received October 25, 2020, accepted November 30, 2020, date of publication December 15, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3045014

Extending Boolean Methods for
Scalable Logic Synthesis
ELEONORA TESTA 1,2, (Member, IEEE), LUCA AMARÚ2, (Member, IEEE),
MATHIAS SOEKEN 1, (Member, IEEE), ALAN MISHCHENKO3, (Senior Member, IEEE),
PATRICK VUILLOD4, PIERRE-EMMANUEL GAILLARDON 5, (Senior Member, IEEE),
AND GIOVANNI DE MICHELI 1
1LSI, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
2Design Group, Synopsys Inc., Sunnyvale, CA 94085, USA
3Department of Electrical Engineering and Computer Science (EECS), UC Berkeley, Berkeley, CA 94720, USA
4Synopsys, 38330 Grenoble, France
5LNIS, The University of Utah, Salt Lake City, UT 84112, USA

Corresponding author: Eleonora Testa (eleanora.testa@synopsys.com)

This work was supported in part by the Swiss National Science Foundation under Grant 200021-169084 MAJesty, in part by the ERC
project under Grant H2020-ERC-2014-ADG 669354 CyberCare, in part by the Defense Advanced Research Projects Agency (DARPA)
under Grant FA8650-18-2-7849, and in part by Semiconductor Research Corporation (SRC) under Contract 2710.001 and Contract
2867.001.

ABSTRACT In recent years, Boolean methods in logic synthesis have been drawing the attention of
EDA researchers due to the continuous push to advance quality of results. Boolean methods require high
computational cost, as they rely on complete functional properties of a logic circuit (e.g., don’t cares), but
usually result in better optimization. In particular, Boolean resubstitution is considered one of the most
powerful Boolean methods in logic synthesis. In this paper, we present three novel Boolean resubstitution
algorithms designed to be scalable and runtime-effective in a modern synthesis flow. They make use of
circuit partitioning techniques and Boolean filtering to be fast and computationally tractable. We also
discuss different data structures and reasoning engines, namely truth tables, binary decision diagrams, and
satisfiability, that are required to gather don’t cares and functional information. As the choice of the engine
determines the scalability of Boolean resubstitution we present different scenarios in which the Boolean
methods are best driven by one or the other of these. We have implemented the presented resubstitution
techniques together with state-of-the-art methods in an industrial logic optimization engine to create a
novel resynthesis flow. Our global resynthesis flow achieves significant synthesis results: Within the EPFL
synthesis competition, we improve the best-known area results when mapped into LUT-6; when embedded
in a commercial EDA flow, the new Boolean resynthesis flow results in 3.12% combinational area savings
and 1.34% WNS reduction after physical implementation, at contained (w.r.t. the time of the entire flow)
runtime cost.

INDEX TERMS Logic synthesis, Boolean optimization, Boolean resubstitution, area optimization.

I. INTRODUCTION
Electronic Design Automation (EDA) is facing a continu-
ous push to improve Quality of Results (QoR). In the logic
synthesis field, this has resulted in the development of new
synthesis methods, and in the renewed interest for already
existing ones. In particular, in light of modern computing
capabilities e.g., new SAT-solvers or novel storage means,
Boolean resynthesis methods have experienced revived atten-
tion in the last few years within industrial and academic flows

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

as demonstrated in the works [1]–[3]. Boolean methods use
don’t cares as degree of freedom for optimization and rely on
complete functional properties of Boolean functions. Com-
pared to algebraic methods, which treat a Boolean function
as a polynomial, Boolean methods achieve better QoR but
imply higher computational cost and consequently have been
used cautiously in EDA flows [4]–[6]. Among all Boolean
methods, a central role is played by Boolean resubstitution
(also called substitution), which, in practice, is considered the
most powerful method in terms of QoR. It takes advantage of
don’t cares [7] and permissible functions [8] to express the
function of a node using other nodes already present in the

226828 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-1114-8476
https://orcid.org/0000-0002-0229-8766
https://orcid.org/0000-0003-3634-3999
https://orcid.org/0000-0002-7827-3215


E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

logic network to achieve a more compact (with fewer nodes)
implementation of the logic network.

In this paper, we propose three novel Boolean resubsti-
tution methods, designed to be scalable in current logic
synthesis flows. By scalability, we refer to the runtime
complexity of our algorithms. Resubstitution is considered
an expensive method w.r.t. runtime and thus filtering tech-
niques (e.g., setting a maximum number of nodes) need to
be employed. While this achieves a better scalability, it may
overlook many optimization opportunities and result in worse
performance power and area (PPA). The main goal of our
work is instead to unleash the full potential of resubstitution
by using novel filtering techniques, and by investigating a
larger solution space and obtaining improved QoR, at limited
(w.r.t. time spent by the synthesis flow) runtime cost.

The first method uses a novel theory of Boolean filtering
to reduce the number of gates processed by resubstitution,
while still retaining all possible optimization opportunities.
The second method revisits the concept of Maximum Set of
Permissible Functions (MSPF, [8], [9]) to develop so called
Forward Functional Flexibility (FFF, [1]). FFF is a weaker
notion of MSPF, which in practice is able to grasp a good
amount of MSPF opportunities at limited runtime cost [10].
Both these methods make use of windows to partition the
network into smaller subnetworks, to apply our methods
efficiently also on large networks. The third method is a novel
Boolean resubstitution method based on Boolean difference.
Also in this last method, we focus on structural filtering,
candidates selection, and partitioning techniques to achieve
a scalable resubstitution flow. As compared to our previous
works [1], [2],we aim here at giving a generalize version of
our techniques and algorithms such that they are independent
on the engine chosen to represent Boolean functions and don’t
cares. Choosing an appropriate data structure and reasoning
engine for the implementation determines then not only the
applicability but also the scalability of the Boolean resubsti-
tution method. Thus, we also discuss here different reasoning
engines and data structures for performing the essential task
of detecting permissible functions and don’t cares which
are the core of all our Boolean resubstitution methods. In
particular, we focus on truth tables, Binary Decision Dia-
grams (BDDs, [11]) and SATisfiability (SAT, [12]), and we
identify practical scenarios, based on circuit characteristics
and optimization scope, where Boolean methods are best
driven by either one or a blend of them.

The presented resubstitution techniques have been imple-
mented and integrated in an industrial logic optimization
engine to create a novel resynthesis flow aiming primarily at
area optimization. Our novel global resynthesis flow consists
of (i) the proposed Boolean resubstitution methods - imple-
mented and applied using various engines and partition size,
(ii) revisited state-of-the-art algorithms, usually involved in
modern logic synthesis flows. As far as Boolean resubstitu-
tion is concerned, we focus on both improvements to their
scalability and the impact of the right choice of the reasoning
engine. As a novel result on top of [1], we present here a new

FIGURE 1. Novel complete synthesis flow. It interleaves our
resubstitution techniques with state-of-the-art flows as AIG optimization
and kerneling. The resubstitution techniques are implemented using
different reasoning engines.

implementation of resubstitution that uses SAT as reasoning
engine. The improved state-of-the-art methods include (i) a
gradient-based And-Inverter Graphs (AIGs, [13]) optimiza-
tion engine, and (ii) heterogeneous elimination and kernel-
ing. The first method improves classical AIG optimization
by using a technique that adapts online to apply the most
effective AIG transformations, while the second presents an
improvement to elimination and kerneling to enhance divi-
sion and logic sharing to work with heterogeneous thresholds
in the same network. An overview of the novel flow – and
reasoning engines used for resubstitution – is represented in
Fig. 1. Each step will be detailed in the coming sections. As a
whole, our global resynthesis flow produces significant syn-
thesis results, both over academic and industrial benchmarks.
Concerning the EPFL benchmarks [14], we show significant
improvements over the smallest-known AIGs. For instance,
we demonstrate 1.3× (26%) size reduction in the smallest-
known AIG for the EPFL voter benchmark. Further, we also
improve the best-known area results in the EPFL synthesis
competition, when mapping the AIGs into LUT-6. Regarding
industrial benchmarks, our resynthesis flow embedded in
a commercial EDA flow for ASICs results in an averaged
3.12% combinational area savings and 2.49% dynamic power
reduction, after physical implementation, at limited runtime
cost. Even though we target as main goal the area reduc-
tion of logic networks, we also enforce a tight control on
the number of levels during the industrial synthesis flow,
which is known to be correlated with the delay, consequently
obtaining an improvement of 1.34% on the Worst Negative
Slack (WNS) and of 0.82%on theTotal Negative Slack (TNS)
as well. Finally, to evaluate the scalability of our resub-
stitution methods and the impact of the proposed filtering
techniques, we also perform a detailed comparison between

VOLUME 8, 2020 226829



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

our resubstitution (with and without filtering) and ABC [6]
for few test-cases.

The remainder of this paper is organized as follows.
Section II provides some background on Boolean methods
and don’t cares, and Section III details Boolean resubstitu-
tion. Section IV proposes three novel Boolean resubstitution
methods, while Section V discusses the different reasoning
engines required to gather complete functional properties of
Boolean functions, which are usually involved in Boolean
resubstitution. Section VI shows the complete resynthesis
flow and details each step of the flow, while Section VII
provides details on all the experimental results. Finally,
Section VIII concludes the paper.

II. BACKGROUND ON BOOLEAN LOGIC OPTIMIZATION
Logic optimization methods are divided into algebraic meth-
ods and Booleanmethods [4], [5], [15]–[17]. Algebraic meth-
ods are usually faster and treat a Boolean function as a
polynomial. On the other hand, Boolean methods consider
the true nature of logic functions by considering Boolean
identities and don’t cares [18]. Don’t care conditions relate to
the embedding of a Boolean function into the environment,
and are usually called external don’t cares. They consist of
both controllability and observability don’t cares. The first
is defined as those input patterns that are never produced by
the environment, while the latter considers situations when
a given output is not observed by the environment. The idea
behind Boolean methods is to use the power of Boolean alge-
bra together with the degree of freedom provided by the don’t
cares to construct local transformations to improve logic net-
works [4], [8], [19]. For example, due to observability don’t
cares, the function at a node n may be changed to another
function without changing the behavior at the primary out-
puts. In the transduction method proposed by Muroga [8],
[9], this new function is called a permissible function for
node n, and the set of all permissible functions for a node
n is itsMaximum Set of Permissible Functions (MSPF). Con-
sequently to the use of don’t cares and Boolean identities,
Boolean methods usually achieve better results, but come at
higher computational cost and less scalability [4].

