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Abstract—This work targets fault-tolerant quantum computing
and focuses on the problem of mapping reversible circuits
into the Clifford+T quantum gate library. We present
an automatically-generated database containing minimal-cost
quantum circuits for Boolean functions up to 5 inputs. The
database contains three circuits for each spectral-equivalent class
representative, which are respectively optimized for the T -count,
the T -depth, and the number of qubits. We show that any Boolean
function can be derived from the implementation of its class
representative without increasing any of the stated cost functions.

I. INTRODUCTION

Few quantum systems have recently been developed by
technology companies and their academic partners [1]–[3].
Current fabrication technologies only enable systems with
few noisy qubits, referred to as Noisy-Intermediate-Scale
Quantum (NISQ) systems. While the capabilities of such
systems may suffice in some specific applications, their size
and noise levels do not allow to compute fault-tolerantly, i.e.,
using quantum error-correcting codes. As the technology is
developing, it is believed that fault-tolerant quantum computing
will revolutionize the way computation is performed through
the development of quantum algorithms, e.g., [4]–[6], which
can break the lower bound complexities of their classical
counterparts.

Quantum algorithms often require the computation of large
classical logic functions to be performed directly on the
quantum system. Such logic functions are usually specified
using a high-level description language that has to be mapped
into native and application-specific operations. This process
is called quantum compilation. In fault-tolerant quantum
computing, native operations are grouped into the universal
Clifford+T library. This library contains the T gate, which
is very expensive to be implemented fault-tolerantly and is
often the only one accounted for when estimating the cost of a
quantum algorithm [7], [8]. In this setting, compilation aims at
minimizing both the T -count, which is the number of T gates
and the T -depth, which is the maximum number of T gates
that cannot be performed in parallel [9]. Finally, compilation
targets the minimization of the total number of qubits of the
resulting quantum circuit.

In this work, we present a database of quantum circuits
for all the representatives of the spectral-equivalent classes of
Boolean functions with 4 and 5 inputs. To generate the circuits,
we use three different compilation algorithms: two existing
ones, designed to minimize the T -count and the number of
qubits, and a new algorithm to minimize the T -depth.

The database can be used to implement any Boolean
function. First, any 4- and 5-input function can be directly
generated from the spectral-equivalent entry without using any

additional qubit or T gate. Second, larger Boolean functions
can be automatically compiled from the database exploiting
hierarchical methods as, e.g., the one proposed in [10].

II. PRELIMINARIES

A. Boolean functions

A Boolean function over n variables is defined as f : Bn →
B, where B = {0, 1}. A Boolean function can be represented
by its truth table, which is a bitstring b2n−1b2n−2 . . . b0 of size
2n where bx = f(x1, . . . , xn) when x = (x1x2 . . . xn)2. For
large functions, it is convenient to use a hexadecimal encoding
of the bitstring.

Example 1: The truth table of the majority-of-three function
〈x1x2x3〉 is 1110 1000 or #

e8 in hexadecimal encoding.

Every Boolean function can also be represented in terms
of an exclusive sum-of-products (ESOP) expression. This
representation is not unique and many heuristic and exact
minimization methods have been proposed [11]–[14].

B. Logic networks

Multi-level logic networks are scalable representations of
Boolean functions. A logic network is represented by a graph
in which each node performs a Boolean operation and edges
define data dependencies. The inputs of the function are the
primary inputs of the graph. Networks are characterized by
their size, i.e., the number of nodes, and by their depth, i.e., the
number of levels in the graph. Two nodes are in the same level
if they have the same maximum distance from the primary
inputs. According to the characteristics of the network, we
define different graph representations. In this work, we use
Xor-And-inverter Graphs (XAG), in which nodes implement the
2-input XOR, the 2-input AND. and inversion. Fig. 2 shows the
XAG network for the majority-of-three function #

e8, where
dashed edges represent inversion.

C. Reversible circuits

The automatic compilation of a Boolean function f usually
proceeds by embedding f in a reversible function.

Definition 1 (Reversible Boolean function): A multi-output
Boolean function f : Bn → Bm is reversible, iff f is a
bijection: each input pattern uniquely maps to an output pattern.
A reversible function is implemented using reversible gates;
in particular, we define the single-target gate and the
multiple-control Toffoli gate.

Definition 2 (Single-target gate): Let c : Bk → B be a
Boolean function, called the control function. Also, let C =
{c1, . . . , ck} be a set of control lines and let t /∈ C be a target
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Fig. 1. (a) The function y = g(f(x1, x2)) is computed using two single-target
gates. An unknown intermediate result is generated. (b) Garbage-free circuit
where the intermediate result has been uncomputed by applying f twice.
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Fig. 2. An XAG for the majority of 3-inputs.

line. Then the single-target gate Tc(C, t) : Bn → Bn is a
reversible Boolean function which maps

(x1, . . . , xn) 7→ (x′1. . . . , x
′
n) where

x′i =

{
xi if i 6= t,
xt ⊕ c(xc1 , . . . , xck) otherwise.