Boolean methods have advanced significantly in recent
years. Today, different data structures and reasoning engines
are available for collecting functional properties and don’t
cares, and for detecting the existence of permissible func-
tions. As we will discuss next, this choice determines the
scalability of the Boolean methods. Here, we give some back-
ground on truth tables, BDDs and SAT, together with their use
in don’t cares computation and logic synthesis. In Section V,
we explain in detail the scenarios inwhich these three produce
the best results in driving Boolean resubstitution methods.

A. TRUTH TABLES
A truth table is a canonical representation of a Boolean
function where the function values are listed for all possible
input combinations. Formally, a truth table is a bitstring of
2t bits b2t−1b2t−2 . . . b1b0, for which f = bx such that

FIGURE 2. BDD for the function 〈x1x2x3〉. Note that the same function
can be represented using the truth table 11101000.

x = (xt . . . x1)2 is the integer representation of the input
assignment.
Example 1: For instance, the truth table for the 3-input

majority function 〈x1x2x3〉 is given by 11101000.
Truth tables have been largely used in logic synthesis to

represent and optimize logic functions, as they enable fast
computation and equivalence checking of two functions when
applied to small windows of logic. As an example, the works
in [20] use truth tables as the preferred engine for functional
manipulations.

B. BDDs
A BDD [11], [21] is a directed acyclic graph representing a
Boolean function. There is one root node, and two leaf nodes
(labeled ‘⊥’ and ‘>’). Each internal node (non-leaf node)
has a variable associated with it and implements the Shannon
expansion of the function w.r.t. a variable xi: f = xifxi ⊕ x̄ifx̄i ,
where fxi and fx̄i are the cofactors obtained from f when the
variable xi is assigned to 1 or 0, respectively (i.e., positive
and negative cofactors). A reduced and ordered BDD (called
a ROBDD [11]) is a canonical representation for a Boolean
function w.r.t. a given variable ordering [11]. If not otherwise
specified, in the following we use the term BDD to refer to
ROBDD.
Example 2: Fig. 2 shows the BDD for the function
〈x1x2x3〉. Solid and dashed lines represent positive and neg-
ative cofactors respectively, while the ‘⊥’ and ‘>’ represent
the constant functions 0 and 1 [22]. Each internal node has
a variable xi associated, which is represented by the integer i
inside each node.
BDDs are largely employed in Boolean optimization meth-

ods [2], [4], [23]. BDDs can be used to check quickly if a
function is a permissible replacement of another by checking
the tautology of their equivalence (note that tautology check
is known to be a fast operation when evaluated on BDDs).
BDDs are also used for representing and minimizing Boolean
relations [23], which are a generalization of don’t cares [4]
used to capture the flexibility of multi-output circuits. In logic
synthesis, BDDs have also been largely exploited for logic
function decomposition. The decomposition is obtained by
making use of dominator nodes, which identify the structures
for a particular decomposition type (i.e., AND/OR, XOR,
MAJ). As an example, BDS [24] is an optimization system
for the synthesis of AND/OR and XOR-based functions,
which use a dominator-based decomposition method on
BDDs. In [25], an extension to the majority decomposition
is illustrated.

226830 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

C. SAT
SAT solvers have recently been used as Boolean method
engine for don’t cares computation. This is possible by cast-
ing the search for permissible functions into a SATisfiability
problem (SAT, [12]). A SAT problem takes a formula rep-
resenting a Boolean function and decides if there is an
assignment of the variables for which the function is equal
to 1 (satisfiable). Otherwise, the formula is said to be
UNSATisfiable (UNSAT). In [26] a method to cast don’t
cares computation into a SAT problem is presented. A miter
configuration is proposed, similar to the one used for equiv-
alence checking; a windowing method is also presented to
make the SAT solver approach more efficient. We refer the
reader to [26] for examples on this method. An updated
version of SAT-based don’t cares computation has been pre-
sented in [27], while, more recently, a SAT-based redun-
dancy removal approach has been described in [28]. More
generally, SAT-based logic synthesis techniques are also
used in rewriting algorithms. These algorithms optimize a
network by replacing small subnetworks with their opti-
mized versions obtained using a SAT-based exact synthesis
approach [29], [30].

III. THEORY OF BOOLEAN RESUBSTITUTION
The engines presented in the previous section can be used for
gathering functional properties (e.g., don’t cares) and verify-
ing permissible functions, and thus for checking the appli-
cability of Boolean transformations. Many different Boolean
transformations exist, some examples being resubstitution,
rewriting, refactoring, and redundancy removal. We refer
the interested reader to [4], [5], [31] for a more exhaustive
review on Boolean methods, while in this paper we focus on
Boolean resubstitution, which, empirically, is well-known to
be the most powerful Boolean method in terms of achieved
optimization. As an example, consider the optimization script
from ABC [6] resyn2rs, where major transformations are
rewriting, refactoring, balancing, and resubstitution. When
applying the script on the random-control EPFL benchmark
voter [14], the complete script minimizes the number of
nodes by 41%. The same script reduces the same benchmarks
of only 25%, when all resubstitution transformations are
removed. Many other similar examples can be found, estab-
lishing Boolean resubstitution as a powerful technique for
logic optimization, employed in many and diverse logic syn-
thesis flows. In the following, we provide some background
on Boolean resubstitution, being the core of the proposed
synthesis methods.

Boolean resubstitution aims at expressing the function
of a node n using other nodes (called divisors) already
present in the logic network. A transformation is accepted
if the new implementation is more compact than the current
node implementation, thus leading to size optimization.
A k-resubstitution is a generalization of resubstitution, which
adds exactly k new nodes and removes l nodes, where l
is the number of nodes in the Maximum Fanout Free
Cone (MFFC, [32], [33]) of n. In this case, size improvement

is achieved if l > k . In this last scenario, resubstitution
adds k new logic operators to the existing logic network.
Note that resubstitution techniques are thus usually classified
according to the number k of logic operators additionally
added, i.e., 0-resubstitution does not add any new operator;
1-resubstitution expresses a logic function by adding one
logic operator, and so forth. According to the type of nodes
added in the logic network by resubstitution, we also refer
to resubstitution as AND-resubstitution, OR-resubstitution,
XOR-resubstitution, AND-OR resubstitution, etc.

Due to the use of don’t cares, Boolean resubstitution finds
more optimization opportunities as compared to algebraic
substitution, but it is inherently more expensive [4]. Consider
the following example, which shows the use of don’t cares
for Boolean resubstitution.
Example 3: Consider the logic network [5] with inputs

x1, . . . , x4 given by

f = x1 ∨ (x2 ∧ x3 ∧ x4)

g = x1 ∨ (x3 ∧ x4) (1)

where ∧ and ∨ represent the AND and OR operators, respec-
tively. We can minimize function f using other nodes in the
network, i.e., g by doing:

f = x1 ∨ (x2 ∧ g)

g = x1 ∨ (x3 ∧ x4) (2)

where x2 ∧ x3 ∧ x4 can be changed into x2 ∧ g because
the minterms where x2 ∧ x3 ∧ x4 and x2 ∧ g dif-
fer are in the don’t care set. Indeed, x2 ∧ x3 ∧ x4
has truth table equal to 1000000010000000 and x2 ∧ g
truth table is 1111000010000000. By considering x1 truth
table 1111111100000000, the two functions have different
minterms only when x1 = 1, which is not observable from
the output of f because of the OR ∨ operation.
Different representation of don’t cares and varying data

structures and reasoning engines have been used in the past
years to develop novel and powerful resubstitution meth-
ods. For example, in the transduction method proposed by
Muroga [8], [9], resubstitution methods were applied by
computing permissible functions using truth tables. Unfortu-
nately, at the time, that description was not efficient enough
to be applicable to logic networks of reasonable size. On the
contrary, modern resubstitution flows as the ones in [1] and
in [3] effectively use truth tables for Boolean resubstitution.
Permissible functions can also be quickly evaluated using
BDDs. The method in [34] uses BDDs and permissible func-
tions to build fast resubstitution techniques. More recently,
Miyasaka et al. [35] have presented a method that uses
a BDD-package without variable re-ordering to accelerate
the computation of permissible functions. Concerning SAT-
based resubstitutionmethods, the works in [26], [27] consider
SAT-based don’t cares computation aiming at resubstitution
frameworks.

Although Boolean resubstitution achieves better results
and is more precise than the algebraic one, it is more expen-
sive at runtime. The right engine selection may improve its

VOLUME 8, 2020 226831



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

scalability (i.e., runtime complexity), but its application is
still limited to small functions. Partitioning and breaking
logic networks into smaller subnetworks is thus needed to
be able to efficiently compute each node’s functionality and
to apply Boolean resubstitution in industrial frameworks. An
example of this approach is given by ABC [6] resubstitu-
tion, that is considered the academic state-of-the-art tool for
logic synthesis. Resubstitution within ABC is a technology-
independent version of the works in [19], [36] and it is
applied to small windows of logic (up to 16 inputs) to contain
the runtime complexity. In this scenario, AIGs are used as
underlying data structure for k-resubstitution (with k up to 3)
and truth tables are used to compute don’t cares [33]. Even
when resubstitution is applied to small- (∼15 inputs) and
medium- (∼20 inputs) sizewindows of logic, k-resubstitution
remains intrinsically expensive due to the high amount of
required equivalence checking, which are the primitive opera-
tions in all resubstitution algorithms. Consider as an example
1-resubstitution using the 2-input AND gates, applied on
a small window of logic with N internal nodes. The goal
is to try to express each internal node in the window as
the AND of two other nodes in the window. In the worst
case O(N 2) equivalence checks are needed for each node,
resulting in O(N 3) checks for the whole window. Since lin-
ear and sub-linear runtime complexity are desired, Boolean
resubstitution is regarded as an expensive method in terms
of runtime. For this reason, Boolean filtering techniques are
usually employed to strongly reduce the number of candi-
dates for resubstitution, and, at the same time, without los-
ing significant optimization opportunities. Common filtering
techniques [1] include, but are not limited to, (i) structural
filtering, or (ii) setting a maximum numberm of candidates to
be tried. Structural filtering comprises, for instance, skipping
candidates in the Transitive FanOut (TFO) cone of the current
node, or skipping nodes whose level is too far away, etc. The
best improvement in runtime is although given by setting a
maximum number of candidates m, as the total number of
equivalence checks decreases toO(mN 2).While this achieves
a scalable algorithm, it does not assure a good QoR.

In the next section, we focus on techniques to make our
Boolean resubstitution methods scalable, efficient, and appli-
cable to large functions. We discuss novel Boolean filtering
techniques, together with a new efficient way for computing
permissible functions and don’t cares.We also concentrate on
partitioning techniques to break the logic into smaller subnet-
works. The idea is to increase the solution space spanned by
the resubstitution algorithms, but, at the same time, to keep
the runtime contained w.r.t. to the time of the synthesis flow.

IV. SCALABLE BOOLEAN RESUBSTITUTION
We discuss here three different scalable Boolean resubstitu-
tion methods. First, we present a resubstitution method that
uses novel Boolean filtering and windowing techniques to
speed up the computation. Then, we describe an improved
MSPF calculation, resulting in more efficient don’t cares
evaluation. Finally, we conclude with a resubstitution method

FIGURE 3. Boolean resubstitution example.

based on the Boolean difference. As a remark, the proposed
algorithms work on general Boolean networks, in which each
internal node represents a Boolean function.

A. RESUBSTITUTION FOR COMPLEX GATES
In this section, we propose a resubstitution algorithm which
has the capability of deriving complex gates with efficient
runtime. The algorithm makes use of novel Boolean filtering
and windowing techniques to develop a novel resubstitution
framework. Different types of resubstitution are considered,
e.g., AND-operator, OR-operator, 0-resubstitution, etc.
Example 4: Consider as an example the logic network in

Fig. 3(a). Each node in Fig. 3 is a 2-input gate, and dashed
edges represent inverters. The variables x1, x2, . . . , xt are the
inputs of the network, also called the support of the two
functions. The subnetwork highlighted in gray in Fig. 3(a) can
be rewritten as the AND gate (AND-resubstitution) between
the blue node and the input x2. This results in the new network
in Fig. 3(b), which has one fewer node compared to the
original network. The pink node is the AND operator added
by the resubstitution (1-resubstitution).
In the following, first, we discuss the use of Boolean filter-

ing and windowing techniques to speed up the computation,
then we present the resubstitution flow.

1) BOOLEAN FILTERING AND WINDOWING
As discussed in Section III, Boolean filtering and windowing
play a key role in making Boolean resubstitution techniques
scalable and less expensive at runtime. Concerning Boolean

226832 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

filtering, the runtime complexity remains very high when
only structural filtering is applied. Thus, experimentally, set-
ting a maximum number of candidates to be tried is pre-
ferred, even if it may overlook advantageous optimization
opportunities. In this paper, instead we make use of canal-
izing functions [22], [37] to efficiently implement Boolean
filtering rules for resubstitution. Note that the concept of
canalizing function is known as controlling values in the EDA
community.

A function g is said to be p/q-canalizing in x if the cofactor
gx=p = q for two constant Boolean values p and q is uniquely
determined by assigning x to either 0 or 1. The advantage
in using canalizing functions to drive the Boolean filtering
for resubstitution is that a whole set of candidate pairs can
be excluded by just checking at one single operand. This is
summarized in the following theorem:
Theorem 1: Let f be the function of a node to resubstitute

using a k-input gate with function g(x1, x2, . . . , xk ) and k can-
didate nodes that have functions f1, f2, . . . , fk , respectively. If
g is p/q-canalizing in xi, then fi can only be a valid candidate,
if (fi(x) = p) → (f (x) = q), or logically equivalent, if
(f (x) 6= q)→ (fi(x) 6= p), for all function inputs x.

Proof 1: We prove the theorem by contradiction.
Assume that fi(x) = p for some p ∈ {0, 1}, but f (x) 6= q
for some q ∈ {0, 1}. Since g is p/q-canalizing in xi, we have
by definition that gxi=p = gfi(x)=p = q, which contradicts our
assumption.
Example 5: The 2-input AND function is 0/0-canalizing

in both its inputs. If we want to express some node with
function f using the AND of two other nodes with functions
a and b, then a can be valid only if f → a, or equivalently if
the check f ∧ a = f is true.
Similar checks/rules can be found for many other

functions. If a check finds that some node a is not a
valid candidate, all combinations in which a is present
can be discarded. In our algorithm, AND-resubstitution
(f ∧ a = f ) and OR-resubstitution (f ∨ a = f ) have been
easily implemented according to Theorem 1. Note that
XOR-resubstitution has also been considered. In this last
case, since the XOR-operator is not canalizing, nothing can
be concluded by checking at a single operand only, and both
operands need to be investigated.

Further resubstitution techniques based on using three
operands can also be examined:
Example 6: Consider expressing a function f in terms of

three nodes with functions a, b, and c using f = a ∨ (b ∧ c).
The first step is checking whether a is a valid candidate. If
a is invalid, one can continue considering a different node.
Otherwise, the validity of b needs to be investigated to filter
out candidates for c. When checking b, it is assumed that
a = 0, since otherwise the equation is satisfied independently
from b. Therefore, Theorem 1 can be applied similarly by
considering fa=0 = b ∧ c, which is 0/0-canalizing in b.

The following three-operands resubstitutions have been
taken into account: AND-OR-resubstitution (f = a ∨
(b ∧ c)), OR-AND-resubstitution (f = a ∧ (b ∨ c)),

XOR-AND-resubstitution (f = a ∧ (b ⊕ c)) and
XOR-OR-resubstitution (f = a ∨ (b⊕ c)). We also consider
a MUX-resubstitution (f = (a ∧ b) ∨ (ā ∧ c)).
Apart from using the mentioned Boolean filtering, the

resubstitution flow is made scalable due to its application
to small/medium-size windows of logic created around a
node. This is a common practice in both academic and
industrial tools to make resubstitution applicable to larger
benchmarks. The window is built using a procedure inspired
from [38]: For each node n, first, a convergent cut is found,
then this is expanded by adding external nodes that are not
contained by the cut, but have fanins inside the cut. The
procedure is iterated until a volume limit is hit or no more
nodes can be added. The final result is a window, having
the same number of inputs as the original cut, but with more
outputs.

2) RESUBSTITUTION FLOW FOR COMPLEX GATES
Alg. 1 depicts the pseudocode for the resubstitution algorithm
for complex gates based on Boolean filtering and windowing.
Boolean filtering allows us to only pay attention to prof-
itable transformations, and thus to save runtime. Consider
for instance the voter benchmark of the EPFL suite [14].
The ABC command resub -K 10 -N 1 [6] reduces the size
by about 14% and takes around 0.09 seconds. The same
command run with N = 2, 3 (i.e., 2 and 3 resubstitution),
improves the size of 16% and 20%with a runtime of 0.13 and
0.21 seconds, respectively. Our resubstitution technique with
Boolean filtering reduces instead the original size by 26%
in 0.1 seconds.1 A maximum number of candidates is still
used, even though rarely hit, to keep runtime under control
for corner cases. Alg. 1 considers each node in topological
order, but the resubstitution is applied only to a small window
of logic. The window is obtained by expanding a convergent
cut into a window as previously discussed. Additional filters
are used (e.g., see line 8-9) to ignore windows that are too
thin, because they are unlikely to lead to any advantageous
resubstitution. Different types of resubstitution are tried for
each node (see lines 13–36 in Alg. 1), and the first success-
ful one is kept (i.e., waterfall model). The variable nresub
controls the computational complexity of the algorithm, as
it sets how many different types of resubstitution are tried;
practically, we can set it to the maximum value for a variable
of type int (max-int) so that all types of resubstitution are
attempted. For the zero-resub case only equivalent gates in
the window are combined, up to complementation.Moreover,
only candidates with the same support as n are tried. If
zero-resub is successful, no other resubstitutions are tried for
the same node and the loop moves to the next node in the
window. In the negative case, other types of resubstitutions
are tried. For the resubstitution moves, the savings of each

1Our size improvement is measured after AIG structural hashing (strash-
ing) for the sake of fair comparison with ABC. Note also that truth tables
have been used in this example to retrieve functional properties of nodes.
This result is the one reported in Table 2 for the voter benchmark.

VOLUME 8, 2020 226833



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

Algorithm 1 Resubstitution for Complex Gates
Input: Logic network, cut-size, filter-volume, nresub, zero-
gain (zg), max-number-of-candidates (mc)
Output: Resynthesized logic network
1: list← topological-sort-network(network)
2: for each node m in list do
3: if node is not a MFFC root then
4: continue
5: end if
6: cut← find-reconvergent-cut(m, cut-size)
7: expand-cut-into-window(cut)
8: if volume cut / size cut < filter-volume then
9: continue

10: end if
11: wdw← topological-sort-network(window)
12: for node n in wdw do
13: if (nresub > −1) && zero-resub(n, window) then
14: continue
15: end if
16: if (nresub > 0) && and-resub(n, wdw, zg, mc) then
17: continue
18: end if
19: if (nresub > 1) && xor-resub(n, wdw, zg, mc) then
20: continue
21: end if
22: if (nresub > 2) && ao-resub(n, wdw, zg, mc) then
23: continue
24: end if
25: if (nresub > 3) && xa-resub(n, wdw, zg, mc) then
26: continue
27: end if
28: if (nresub > 4) && ax-resub(n, wdw, zg, mc) then
29: continue
30: end if
31: if (nresub > 5) && mux-resub(n, wdw, zg, mc) then
32: continue
33: end if
34: if (nresub > 6) && mx-resub(n, wdw, zg, mc) then
35: continue
36: end if
37: end for
38: end for
39: network-cleanup-and-sweeping(network)

move are always checked: If the number of extra nodes added
by resubstitution is greater than or equal to the sum of the
MFFC size and the zero-gain variable zg, the loop moves
directly to the next node because no size saving is possible.
The supported resubstitutions – in increasing computational
complexity order – are: and (2-input and node), xor (2-input
xor node), ao (and-or nodes), xa (xor-and nodes), ax (and-
xor nodes), mux (mux node) and mx (mux-xor nodes). Inside
each of these resubstitution rules, discussed Boolean filtering
methods as the ones based on canalizing functions are used
to accelerate the computation (and save runtime). Also, a
maximum number of nodes – here called mc – to be tried as
candidates for the resubstitution procedure can be set. More
details about the algorithm can be found in [1]: For instance,
the saving can be made more accurate if the logic network is

FIGURE 4. Boolean resubstitution with don’t cares applied on the
network from Fig. 3(a). More optimization opportunities are found as
compared to Example 4.

mapped, so that real area savings can be measured instead of
number of nodes.