In other words, it inverts the target if and only if the control
function evaluates to true.

Definition 3 (Multiple-control Toffoli gate): A
multiple-control Toffoli gate is a single-target gate Tc(C, t)
whose function is a single product term.

Quantum compilation requires reversible circuits to be
garbage-free, which means that all intermediate results need
to be uncomputed. This is due to the fact that quantum
circuits are run on a superposition of different inputs (quantum
parallelism), and measuring and resetting garbage bits can
collapse the quantum state that encodes the data. Fig. 1 shows a
reversible circuit in which the intermediate state is uncomputed
by repeating a single-target gate.

D. Quantum circuits
Quantum circuits describe a sequence of operations,

represented by quantum gates. In fault-tolerant quantum
computing, we consider the Clifford+T universal library which
consists of the CNOT gate, the Hadamard gate, abbreviated
H , as well as the T gate, and its inverse T †. The T gate is
sufficiently expensive that it is customary to neglect all other
gates when costing a quantum algorithm. The CNOT gate is a
2-qubit gate which inverts its target if the control qubit is in the
one state. Classically, it would correspond to a single-control
Toffoli gate. A CNOT gate with zero controls is an X gate. For
more details on quantum gates, we refer the reader to [15].

Automatic quantum compilation requires quantum
implementations of the reversible gates. The 2-control Toffoli
gate has a Clifford+T implementation that requires 7 T
gates [7], which is optimum [8], [16]:
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When the Toffoli gate is computed on a qubit initialized to |0〉,
it can be implemented using 4 T gates, with a T -depth of 2,
and without requiring any additional qubit [17], [18]:
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where HY = SH and |T 〉 = TH|0〉. Besides, when the
result of the Toffoli is uncomputed, this can be performed
without the use of any T gate, exploiting measurement-based
uncomputation, as shown:
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Several works from the literature describe how to map larger
multiple-control Toffoli gates into Clifford+T gates (see,
e.g., [7], [8], [19], [20]). Among them, a method proposed by
Barenco et al. [21] allows us, provided an additional qubit,
to map any multiple-control Toffoli gate into a sequence of
2-control Toffoli gates, which can be implemented using the
optimum circuits in (1) and (2).

E. Spectral operations and classification

We define the five operations that are used to partition the
set of all n-variable Boolean functions into equivalence classes.

Definition 4 (Spectral invariant operations [22]):

1) Swapping two variables (f
xi↔xj−−−−→ g).

2) Complementing a variable (f x̄i−→ g).
3) Complementing the function (f ¬−→ g).
4) Translational operation (f

xi⊕xj−−−−→ g). It replaces one
input xi with xi ⊕ xj .

5) Disjoint translational operation (f ⊕xi−−→ g). It is obtained
by XOR-ing f with an input xi .

These operations partition all n-variable Boolean functions
into equivalence classes by means of the following equivalence
relation.

Definition 5 (Spectral equivalence [23]): Two n-variable
Boolean functions f and g are spectral-equivalent, if there
exist operations o1, . . . , ok (from Definition 4) such that:

f
o1−→ · · · ok−→ g.

Using this equivalence relation, the set of all n-variable
Boolean functions for n = 1, 2, 3, 4, 5, 6 collapses into just
1, 2, 3, 8, 48, 150 357 equivalence classes, respectively [24],
[25]. We refer the reader to the literature (e.g., [26]–[28]),
for further information on spectral classification techniques.

III. SPECTRAL EQUIVALENCE IN QUANTUM COMPILATION

In this section, we explain how our database can be used to
compile any Boolean function, by only adding Clifford gates.

Given two Boolean functions f and f ′ such that f o−→ f ′

where o is a spectral operation, the optimal T -count (T -depth)
for a single-target gate controlled by f ′ must equal the optimal
T -count (T -depth) for a single-target gate controlled by f . The
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Fig. 3. Synthesized reversible circuit for the function f , obtained performing all
the spectral operation to retrieve f from the optimal implementation available
in the database fr (#0x0888)

reason is that the five spectral operations can be implemented
only using X and CNOT gates.

Example 2: Assume we want to map
Tf ({x1, x2, x3, x4}, x5) with f = #

acab. Knowing
that f ∈ [#0888]. Thus let fr = #

0888 be the database entry
for this class. The spectral canonization algorithm in [22] finds
the operation sequences to transform f and fr in a canonical
representative function of the equivalent class (#8880).
Respectively, o1 = ⊕x1, o2 = x1 ↔ x3, o3 = x2 ⊕ x3, o4 =
x2 ⊕ x4, o5 = x̄1, o6 = x̄2, o7 = x̄3 and o′1 = x̄3, o

′
2 = x̄4.