B. RESUBSTITUTION WITH FORWARD FUNCTIONAL
FLEXIBILITY
In this section, we present another resubstitution flow which
makes use of don’t cares expressed as permissible func-
tions. Note that the MSPF is one of the most powerful
interpretations of don’t cares in logic synthesis. However, its
computation can be very time-consuming, especially when
a logic network has many convergent paths [8]. Here, we
describe a second resubstitution method which makes use
of a weaker notion of MSPF, called the Forward Functional
Flexibility (FFF) information [1], which helps in accelerating
the computation of permissible functions. It is worth not-
ing that optimization opportunities and QoR are improved
when Boolean resubstitution is enriched with don’t cares
information.
Example 7: Consider the logic network from Fig. 3(a).

Resubstitution with external don’t cares results in the logic
network in Fig. 4, which has 3 fewer nodes as compared to
the original network. The number of levels is also optimized,
reducing them from 5 to 4. The improvement is larger com-
pared to Example 4, as more resubstitution opportunities are
found.
In the following, first, we give the background on FFF, then

we illustrate the resubstitution flow.

1) FORWARD FUNCTIONAL FLEXIBILITY
The FFF is a weaker notion of theMSPF that helps improving
the runtime, and overcomes the difficulties in computing the
MSPF of gates and connections each time that the network is
optimized/updated [8], [9]. FFF considers only the permis-
sible functions generated by the forward propagation of a
node’s functionality and don’t cares to its TFO. In contrast,
the full MSPF considers all possible permissible functions
by definition, thus also those originated by the interaction
of a node with its Transitive FanIn (TFI) and the rest of the
network. Practically, FFF grasps a good amount of MSPF
opportunities but still fits in a tight runtime budget [10].

We refer to FFF(C, n) as the FFF computed for a specific
node n in a small or medium network C . The FFF(C, n)
information can be interpreted as follows: For a given input

226834 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

Algorithm 2 Forward Functional Flexibility Computation
Input: Logic network C , Current node n
Output: Forward Functional Flexibility FFF(C, n)
1: DC(n)← logic constant 1
2: FFF(C, n)← logic constant 1
3: for each node m ∈ TFO(n) in topological order do
4: for each fanin k of m do
5: i = 0
6: if k has DC info then
7: DC-in(i)← DC(n, k)
8: else
9: DC-in(i)← logic constant 0
10: end if
11: i++
12: end for
13: SOP← get-sop-representation(m)
14: DC(n,m)← logic constant 0
15: acc-sop← logic constant 0
16: for each term of the SOP do
17: term← logic constant 1
18: flex-term← logic constant 0
19: for each literal of the term do
20: index← literal_index
21: flex-term← dc-and(literal, DC-in(index), term, flex-term)
22: term← literal ∧ term
23: end for
24: DC(n,m)← dc-or(term, flex-term, acc-sop, DC(n,m))
25: acc-sop← acc-sop ∨ term;
26: end for
27: if m ∈ PrimaryOutputs(C) then
28: FFF(C, n)← FFF(C, n) ∧ DC(n,m)
29: end if
30: end for
31: return FFF(C, n)

combination, if the value of the FFF of n is1, then the value of
n can be flipped without effecting any of the primary outputs
in C . Consequently, when checking candidates for resubsti-
tution, it is thus sufficient to compare the node functions
only at their non-flexible input combinations. Let n1 and n2
be two nodes in a network C , representing the functions f1
and f2 respectively, then, we can consider n1 and n2 equal
in C , if (

f1 ∧ FFF(C, n1)
)
=

(
f2 ∧ FFF(C, n2)

)
.

where the ¯ is the complementation of the function.
The pseudocode to compute FFF(C, n) for all nodes is

depicted in Alg. 2. It initially assigns maximum flexibility
to the global FFF(C, n) (logic constant 1), and it also set the
local don’t care (DC in Alg. 2) for n to logic constant 1. Note
that in Alg. 2, the DC(n,m) for some node m w.r.t. n has an
opposite meaning than the FFF. That is, if the don’t care of
node m w.r.t. n for a given inputs combination i is 0, it means
that node m at index i is not sensible at flipping the value of
node n at index i.

In Alg. 2, the DC is propagated from n to the primary
outputs in topological order. For each node in the TFO of
n, the DC is computed by considering the Sum Of Prod-
ucts (SOP) representation; in particular, while parsing the
SOP, AND/OR operators are replaced by special operators,

Algorithm 3 2-Input AND Function to Include Don’t Cares
Information
Input: a, DC(a), b, DC(b)
Output: dc_and(a,DC(a), b,DC(b))
1: aux1 = (a ∨ DC(a)) ∧ DC(b)
2: aux2 = (b ∨ DC(b)) ∧ DC(a)
3: res = aux1 ∨ aux2
4: return res

Algorithm 4 2-Input OR Function to Include Don’t Cares
Information
Input: a, DC(a), b, DC(b)
Output: dc_or(a,DC(a), b,DC(b))
1: aux1 = (a ∧ DC(a)) ∧ DC(b)
2: aux2 = (b ∧ DC(b)) ∧ DC(a)
3: res = aux1 ∨ aux2
4: return res

called dc_and and dc_or, which include the local don’t cares
information for each operand. The two algorithms used to
include the DC information in the AND and OR operators
are depicted in Alg. 3 and 4, respectively. At each primary
output m, the FFF(C, n) is updated by and-ing itself with the
complement of DC(n,m): This is needed as only the common
intersection between the FFF of all outputs can be safely
used for optimization purposes. The algorithm stops when all
primary outputs have been processed.

Note that the FFF techniques can also be used to fur-
ther enhance the previously presented Boolean filtering tech-
niques; for instance, the validity check for node a (see
Example 5) when incorporating functional flexibility, is
given by: (

f ∧ FFF(C, f )
)
→

(
a ∧ FFF(C, a)

)

2) RESUBSTITUTION FLOW WITH FORWARD FUNCTIONAL
FLEXIBILITY
The global resubstitution flow which uses FFF is shown in
Alg. 5. The idea for resubstitution with FFF is to update
the information for the current node n in the circuit, such
that resubstitution moves can take advantage of the don’t
cares flexibility. The procedure remains identical to Alg. 1,
but with updates inside the window processing. Note that
the same window computation described in IV-A is used
together with FFF to optimize the Boolean flow and make the
method more scalable. The algorithm stops (i.e., we do not
try any other node) in case the resubstitution is successful.
This is necessary to preserve the correct functionality as
node functions may be modified by the use of don’t cares.
Alternative approaches to this window-skipping have been
considered, where FFFs are incrementally updated after every
successful resubstitution. Experimentally, window-skipping
is more advantageous when considering a tradeoff between

VOLUME 8, 2020 226835



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

Algorithm 5 Resubstitution With Forward Functional Flex-
ibility
Input: Logic network, cut-size, filter-volume, nresub, zero-
gain, max-candidates
Output:Resynthesized logic network using FFF information
1: list← topological-sort-network(network)
2: for each node m in list do
3: if m is not a MFFC root then
4: continue
5: end if
6: cut← find-reconvergent-cut(m, cut-size)
7: expand-cut-into-window(cut)
8: if volume cut / size cut < filter-volume then
9: continue

10: end if
11: wdw← topological-sort-network(window)
12: for each node n in wdw do
13: FFF← compute-FFF(n, wdw)
14: update-information-with-flexibility(n, FFF)
15: run-resub-flow()
16: if resub with FFF is successful then
17: break
18: end if
19: end for
20: end for
21: network-cleanup-and-sweeping(network)

QoR and runtime, as it allows to explore more don’t care
combinations.

C. RESUBSTITUTION BASED ON BOOLEAN DIFFERENCE
Here, we present a Boolean resubstitution flow based on
Boolean difference, described for the first time in [2]. The
Boolean difference [4] of a Boolean function f (x1, x2, . . . , xt )
w.r.t. an input variable xi is defined as:

∂f
∂xi
= fxi ⊕ fx̄i (3)

where fxi and fx̄i are the two cofactors and⊕ is the XOR oper-
ator. It states whether function f is sensitive to any change
in input xi. In a similar way, the Boolean difference of two
Boolean functions f (x1, x2, . . . , xt ) and g(x1, x2, . . . , xt ) is
defined as:

∂f
∂g
= f ⊕ g, (4)

It indicates whether the two functions are functionally equiv-
alent (i.e., the Boolean difference value w.r.t. inputs assign-
ments is 0) or not (i.e., they have a Boolean difference
equal to 1).

According to Boolean difference, each function f can be
written as f = ∂f

∂g ⊕ g. The main advantage of the resub-
stitution method comes from the synthesis of the Boolean
difference ∂f

∂g , as g is a node already in the logic network.
A small Boolean difference implementation could result in
size optimization for the logic network. Note that this method

FIGURE 5. Boolean difference example.

mainly addresses XOR-rich circuits and is thus responsible
for revealing further XOR optimizations that are instead not
found by generalized resubstitution methods.
Example 8: Consider as an example the logic network for

function f and g in Fig. 5(a). Function f is rewritten as ∂f
∂g⊕g

in Fig. 5(b). The function g is the one highlighted in gray
in both Fig. 5(a) and (b). The small size of the Boolean
difference network results in a decreased total number of
nodes (from 16 to 12).

We refer to function f and g as candidates for Boolean
difference, and to the inputs variables x1, x2, . . . , xt as their
support. We use f and g both for the corresponding nodes in
the logic network and for the function they represent.

In the following, we first present the selection of the candi-
dates and their support, and we discuss algorithms to compute
the Boolean difference between two nodes. Then, the Boolean
difference resubstitution flow is presented.

1) CANDIDATES & BOOLEAN DIFFERENCE COMPUTATION
To ensure the scalability of this Boolean method, we evaluate
and apply the Boolean difference locally on limited size
circuit partitions, similarly to the two previously described
methods. The partitions are created by first collecting all
the nodes in topological order, and then by sorting them
according to the similarity in their structural support. Each
partition respects some decided characteristics, e.g., maxi-

226836 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

Algorithm 6 Boolean Difference Implementation
Input: Two nodes f and g, xor_cost, all_functions
Output: A new node boolean_diff equal to ∂f

∂g ⊕ g
1: boolean_diff← 0
2: b_diff← f ⊕ g
3: if b_diff already exists in all_functions() then
4: return corresponding node
5: end if
6: if (cost(b_diff) > threshold) then
7: return null
8: end if
9: saving←MFFC(f )-size + nodes_sharing
10: if (size(b_diff) + xor_cost > saving) then
11: return null
12: end if
13: boolean_diff←b_diff ⊕g
14: return boolean_diff

mum number of primary inputs, maximum number of internal
nodes N , maximum number of levels, etc. In practice, we
give priority to the limit on the maximum number of levels,
as they correlate with the complexity of the reasoning engine
(i.e., BDDs) selected for the Boolean difference computation.
Nevertheless, we also ensure partitions to have a limited
number of primary inputs and a limited size. Experimentally,
promising bounds on the number of levels range from 5 to 30,
with maximum size of 1000 nodes.