We obtain a circuit as illustrated in Fig. 3. First the operations
o′1, o

′
2 are applied to transform fr → #

8880 then o7, . . . , o1

to transform #
8880→ f .

The database can be used in combination with
decomposition-based compilation techniques, as the look-up
table (LUT) based method proposed in [10]. This method
takes a logic network with an arbitrary number of inputs and
decomposes it in sub-networks with maximum k inputs, using
k-LUT-based decomposition. The algorithm can be extended
to fetch implementations for each sub-network from the
proposed database. As a consequence, any improvement in the
database would positively affect the result of the compilation.

IV. ALGORITHMS FOR THE SYNTHESIS OF SINGLE-TARGET
GATES

This section presents three different compilation methods.
Each one has been developed to minimize a different cost
function for fault-tolerant quantum computing: the T -count,
the T -depth, and the number of qubits.

A. An XAG-based algorithm to optimize T -count

The algorithm that we employ to generate circuits with
minimal T -count is a constructive hierarchical method based
on Xor-And-inverter Graphs (XAGs) [29]. This compilation
algorithm is capable of generating a quantum circuit using
O(N) qubits and O(N) gates, where N is the size of the graph.
The method guarantees an upper bound on the T -count, which
depends on the multiplicative complexity c̃ of the Boolean
function representation. This is the number of AND nodes
in the network. In particular, the T -count is at most equal
to 4 × c̃. The algorithm takes advantage of the low T-count
implementation of the AND function proposed by [17], [18],
and shown in (2), (3).

B. An XAG-based algorithm to optimize T-depth

We propose a hierarchical constructive method that aims to
minimize the circuit T -depth and uses XAGs as inputs. We

exploit an AND gate implementation with T -depth = 1, which
combines the AND circuit from [18] and the T -depth one
Toffoli gate implementation in [19]. The circuit requires one
extra qubit with respect to the implementation in (2):
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where |+〉 = H|0〉.
Given an XAG with d levels containing at least one AND

node, our algorithm would generate circuits with T -depth equal
to d. As a consequence, depth optimization may be applied to
minimize the resulting T -depth. Our synthesis method is based
on the fact that each AND node is driven by two multi-input
parity functions, which can be computed in-place using CNOT
gates. It proceeds level by level and in topological order, and:

1) finds the parity functions that are input to AND nodes;
2) computes the parity functions in-place using CNOT gates;
3) if the function is input to more AND nodes, uses a CNOT

to copy it on a new qubit initialized to |0〉;
4) implements inversions using X gates;
5) implements all AND nodes in the level using (4).

By copying some of the qubits, we enable parallel computation
of all the AND nodes in one level.

C. An ESOP-based algorithm to optimize the number of qubits

To generate the database entries optimized for the number
of qubits, we select an algorithm that generates a Toffoli
network without adding any additional line. The algorithm
builds a single-target gate controlled by the given Boolean
function. Then, it performs the ESOP-based decomposition of
the single-target gate into a cascade of Toffoli gates. Finally,
each multiple-control Toffoli gate is mapped into 2-control
Toffoli using Barenco decomposition [21] and in Clifford+T
using the methods described in Section II-D. The algorithm
for ESOP synthesis that we apply is a portfolio method
proposed in [30]. It selects the best ESOP-decomposition
strategy between Positive Polarity Reed Muller (PPRM) [31],
Pseudo-Kronecker Reed Muller (PKRM) [32], and the exact
method proposed in the same publication.

V. DATABASE OF OPTIMAL QUANTUM CIRCUITS

We run the three compilation algorithms described in
Section IV on all the spectral-equivalent class representatives
of 4- and 5-input Boolean functions. Results are presented in
Table I. It is clear that each algorithm succeeds in optimizing
its respective cost function. To synthesize the all benchmark,
the ESOP-based method uses a total of 345 qubits, against
475 and 625 qubits required by the other methods. The
XAG method that targets T -count optimization achieves a
total of 712 T gates, against the 10913 produced by the
ESOP-based method. Besides, the XAG-based method for
T -depth optimization achieves the same T count as the previous
method (712) but reduces the T -depth from 220 to 143, paying
the price of additional Cliffords and qubits. Note that, when
measurement-based uncomputation is used, the number of



TABLE I

optimal num. of qubits optimal T -count optimal T -depth

truth table cliffords qubits T-count T-depth cliffords qubits T-count T-depth cliffords qubits T-count T-depth

#
8000 120 6 70 37 51 7 12 4 81 11 12 3

#
8080 48 5 28 19 23 6 8 3 29 8 8 2

#
0888 132 6 77 42 47 7 12 4 85 10 12 3

#
8888 12 5 7 5 9 5 4 2 17 7 4 1

#
7080 60 5 35 24 25 6 8 3 45 9 8 2

#
7880 182 6 105 55 70 8 12 4 89 11 12 3

#
7888 24 5 14 9 22 7 8 2 35 8 8 1

#
6ac06ac0 24 6 14 9 26 8 8 2 31 9 8 1

#
6ac8e000 720 7 413 210 125 10 16 5 162 15 16 2

#
80008000 120 6 70 37 43 8 12 4 85 12 12 3

#
80808080 48 6 28 19 19 7 8 3 33 9 8 2

#
88808000 582 7 336 159 72 9 12 4 99 11 12 3

#
88808080 314 7 182 92 61 9 16 4 77 12 16 3

#
88808880 170 6 98 50 65 8 12 4 97 11 12 3

#
88888888 12 6 7 5 9 6 4 2 13 8 4 1

#
a8808000 848 7 490 232 110 10 16 5 155 13 16 3

#
a8808080 292 6 168 88 53 8 12 4 85 11 12 3

#
a8808880 436 7 252 123 78 10 16 5 119 12 16 3

#
a880a880 148 6 84 47 29 7 8 3 49 10 8 2

#
a8888880 548 7 315 160 57 8 12 4 89 11 12 3

#
a888a080 258 6 147 74 59 8 12 4 85 11 12 3

#
a8e0c800 560 7 322 156 110 10 16 5 135 12 16 3

#
aa808080 360 7 210 105 57 9 16 4 73 12 16 3

#
b884a880 686 7 392 188 82 9 12 4 101 11 12 3

#
bc88a080 709 7 399 192 104 10 16 5 137 13 16 3

#
e0a8c880 240 6 140 75 86 10 16 5 107 13 16 2

#
e1808880 372 6 217 117 86 9 12 4 113 12 12 3

#
e8808000 798 6 448 226 69 8 12 4 105 12 12 3

#
e8808002 721 7 420 222 92 10 16 5 113 12 16 3

#
e8808080 484 7 280 142 98 10 16 4 127 13 16 3

#
e8808880 410 6 238 120 82 9 12 4 113 12 12 3

#
e880a880 414 7 238 120 92 10 16 5 125 12 16 3

#
e880e880 250 6 140 79 98 9 12 4 125 12 12 3

#
e8818880 974 7 560 259 84 10 16 4 101 12 16 3

#
e881e880 504 7 287 143 121 10 16 5 154 13 16 3

#
e8888880 526 7 301 151 103 10 16 5 140 13 16 3

#
e8a08880 524 7 301 146 118 10 16 5 143 13 16 3

#
e8c0a880 268 6 147 79 86 10 16 5 123 12 16 3

#
e9a0c088 468 7 266 134 122 10 16 5 167 13 16 3

#
e9c0a880 540 7 308 152 124 10 16 5 153 13 16 3

#
ea808080 216 6 126 70 56 9 12 3 75 12 12 2

#
eca08880 414 6 238 120 113 10 16 5 150 13 16 3

#
f8808880 528 7 308 155 80 10 16 4 117 13 16 3

#
f8888880 594 7 343 168 78 9 12 4 105 12 12 3

#
fca08880 578 7 329 155 122 10 16 5 155 13 16 3

#
2888a000 96 6 56 33 45 8 12 3 65 11 12 2

#
6ac8e240 198 6 112 59 74 10 16 5 111 12 16 3

#
78888888 60 6 35 19 56 9 12 4 75 13 12 2

#
80000000 264 7 154 78 43 9 16 4 57 11 16 3

#
80808000 316 7 182 91 59 9 16 4 73 11 16 3

#
88888880 282 7 161 82 58 10 16 4 75 11 16 3

#
e9808080 204 6 119 66 57 8 12 4 101 13 12 2

#
eac86240 148 6 84 47 44 9 12 4 67 11 12 3

#
ee84a060 198 6 112 61 90 10 16 5 119 15 16 2

Total 19002 345 10913 5506 3842 475 712 220 5260 625 712 143

Clifford gates varies according to the probabilistic outcomes
of the measurements.

VI. CONCLUSIONS

We present a database containing automatically generated
quantum circuits for all Boolean functions up to 5 inputs. We
consider the specifications of fault-tolerant quantum computing:
low T -count, low T -depth, and low number of qubits. To
generate the database, we combine optimal reversible gates
implementations with compilation methods in the literature.

Furthermore, we propose a new XAG-based synthesis strategy
for T -depth optimization. The database can be used to
compile larger Boolean functions if combined with hierarchical
methods. In this direction, we are working on extending
the database to 6-input functions. The database is available
at https://github.com/gmeuli/stg-benchmark and can serve as
benchmark for new synthesis and optimization algorithms.
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