To find suitable candidates f and g, all pairs of nodes
inside each partition are considered. The primary inputs of
the partition are the supports for the computation. In this
case, the time complexity of the resubstitution is quadratic
w.r.t. the partition size N in the worst case. We thus (i) fix
the maximum number m of pairs to be tried, (ii) apply all
structural and functional filtering described in [2].

The pseudocode to compute the Boolean difference
between two nodes in the same partition is presented in
Alg. 6. The hashtable all_functions stores the pre-computed
functions for all nodes in the partition, and the Boolean
difference is computed as XOR between the two func-
tions f and g. If the function of the Boolean difference
already exists in the hashtable, the corresponding node is
returned.

To make the computation faster, we apply structural fil-
tering on the reasoning engine used to store the Boolean
functions. For instance, when BDDs are used, the structural
filter skips pairs of nodes for which the BDD does not meet
the given size requirements. For this case, the algorithm
returns null. We skip nodes according to two main criteria,
being (i) the size or cost of the reasoning engine (here called
cost(b_diff)), (ii) a large network implementation. The first
constraint consequently ensures a limited size implementa-
tion for the Boolean difference, but it may overlook some
optimization opportunities. The savings are evaluated as the
sum of sharing of nodes between the Boolean difference

Algorithm 7 Resubstitution Flow Based on Boolean Differ-
ence
Input: Logic network, xor_cost
Output: Resynthesized logic network using the Boolean difference
1: lists←topological-sort-partitions(network)
2: for each list in lists do
3: all_functions←functions for all nodes in list
4: for nodes f in list do
5: for nodes g in list do
6: if f = g then
7: continue
8: end if
9: if f and g are not good candidates then
10: continue
11: end if
12: diff← Boolean_difference(f , g, xor_cost, all_functions)
13: if size(diff ) ≤ size(f ) then
14: Change f with diff in network
15: end if
16: end for
17: end for
18: end for
19: network-cleanup-and-sweeping(network)

implementation and the existing network, and the size of the
MFFC of f . The algorithm concludes with the implementa-
tion of the Boolean difference node (line 13 in Alg. 6) as an
AIG, obtained by strashing the corresponding network, fol-
lowed by optimization algorithms from the state-of-the-art to
guarantee an optimized implementation. The xor_cost is the
number of AIG nodes needed to implement the functionality
of a two-input XOR. In our implementation, the xor_cost is
a parameter that takes into account the specific technology
involved, in which the XOR node may have a different area
ratio as compared to the AND/OR nodes.

2) RESUBSTITUTION FLOW BASED ON THE BOOLEAN
DIFFERENCE
Alg. 7 depicts the pseudocode of the Boolean difference-
based resubstitution flow, applying the resubstitution to each
partition of the entire network. The partitions can be chosen
to be separate or overlapping to cover more optimization
opportunities. The algorithm precomputes all functions in the
hashtable, and considers all nodes in topological order. Trivial
pairs of nodes are skipped according to criteria discussed in
Section IV-C1. Alg. 6 is used to obtain the new implementa-
tion of f using the Boolean difference. A new implementation
of f is accepted only if (i) it leads to size reduction, and
(ii) it does not increase the number of nodes. The latter could
reshape the network, opening new optimization opportunities
and helping to escape local minimum.

As a final remark, it is worth mentioning that all the
Boolean resubstitution methods presented are independent
on the data structure and reasoning engine (i.e., truth tables,
BDD or SAT) used to compute the node functionalities and
the don’t cares. The right choice of the engine can determine
both the scalability and the QoR of a given method. In the
next section, we discuss in detail the selection of the right

VOLUME 8, 2020 226837



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

data structure or reasoning engine depending on the circuit’s
characteristics and the optimization opportunities.

V. TRUTH TABLES, BDDs, OR SAT?
Booleanmethods are based on functional properties of a logic
circuit, as don’t care information. To gather such functional
properties, expensive logic data structures and reasoning
engines are required, such as truth tables, BDDs, and SAT.
In the last two decades, improvements in SAT solving have
made SAT-based methods more scalable than those based on
BDDs and truth table, which consequently grew outdated.
While we acknowledge the advantages of SAT-based meth-
ods, it appears in practice that there are still several synthesis
scenarios inwhich BDDs or truth tables are preferable to SAT,
in terms of QoR and/or runtime.

This section discusses how to identify scenarios, based on
circuit characteristics and optimization scope, where Boolean
methods (and Boolean resubstitution) are best driven by
either truth tables, BDDs, SAT, or a combination of these
three.

A. TRUTH TABLES
Truth tables are efficiently stored in computers as a concate-
nation of words. Boolean functions with t variables require
2t−k words, where k = log2(word-size). It follows each
64-bit (32-bit) word can store a 6(5)-input truth table. For
circuits or sub-circuits having less than 16 inputs, truth tables
are remarkably fast to compute in practice, as they have low
memory footprint and no formulation overhead. Furthermore,
truth table computation may be parallelized w.r.t. words and
distributed over different threads. For example, 64-bit words
operating with a 16-input truth table require bit-level oper-
ations among 1024 (independent) words. Distributing such
computation over 16 threads, which is common in EDA appli-
cations, reduces the latency bottleneck to just 64 consecutive
bit-level word operations.

As of today, functional properties of circuits up to 16 inputs
are most efficiently computed via truth tables. The overhead
of formulating and solving a SAT problem, or handling a
BDDmanager for the same circuit usually takes considerable
amount of runtime.
Example 9: Consider an XOR-rich parity circuit over

16 variables, with many functionally identical nodes originat-
ing from partial SOP collapsing during synthesis. Depend-
ing on the depth of XOR collapsing, the circuit size can
grow over several thousands of nodes. In our case, we deal
with about 10k AIG nodes. Assume the goal is to merge
all functionally equivalent nodes, up to complementation, in
this circuit. If the task is performed using truth tables, it
takes about 1 second of runtime. When using a SAT-based
formulation of the problem, instead, it takes more than 2
minutes to obtain the same result. BDD-based methods take
tens of seconds, ranging between 15 seconds and 30 seconds,
depending on the settings for static and dynamic variable
re-ordering.

B. BDDs
BDDs are a compact canonical representation form. Com-
pared to truth tables, which are also canonical but always
exponential-sized, BDDs allow polynomial-size for many
functions and variable orderings of practical interest [39].
However, other functions, such as multiplication and hidden-
weighted bit, have exponential-size BDDs for any variable
order [39].

When dealing with a medium-large function, whose exact
properties are unknown, BDDs construction time can differ
sensibly. Empirically, BDDs are always built rapidly, com-
pared to truth tables, for the following circuit cases:

1) Circuits with less than 20 primary inputs,
2) Circuits that, if decomposed into an AIG, have depth

d < 20 levels,
3) Circuits with a small internal nodes over primary inputs

ratio, i.e., volume v < 2,
4) Circuits with special properties that facilitate BDD

construction, e.g., symmetries.

For the cases above, where the primary inputs are less than
16 and truth tables are not desirable, BDDs are the fastest
alternative in the majority of cases. It is worth noting that
corner cases for points 3) and 4) exist, i.e., ripple carry adders
whose BDDs are built with bad variable order, or symmetric
functions with many variables, etc. However, these cases
represent a small fraction of the ones encountered in practice
and can be detected with some extra filtering.
Example 10: Consider Boolean resubstitution over the

MCNC circuit k2 [40]. After decomposing it into an AIG,
with light sharing, this circuit shows 20 levels, 2580 nodes,
and 45/45 inputs/outputs. Building a BDD for this circuit
takes less than 10 ms with a modern BDD package. Such
BDD can then be used for implementing the Boolean filter-
ing rules described Section IV-A, in the same way as they
would be implemented with truth tables. Using SAT for each
resubstitution move, spanning the whole circuit, would result
in notable runtime overhead.

C. SAT
SAT solving provides answers to Boolean decision prob-
lems. Many Boolean tasks in synthesis can be formulated as
decision problems, e.g., ‘‘is this portion of logic redundant?’’
Advances in SAT solving have made very large problems
solvable in a relatively small amount of runtime [12], con-
sequently, SAT is very appealing in logic synthesis and other
fields in EDA. It is fair mentioning that there is some over-
head in translating circuit-SAT problems in Conjunctive Nor-
mal Form (CNF), which is the standard form for solving SAT.
Also, SAT provides less information content w.r.t. BDDs or
truth tables, which instead encapsulate complete functional
information. Nevertheless, SAT is the preferred engine for
Boolean methods in the following cases:

1) The Boolean method is global and can be formulated
as a decision problem,

226838 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

2) Implicit enumeration and pruning of large search
spaces is required, which is efficiently done by modern
SAT solvers,

3) The circuit, or sub-circuit, does not fit with the previous
truth tables and BDD preferable cases.

Example 11: Consider redundancy removal over the
EPFL circuit mem_ctrl [14]. After decomposing it into an
AIG, with light sharing, this circuit shows 115 levels, 46k
nodes and 1205/1231 input/outputs. Given its size, it is appar-
ent that finding global redundancies via truth tables or BDDs
is not feasible. On the other hand, redundacy removal based
on SAT formulation [28] and solving is capable to process this
benchmark in about 30 seconds, removing 11.8k redundant
nodes in the AIG.

Based on the proposed guidelines, we instrument our
Boolean resubstitution methods to choose between truth
tables, BDDs or SAT engines to derive, in the most effi-
cient way possible, the (sub)circuit properties necessary for
optimization.

VI. GLOBAL RESYNTHESIS FLOW
In this section, we detail our global resynthesis flow.We have
integrated the presented resubstitution techniques in an indus-
trial logic optimization engine, together with revisited state-
of-the-art methods which are usually involved in modern
logic synthesis flows. We created a global Boolean resynthe-
sis flow which runs the following optimizations (see Fig. 1):
1) Gradient-Based AIG Minimization, which revisits clas-

sical AIG optimization by using a technique that adapts
online to apply the most effective AIG transformations [2];

2)Novel ResubstitutionMethods, which includes our novel
resubstitution techniques with Boolean filtering, windowing,
and FFF implemented using truth tables (see Alg. 1 and 5);

3) Resubstitution with Boolean Difference, which consists
of our novel resubstitution flow based on Boolean difference
from Alg. 7;

4) Heterogeneous Elimination for Kernel Extraction to
enhance division and logic sharing to work on heterogeneous
thresholds within the same network [2];

5) SAT Resubstitution, which includes our novel resub-
stitution techniques with Boolean filtering and windowing,
implemented using SAT.

In the following, we describe each step used in the pro-
posed flow. For the Boolean resubstitution methods, we focus
on the data structure or reasoning engines and the size of
the partitions. Concerning the revisited state-of-the-art meth-
ods, we concentrate on their improvements compared to the
state-of-the-art. Note that this Boolean resynthesis flow may
produce better results when iterated multiple times, e.g., 2
to 5 times, depending on the specific runtime budget.

A. GRADIENT-BASED AIG MINIMIZATION
This step implements a method [2] which presents
improvements to classical AIG minimization by (i) using
gradient-based decomposition, and (ii) exploiting circuit par-
titioning techniques. AIG optimization traditionally consists

of a script [6], which is a predetermined sequence of opti-
mization techniques, homogeneously applied to the whole
network, e.g., resyn2rs from ABC. While a recent work [41]
have applied machine learning to find better sequences of
primitive optimization techniques, we follow a different strat-
egy, aiming at making AIG optimization automatically adap-
tive and diverse. Being adaptive, we learn on-the-fly what
are the most effective AIG transformations, using gradient
computation of the gain, and consequently modifying the
next attempted transformations online. Being diverse, we try
different types of AIG transformations on the same region of
logic andmaking results compete locally rather than globally.
We select the best result either in parallel or in a waterfall
model.

Different moves are considered, e.g., rewriting, refactor-
ing, available in low and high effort modes, trading runtime
for QoR. All moves have an associated cost, which correlates
to their runtime complexity. The gradient-based AIG engine
runs together with a partitioning engine of different sizes
depending on the intended scope of the optimization. First,
unit cost moves are tried for each partition and are iterated
while gain > 0.2 When a local minimum is reached, the gain
value switches to 0 and consequently higher cost moves are
introduced in the AIG engine. Recording the most successful
moves and their sequence is done on-the-fly w.r.t. partitions
and network structure. Consequently, moves with high suc-
cess on the current design can be tried with higher priority in
the next iterations.

The number ofmoves to be tried is decided by a cost budget
that can be automatically increased by the AIG engine, if
the gain gradient exceeds a specific threshold over the last k
iterations. This means the AIG engine continues optimizing
a logic network if the improvement trend is satisfying. On the
other hand, if the gain gradient is 0 over the last k iterations,
the AIG engine can terminate beforehand. Both the k factor
and gain thresholds can be specified when running the AIG
engine. In our experiments, a cost budget equal to 100 and
k = 20 with minimum gain gradient equal to 3%, provides
some of the best AIG optimizations seen over academic and
industrial benchmarks [2].

B. NOVEL RESUBSTITUTION METHODS
This step implements our novel resubstitution flow, which
uses Boolean filtering, windowing, and FFF to speed up
the computation. These are the resubstitution methods pre-
sented in Alg. 1 and 5. In this scenario, partitions of
small-size (max. 15 inputs) have been considered, and
truth tables have been selected as data structure. Effi-
cient bitwise manipulation—for instance, the one discussed
in [42]—allows fast calculation of truth tables, functional
support, etc. for all nodes in the window. Note that, equiva-
lently, BDDs could be used for the evaluation of permissible
functions and MSPF, as in the method presented in [2].

2All moves are designed to have gain ≥ 0 at all times, otherwise the
corresponding change is reverted.

VOLUME 8, 2020 226839



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

C. RESUBSTITUTION WITH BOOLEAN DIFFERENCE
This step implements the Boolean difference-based resub-
stitution from Alg. 7. The Boolean difference method is
applied to medium-size partitions obtained as discussed in
Section IV-C1. Thanks to the contained size of the partitions,
BDDs allow fast Boolean difference computation and are
chosen as engine for the computation. We do not perform
any variable ordering for the BDDs, to both save runtime and
becausewe are dealingwith small BDDs. Thismakes a higher
amount of memory needed by the BDD package and, thus
memory plays a crucial role in the Boolean difference compu-
tation. For instance, for the EPFL cavlc benchmark [14], the
algorithm does not converge in a reasonable amount of time
unless the memory used for the BDD of the difference is freed
at each iteration. In this last case, the algorithm is applied
to the whole network, which has 10 inputs and more than
600 nodes. We thus set a memory limit for the BDD package
to prevent any memory issue. If this maximum memory limit
is hit during the algorithm, the computation is bailed out and
it results in a BDD of size 0 for the given node. This node is
disregarded in the next steps.

The cost for the structural filtering in Alg. 6 is set by the
size of the BDD. To have good QoR and feasible runtime, we
found an empirical value of 10 to be a suitable tradeoff for
the threshold. The second filter in Alg. 6 skips nodes whose
savings is smaller than the empirical threshold set by the BDD
size and the xor_cost . Limiting the size of the BDD of the
Boolean difference sets an upper bound on the number of AIG
nodes to implement the Boolean difference. Note also that
thanks to the use of BDDs, information for functional filtering
of pairs are directly available. The final circuit is obtained by
strashing the BDD network into an AIG.

D. HETEROGENEOUS ELIMINATION FOR KERNEL
EXTRACTION
Thismethod enhances the state-of-the-art elimination - kernel
extraction [15], which is one of the most effective techniques
in logic optimization, as it can share large portions of logic
circuits that are hard to find with other methods. For example,
kernel extraction is capable of identifying common factors
between large (hundreds to thousands of inputs) operators
appearing in HDL descriptions of decoders and control logic.

The effectiveness of kernel extraction stands on the prop-
erties and characteristics of the node SOPs. Before ker-
nel extraction, node elimination3 is often used to create
larger SOPs, keeping under control the maximum number
of terms or literals, to enable more extraction opportunities
to be found. However, elimination is usually run homo-
geneously on the network, i.e., with the same thresholds
on the maximum number of terms or literals. This means
that the resulting SOPs have similar size—but not similar
characteristics—which is where the extraction opportunities
arise.

3Node elimination, also known as forward node collapsing, aims at col-
lapsing a node into its fanouts’ SOPs. As a result, the node is eliminated.

In this paper, we take advantage of partitions, whose com-
putation can be distributed in parallel, to enhance elimination
and kernel extraction to work on heterogeneous thresholds
within the same network. The idea is that elimination pro-
duces different QoR according to the type of circuit. For
instance, it produces good results for circuits with large SOPs
size. In this case, a large threshold is thus preferable. On
the other hand, a small threshold should be used for circuits
containing parity and linear functions. First, partitions of the
network are created, then elimination and kernel extraction is
applied to each partition with different eliminate thresholds.
We only keep the best result, which is the one reducing the
largest number of literals. The elimination process within
each partition works as follows: First, for each node, the
variation in the number of literals that would result from the
collapsing of the node into its fanouts is evaluated. If this
variation is less than the determined threshold, the collapsing
is performed. The operation is repeated until no node gets
collapsed into its fanouts. In practice, we tried the following
eliminate thresholds: (-1, 2, 5, 20, 50, 100, 200, 300).

E. SAT RESUBSTITUTION
The step implements our novel resubstitution flow based
on Boolean filtering and windowing (see Alg. 1), when
SAT is used as underlying reasoning engine. In particular,
the Boolean filtering checks (based on canalizing functions)
described in Section IV-A1 are implemented using a SAT
encoding and solving. After generating a SAT formulation of
the problem, the SAT solver is used to check the resubstitution
opportunity. If the SAT problem is UNSAT, it means the
Boolean filtering checks are successful and the divisor is
a valid candidate for resubstitution. On the other side, if
the result is SAT, the Boolean filtering rules are not passed
and the resubstitution is not advantageous. In this case, a
counterexample is produced by the SAT solver that can be
used to refine the simulation for filtering. For this algorithm,
the saving in Alg. 1 wasmademore accurate by usingmapped
logic networks as proposed in [1].

Altogether, the proposed synthesis flow enables significant
synthesis results over both academic and industrial bench-
marks, when addressing size optimization. These results are
presented in the next section.

VII. EXPERIMENTAL RESULTS
In this section, we evaluate the efficacy of our proposed
global resynthesis flow from Section VI. Note that after each
transformation, the logic network is transformed into an AIG
to have a consistent interface and cost among the various steps
of the flow. Within modern EDA flows, Boolean methods are
usually called during logic structuring, which mainly aims at
reducing area.We thus target as main goal size/area reduction
of logic networks; nevertheless, within the industrial flow,
we also enforce a tight control on the number of nets and
the number of levels during synthesis, as this correlates with
delay and congestion in the industrial flow. In the following,
we first present results on academic benchmarks, then we

226840 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

TABLE 1. Best 6-LUT area results for the EPFL benchmarks.

TABLE 2. Smallest AIG results for the EPFL benchmarks – Comparison
with ABC.

show the improvement over 36 industrial benchmarks for
ASICs designs.

A. EPFL BENCHMARKS
In this section, we use our global synthesis flow to improve
(decrease) the size of the EPFL benchmarks [14]. In partic-
ular, we challenge the area (i.e., number of LUTs) category
within the EPFL competition,4 which records the best synthe-
sis results in term of size obtained by mapping the optimized
EPFL benchmarks into LUT-6. For these experiments, since
we address area optimization, we do not constraint the num-
ber of levels during synthesis.

To compare our results, we apply our resynthesis flow
followed by the ABC [6] command ‘‘if -K 6 -a’’ to map
our AIGs into LUT-6. Since LUT-6 minimization does not
follow strictly AIG minimization, we adapted our tool to
work in general for the LUT-6 experiment in the following
way: We inserted selective strashing of LUTs, over previous
best results, with optimization and remapping on smaller
partitions, to preserve some of the good LUT-6 structures.

Table 1 summarizes our results.5 At the time of evaluation
of this work, we improved 12 of the previous best size (area)
results of the EPFL benchmarks,6 advancing both the size

4The best results for the EPFL benchmarks are available at:
https://github.com/lsils/benchmarks.

5Note that we report only those benchmarks for which we had an improve-
ment in area/size.

6We compare our results to commit 87cf8ec in https://github.com/
lsils/benchmarks.

TABLE 3. Detailed results on scalability for mem_ctrl.

results coming from [1] and [43]. Our improvements range
from a few LUTs to several (tens) for larger circuits (column
Proposed Best Results from Table 1). It is worth mentioning
that the EPFL benchmarks have been optimized various times
in the last 4 years by the most advanced techniques both
from industry and academia, thus each improvement (even
if relatively small), is highly significant. Note also that some
benchmarks (e.g., max) are mostly improved by the Boolean
difference method, which is capable of resolving convergent
logic not distinguished by other techniques. Note that for
these experiments, we did not constraint the number of levels
(see for instance i2c levels are increased from 6 to 15). Fur-
thermore, recently, new best-size results have been presented
in [44] and [45]. Even though additional size optimizations
have been applied on top of our best results, we still hold the
best area results for 3 of the results from Table 1, that is, no
further optimizations were found for these cases.

As already pointed out, a smaller AIG was not result-
ing in the best LUT-6 result for some of the benchmarks.
Nevertheless, our global resynthesis flow allows us to obtain
the smallest-known AIGs compared to the state-of-the-art, as
reported in Table 2. In this scenario, the smallest known AIG
from state-of-the-art (Best-Known Size AIG) has been com-
puted by strashing the best LUT-6 result and running resyn2rs
from ABC [6] until no improvement is seen. We present sig-
nificant improvement; as an example, we show 1.3× (26%)
size reduction in the smallest known AIG for the EPFL voter
benchmark. For some benchmarks, this result is much smaller
than the AIG size leading to the best LUT-6 results from
Table 1.
The results from Table 1 and 2 show remarkable size opti-

mization on the EPFL benchmarks. To evaluate the scalability
of our resubstitution methods and the impact of the pro-
posed filtering techniques, we perform a detailed compari-
son between our resubstitution (with and without filtering)
and ABC on one test case: mem_ctrl. All comparisons are
performed by reading the (strashed) network into ABC and
using truth tables, for the sake of fair comparison. The results
are detailed in Table 3. The initial benchmark (Baseline) is
an AIG with 46836 nodes and 114 levels. By applying the
ABC [6] command ‘‘rs -K 10 -N 1’’, the size of the benchmark
is reduced to 46614 nodes in 0.48 seconds (ABC resub
line). On the other hand, our resubstitution method from
Alg. 1 (with setting close to ABC, e.g., in cut size, number
of divisors, types of nodes, etc.) obtains 45993 nodes in

VOLUME 8, 2020 226841



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

TABLE 4. Post place&route results on 36 industrial design for ASICs.

0.4 seconds (compare to Test1 from Table 3). Test2 presents
results of resubstitution from Test1, without the filtering
technique for 1-resubstitution. The experiments show that the
size is optimized of the same amount, but the runtime is 2×.
The second part of Table 3 shows results when resubstitu-
tions are improved with MSPF (i.e., observability don’t care)
computations. In particular, ABC_ODC resub shows results
obtained by running the ABC command ‘‘rs -K 10 -N 1 -v
-F 4’’ on the baseline benchmark. This case obtains better
QoR as compared to ABC resub, but the runtime increases
significantly. The results for our resubstitution with FFF
(Alg. 5) are shown as Test3 and Test4. In particular, results
with and without filtering techniques are shown, respectively.
As compared to ABC, our method shows improved QoR
and smaller runtime. Moreover, the runtime obtained without
the filtering rules (Test4) is increased, while the node and
level count remain the same. This confirms the importance
of our proposed filtering technique to attempt higher quality
resubstitution in the context of logic optimization.

To further stress the effect of filtering techniques, con-
sider a big industrial benchmark having 113533 PIs and
17305 POs, respectively, and 1271692 AIG nodes and
267 levels. The ABC command ‘‘rs -K 10 -N 1’’ reduces
the size (levels) to 1270497 (262), in 14.48 seconds. Our
resubstitution method from Alg. 1 results instead in size
(levels) of 1269219 (264) in only 6.0 seconds. When filtering
techniques are turned off, the QoR is not affected, but the
runtime increases to 9.9 seconds.

B. ASIC RESULTS
We tested a commercial EDA flow, empowered with our
global resynthesis flow, on 36 state-of-the-art ASICs, coming
from major electronics industries. Due to non-disclosure
agreements, we cannot provide details on each ASIC bench-
mark. However, we present average results w.r.t. a baseline
flowwithout our resynthesis methods. The post place & route
results are summarized in Table 4. All benchmarks are veri-
fied with an industrial formal equivalence checking flow. In
Table 4, the baseline is a complete industrial EDA flow from
register transfer level to GDSII, without any of the presented
techniques. The first experiment presents results when our
gradient-based AIG minimization is included in the EDA
flow. On average, this technique decreases the combinational
area, which is our target metric, of 0.48%, which negligible
increase in runtime and WNS/TNS. The second experiment

enriches experiment 1 with our novel resubstitution meth-
ods. These techniques allow a further combinational area
decrease, resulting in improvements also for WNS and TNS.
Experiment 3 uses the resubstitution with Boolean difference
to further improve the combinational area, while experiment
4 enhances the previous steps by using heterogeneous elim-
ination for kernel extraction. The last experiment presents
results when the complete flow from Section VI is applied,
i.e., experiment 4 enriched with SAT resubstitution.

Our complete design flow embedding our new optimiza-
tion, and highlighted in green, enables sensible combina-
tional area and dynamic power (without considering the clock
network) reductions, 3.12% and 2.49%, respectively. On
average, we also achieve WNS/TNS improvements, with a
runtime increase of only 2.2%.

VIII. CONCLUSION
The continuous push to advance QoR in the EDA commu-
nity has resulted in a revived interest for Boolean methods.
Boolean methods (e.g., Boolean resubstitution) are univer-
sally considered runtime-expensive, and thus are used cau-
tiously in logic synthesis flows. In this paper, we presented
three novel Boolean resubstitution methods, more scalable
and runtime-effective as compared to state-of-the-art. The
former method uses Boolean filtering techniques and win-
dows to speed up the candidates selection; the second method
exploits a weaker notion of MSPF to accelerate the don’t
cares computation; the latter method presents a fast resubsti-
tution method based on the Boolean difference computation
over network partitions. While the three resubstitution algo-
rithms are independent of the reasoning engine used for their
implementation, the choice of such engine can determine
their scalability and QoR. We thus presented practical sce-
narios, depending on circuits characteristics and optimization
opportunities, in which our methods are best driven by truth
tables, binary decision diagrams, satisfiability, or a blend of
those.

The three Boolean resubstitution methods have been
implemented together with well-known and optimized state-
of-the-art algorithms to build a global resynthesis flow that
addresses size optimization. Altogether, our global resynthe-
sis flow achieves substantial optimization results. We have
obtained significant improvements over the smallest known
AIGs for EPFL benchmarks, and have improved best-known
area results in the EPFL synthesis competition. We have

226842 VOLUME 8, 2020



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

demonstrated the efficacy of our Boolean resynthesis flow
over 36 industrial designs for ASICs, which resulted in 3.12%
combinational area savings and 2.49% dynamic power reduc-
tion, after physical implementation. The proposed flow guar-
antees excellent scalability, achieving, on average, a limited
increase in the runtime of only 2.2%.

As part of future work, we envision more filtering and
optimizations can be found for specific data-structures. For
this purpose, the implementation of the presented algo-
rithms within state-of-the-art open source tools, as the EPFL
Libraries or ABC, will be part of our future research.
The implementation of our resubstitution algorithms using
data-structures ranging from AIG to MIGs or XAGs will
be an interesting direction of logic synthesis research and
give a useful comparison point for the proposed industrial
algorithms.

REFERENCES
[1] L. Amaru, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,

R. Brayton, and G. D. Micheli, ‘‘Improvements to Boolean resynthe-
sis,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 755–760.

[2] E. Testa, L. Amaru, M. Soeken, A. Mishchenko, P. Vuillod, J. Luo,
C. Casares, P.-E. Gaillardon, and G. D. Micheli, ‘‘Scalable Boolean meth-
ods in a modern synthesis flow,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2019, pp. 1643–1648.

[3] H. Riener, E. Testa, L. Amaru, M. Soeken, and G. D. Micheli, ‘‘Size opti-
mization ofMIGswith an application to QCA and STMG technologies,’’ in
Proc. 14th IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2018, pp. 157–162.

[4] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, ‘‘Multi-
level logic synthesis,’’ Proc. IEEE, vol. 78, no. 2, pp. 264–300, Feb. 1990.

[5] G. D. Micheli, Synthesis and Optimization of Digital Circuits. New York,
NY, USA: McGraw-Hill, 1994.

[6] R. K. Brayton andA.Mishchenko, ‘‘ABC: An academic industrial-strength
verification tool,’’ in Proc. Int. Conf. Comput.-Aided Verification, 2010,
pp. 24–40.

[7] M. Damiani, J. C.-Y. Yang, and G. D. Micheli, ‘‘Optimization of combina-
tional logic circuits based on compatible gates,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 14, no. 11, pp. 1316–1327,
Nov. 1995.

[8] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, ‘‘The trans-
duction method-design of logic networks based on permissible functions,’’
IEEE Trans. Comput., vol. 38, no. 10, pp. 1404–1424, 1989.

[9] S. Muroga, ‘‘Logic synthesizers, the transduction method and its exten-
sion, Sylon,’’ in Logic Synthesis and Optimization. New York, NY, USA:
Springer, 1993, pp. 59–86.

[10] L. Amaru, P. Vuillod, J. Luo, and J. Olson, ‘‘Logic optimization and
synthesis: Trends and directions in industry,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 1303–1305.

[11] R. E. Bryant, ‘‘Graph-based algorithms for Boolean function manipula-
tion,’’ IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[12] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Reading, MA, USA: Addison-Wesley, 2015.

[13] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, ‘‘Robust Boolean
reasoning for equivalence checking and functional property verification,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, Dec. 2002.

[14] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, ‘‘The EPFL combinational
benchmark suite,’’ in Proc. 24th Int. Workshop Log. Synth., 2015, pp. 1–5.

[15] R. K. Brayton and C. T. McMullen, ‘‘The decomposition and factoriza-
tion of Boolean expressions,’’ in Proc. Int. Symp. Circuits Syst., 1982,
pp. 49–54.

[16] E. Testa, M. Soeken, L. G. Amar, and G. De Micheli, ‘‘Logic synthesis
for established and emerging computing,’’ Proc. IEEE, vol. 107, no. 1,
pp. 165–184, Jan. 2019.

[17] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. New York, NY, USA: Springer, 2006.

[18] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison,
R. L. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, ‘‘Multi-level logic
minimization using implicit don’t cares,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 7, no. 6, pp. 723–740, Jun. 1988.

[19] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton, and
M. Chrzanowska-Jeske, ‘‘Using simulation and satisfiability to compute
flexibilities in Boolean networks,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 25, no. 5, pp. 743–755, May 2006.

[20] W. Yang, L. Wang, and A. Mishchenko, ‘‘Lazy man’s logic synthesis,’’ in
Proc. Int. Conf. Comput.-Aided Design (ICCAD), 2012, pp. 597–604.

[21] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and
Implementation. New York, NY, USA: Springer, 2013.

[22] D. E. Knuth, The Art of Computer Programming, Volume 4A. Reading,
MA, USA: Addison-Wesley, 2011.

[23] R. K. Brayton and F. Somenzi, ‘‘An exact minimizer for Boolean rela-
tions,’’ in Proc. IEEE Int. Conf. Computer-Aided Design. Dig. Tech.
Papers, Dec. 1989, pp. 316–319.

[24] C. Yang and M. Ciesielski, ‘‘BDS: A BDD-based logic optimization
system,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21,
no. 7, pp. 866–876, Jul. 2002.

[25] L. Amaru, P.-E. Gaillardon, and G. D.Micheli, ‘‘BDS-MAJ: ABDD-based
logic synthesis tool exploiting majority logic decomposition,’’ in Proc.
50th Annu. Design Autom. Conf. (DAC), 2013, pp. 47:1–47:6.

[26] A. Mishchenko, R. K. Brayton, J. R. Jiang, and S. Jang, ‘‘Scalable don’t-
care-based logic optimization and resynthesis,’’ ACM Trans. Reconfig-
urable Technol. Syst., vol. 4, no. 4, p. 34:1–34:23, 2011.

[27] A. Mishchenko, R. K. Brayton, A. Petkovska, andM. Soeken, ‘‘SAT-based
optimizationwith dont-cares revisited,’’ inProc. Int. Workshop Log. Synth.,
2017.

[28] K. Debnath, R. Murgai, M. Jain, and J. Olson, ‘‘SAT-based redun-
dancy removal,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2018, pp. 315–318.

[29] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
‘‘On-the-fly and DAG-aware: Rewriting Boolean networks with exact syn-
thesis,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019,
pp. 1649–1654.

[30] M. Soeken, G. De Micheli, and A. Mishchenko, ‘‘Busy man’s synthesis:
Combinational delay optimization with SAT,’’ inProc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 830–835.

[31] S. P. Khatri and K. Gulati, Eds., Advanced Techniques in Logic Synthesis,
Optimizations and Applications. New York, NY, USA: Springer, 2011.

[32] A.Mishchenko, S. Chatterjee, and R. Brayton, ‘‘DAG-awareAIG rewriting
a fresh look at combinational logic synthesis,’’ in Proc. 43rd Annu. Conf.
Design Autom. (DAC), 2006, pp. 532–535.

[33] A.Mishchenko andR.K. Brayton, ‘‘Scalable logic synthesis using a simple
circuit structure,’’ in Proc. Int. Workshop Log. Synth., 2006, pp. 15–22.

[34] H. Sato, Y. Yasue, Y. Matsunaga, and M. Fujita, ‘‘Boolean resubstitution
with permissible functions and binary decision diagrams,’’ in Proc. Conf.
Proc. 27th ACM/IEEE Design Autom. Conf. (DAC), 1990, pp. 284–289.

[35] A. M. Y. Miyasaka and M. Fujita, ‘‘A simple BDD package without vari-
able reordering and its application to logic optimization with permissible
functions,’’ in Proc. Int. Workshop Log. Synth., 2019, pp. 1–8.

[36] V. N. Kravets and P. Kudva, ‘‘Implicit enumeration of structural changes
in circuit optimization,’’ in Proc. 41st Annu. Conf. Design Autom. (DAC),
2004, pp. 438–441.

[37] S. Kauffman, ‘‘The large scale structure and dynamics of gene control cir-
cuits: An ensemble approach,’’ J. Theor. Biol., vol. 44, no. 1, pp. 167–190,
Mar. 1974.

[38] A. Mishchenko, S. Chatterjee, and R. K. Brayton, ‘‘Improvements to
technology mapping for LUT-based FPGAs,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 26, no. 2, pp. 240–253, Feb. 2007.

[39] R. E. Bryant, ‘‘On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multipli-
cation,’’ IEEE Trans. Comput., vol. 40, no. 2, pp. 205–213, Feb. 1991.

[40] S. Yang, ‘‘Logic synthesis and optimization benchmarks user guide version
3.0,’’ 1991.

[41] C. Yu, H. Xiao, and G. De Micheli, ‘‘Developing synthesis flows without
human knowledge,’’ in Proc. 55th Annu. Design Autom. Conf., Jun. 2018,
p. 50.

[42] H. S. Warren, Hacker’s Delight. Reading, MA, USA: Addison-Wesley,
2002.

[43] L. Machado and J. Cortadella, ‘‘Support-reducing functional decomposi-
tion for FPGA technology mapping,’’ in Proc. Int. Workshop Log. Synth.,
2018, pp. 1–8.

VOLUME 8, 2020 226843



E. Testa et al.: Extending Boolean Methods for Scalable Logic Synthesis

[44] L. Machado and J. Cortadella, ‘‘Support-reducing decomposition for
FPGA mapping,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 1, pp. 213–224, Jan. 2020.

[45] I. Lemberski, A. Suponenkovs, and M. Uhanova, ‘‘LUT-oriented asyn-
chronous logic design based on resubstitution,’’ in Proc. 14th Int. Conf.
Design Technol. Integr. Syst. Nanosc. Era (DTIS), Apr. 2019, pp. 1–4.

ELEONORA TESTA (Member, IEEE) received
the Ph.D. degree in computer science from the
Swiss Federal Institute of Technology Lausanne,
Lausanne, Switzerland, in 2020. She is currently
a Research and Development Engineer with the
Design Group, Synopsys Inc., Zurich, Switzer-
land. Her research interests include logic synthe-
sis, electronic design automation, and post-CMOS
technologies.

LUCA AMARÚ (Member, IEEE) received the
Ph.D. degree in computer science from the Swiss
Federal Institute of Technology Lausanne, Lau-
sanne, Switzerland, in 2015. He is currently a
Senior Research and Development Manager with
the Design Group, Synopsys Inc., Sunnyvale, CA,
USA, where he is responsible for designing effi-
cient data structures and algorithms for logic syn-
thesis. Prior to joining Synopsys, he was a Vis-
iting Researcher with Stanford University and a

Research Assistant with EPFL. His current research interests include elec-
tronic design automation, logic in computer science, and beyond CMOS
technologies. He has been serving as a TPCmember for several conferences,
including DATE, IWLS and DSD. He is reviewer for several IEEE journals.
He was a recipient of the IEEE TCAD Donald O. Pederson Best Paper
Award in 2018, the EDAAOutstanding Dissertation Award in 2015, the Best
Presentation Award at FETCH Conference in 2013, and a Best Paper Award
Nomination at ASP-DAC Conference also in 2013. He received fellowships
and research contribution awards from EPFL.

MATHIAS SOEKEN (Member, IEEE) received
the Ph.D. degree in computer science and engi-
neering from the University of Bremen, Bremen,
Germany, in 2013. He is currently a Scientist with
the École Polytechnique Fédéderale de Lausanne
(EPFL), Lausanne, Switzerland. He is investigat-
ing constraint-based techniques in logic synthe-
sis and industrial-strength design automation for
quantum computing. He is actively maintaining
the logic synthesis frameworks CirKit and RevKit.

His current research interests include the many aspects of logic synthesis
and formal verification. He has been serving as a TPC member for several
conferences, including DAC, DATE, and ICCAD, and is a Reviewer for
Mathematical Reviews as well as for several other journals. He was a recip-
ient of the scholarship from the German Academic Scholarship Foundation.

ALAN MISHCHENKO (Senior Member, IEEE)
received the M.S. degree from the Moscow Insti-
tute of Physics and Technology, Moscow, Russia,
in 1993, and the Ph.D. degree from the Glushkov
Institute of Cybernetics, Kiev, Ukraine, in 1997.
In 2002, he joined the Electrical Engineering and
Computer Science Department (EECS), Univer-
sity of California, Berkeley, where he is currently
a Full Researcher. His research interests include
computationally efficient logic synthesis and
formal verification.

PATRICK VUILLOD received the Ph.D. degree
from INP Grenoble with an exchange from
Stanford University. He is currently a part of
the Synopsys Research and Development Center,
Grenoble, France. He has been working on Synop-
sys Implementation tools for 20 years. He has been
developing optimization flows of Design Com-
piler, ICC2 compiler, and the recently announced
Fusion Compiler. He worked on a broad area of
topics, such as logic optimization, multi-threaded

delay optimization, routing congestion estimation algorithms, and physical
optimization, allowing several patents and articles.

PIERRE-EMMANUEL GAILLARDON (Senior
Member, IEEE) received the Electrical Engi-
neer degree from CPE-Lyon, France, the M.Sc.
degree in electrical engineering from INSA Lyon,
France, the Ph.D. degree in electrical engineering
from CEA-LETI, Grenoble, France, and the Ph.D.
degree in electrical engineering from the Univer-
sity of Lyon, France. He is currently an Associate
Professor and the Associate Chair for academics
and strategic initiatives of the Electrical and Com-

puter Engineering (ECE) Department, The University of Utah, Salt Lake
City, UT, USA. Previously, he was a Research Associate with the Swiss
Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
His research interests include the development of novel computing systems
exploiting emerging device technologies and novel EDA techniques. He
was a recipient of the 2017 NSF CAREER Award, the 2018 IEEE CEDA
PedersonAward, the 2019DARPAYoung Faculty Award, and the 2019 IEEE
CEDA Ernest S. Kuh Early Career Award.

GIOVANNI DE MICHELI is currently a Profes-
sor of electrical engineering and a Professor of
computer science with EPF Lausanne, Switzer-
land. His research interests include several aspects
of design technologies for integrated circuits and
systems, such as design and synthesis for emerg-
ing technologies. He is also a Fellow of ACM,
a member of the Academia Europaea, and an
International Honorary member of the American
Academy of Arts and Sciences. He was a recipient

of the 2019 ACM/SIGDA Pioneer Award, the 2016 IEEE/CS Harry Goode
Award for seminal contributions to design and design tools of Networks on
Chips, the 2016 EDAA Lifetime Achievement Award, the 2012 IEEE/CAS
Mac Van Valkenburg award for contributions to theory, practice and exper-
imentation in design methods and tools, and the 2003 IEEE Emanuel Piore
Award for contributions to computer-aided synthesis of digital systems.

226844 VOLUME 8, 2020


