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Roundtable

Roundtable Panel Discussion at DAC 
2019: Evolutionary Computing or 
Heuristic Forever?

As demands for computing have been con-
tinuously increasing, various solutions have 
been proposed. Some approaches deal 
with improving algorithms and software 
programs, mainly through the tuning of 
advanced heuristics and learning methods. 
Some other tackle the problem by provid-
ing specialized hardware to enhance com-
putation. Other revolutionary approaches, 
such as memcomputing and quantum com-
puting, explore new paradigms in compu-
tation to beat the barrier of computational 
 complexity.

A highly attended plenary panel at the 
2019 Design Automation Conference (DAC) 
in Las Vegas, NV, USA, with the provocative 
title “Evolutionary Computing or Heuristic 
Forever?” spurred a lively discussion that 
is reported in this Roundtable. It is moder-
ated by the panel organizer and moderator 
 Giovanni De Micheli, EPFL, Switzerland. 
Panelists include Antun Domic, former 
CTO and senior VP at Synopsys; Jason 
Cong,  University of California Los Angeles 
(UCLA); Massimiliano Di Ventra, University 
of  California San Diego (UCSD); and Martin 
Roettler, Microsoft Research. 

Giovanni De Micheli: In 1948, while computers 
were in their infancy, Arthur Clarke wrote a piece for 
the BBC called the Sentinel. It was a forward- looking 
piece and was later used as the subject of the movie, 
2001 A Space Odyssey in 1968. The movie actually 
featured an eye that could look at you and could 
implement AI at its best. It could understand the 
moving of the mouth, understand the speech, the 
will, control humans, and even kill humans.

Giovanni De Micheli: Fortunately, this com-
puter could be disabled by just unscrewing the 
memory parts and eventually the computer rec-
ognized that it was designed in Urbana (home of 
the University of Illinois). Maybe the problem was 
that the original designers who were too smart for 
the time! All these pose some questions about how 
computing is evolving today and this brings us to the 
issues that we would like to discuss today. In particu-
lar, computation in EDA (as an example in CS) is 
limited by complexity and we look for means to go 
beyond  current limitations.

Giovanni De Micheli: Even simple problems 
like graph covering that are very common in EDA 
belong to complexity classes. For small instances, 
exact solutions can be provided by satisfiability (SAT) 
solvers. But when the size of the problem is large 
enough, solutions cannot be computed because of 
the exponential growth of computational needs. At 
the same time, our appetite for better results is large. 
That’s called quality of results (QoR) and companies 
actually do spend a lot of money to achieve tools 
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using super high precision in static timing analysis, 
but in other places, integer operations are all that 
you need, and obviously, Nanni mentioned the 
many NP-complete problems.

Antun Domic: If you look at history, algorithms 
have been key to the progress of EDA, and not only 
theoretically but also for the commercial tools. One 
can point to many cases but I mention only one: 
cell placement went from using simulated anneal-
ing to quadratic minimization algorithms in the 
early 1990s. 

Antun Domic: So, the influence of research on 
the EDA industry was very direct and one can pick 
hundreds of cases. Another case you could see is 
when research enabled completely new applica-
tions. The first incarnation of formal verification was 
really limited to equivalence checking, I’m pointing 
here to a very famous paper of Randy Bryant. A cou-
ple of years later, people in Digital Equipment, IBM, 
and other places that were fiddling with these types 
of techniques deployed the first equivalence check-
ers and the commercial industry soon followed. One 
can choose other examples such as delay calcula-
tion, property checks, RC reduction schemes, and so 
on. So, algorithms have been very important to the 
progress. The current CPU story, on the other hand, 
has not been very positive for EDA because the sin-
gle processor speed has not improved very much. 
You get many more cores, and you try to parallelize 
and do multithreading. I was happy to see that Intel 
finally is announcing a CPU with a 5 GHz clock fre-
quency. It took a long time for them to get there and 
we’ll see how they do. 

Antun Domic: The problem is that there are 
many algorithms in EDA that benefit very little from 
parallelization. A second problem is that this paral-
lelization and threading has been extremely costly 
for the EDA industry because you have to go all the 
way down to the data structures of the programs to 
be able to really take advantage of these capabilities 
but we’ll see. Also, the tools have gotten more com-
plex, a place and route tool today has over a thou-
sand commands. The internal flows inside a tool go 
through many algorithms, and they’re very difficult 
to control.

Antun Domic: An approach that has been men-
tioned is ML: why don’t we train the tool. You could 
use specialized chips that now are coming out but 
there are problems. You need a large set of examples 
for training, as the scope of a problem you address 

that can give you better results at the price of longer 
computational time. But at present, we know that 
very few problems can be solved exactly in the sizes 
that are relevant for the industry, and we rely mainly 
on heuristics.

Giovanni De Micheli: So, what’s the future as 
problems get more complex and as the size of the 
problem gets larger? We do need some change of 
paradigms. One alternative is to have better heuris-
tics. I do see machine learning (ML) as part of this 
because ML works fine on many problems, but we 
don’t know why it works. So, in my opinion, ML is 
a heuristic like any other. Alternatively, we could 
extend our computers by adding computational 
accelerators or we could actually change the 
computation paradigm, like going from digital to 
mixed digital analog computing and/or relying on 
converging dynamical system to solve some prob-
lems. Going further, we need to consider quantum 
computing that allows us to exploit parallelism on 
a different computational fabric that intrinsically 
has parallelism. 

Giovanni De Micheli: I will start now by leaving 
the mike to the first speaker Antun Domic. Antun, 
please come to the podium.

Antun Domic: Thanks, Nanni. Let me give a 
few comments with respect to this. I’m looking at 
this area from the very parochial perspective of the 
EDA industry, meaning software tools that get used 
to design ICs. One of the problems with EDA is the 
very wide spectrum of applications in which it gets 
used, and the success in using specialized hardware 
in EDA has been quite limited. I can point out two 
exceptions: the emulators that are significant in the 
industry today. These are based on special proces-
sors or FPGA boards.

Antun Domic: The second was a company 
called Brion that got acquired by ASML. They did 
a special machine to process polygons’ databases. 
One can look for other cases, but the truth is suc-
cess has been very limited. There were attempts to 
put EDA software on GPUs, and while you could do 
it, the payoff was very, very limited. Well, some of 
the reasons for this was that the problems deal with 
a range of very small to very large data. A SPICE sim-
ulator for an analog circuit could be dealing with a 
few hundred transistors. But if you are doing a DRC 
for the large chip, you have hundreds of billions of 
 polygons, so you have a wide spectrum. The oper-
ations that you do are very different. You may be 
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is wide. Why some tuning done for designs on a 28 nm 
process would work at 7 nm is very unclear in some 
areas. So for me, full flow training is not realistic now. 
But if you target narrow areas, you could be very suc-
cessful in replacing internal algorithms. Advanced 
chips are a very small percentage of designs. Less 
than 3% of the designs are in 10 nm or below. So, you 
don’t have huge data, you have the confidentiality 
problems, and the technology keeps changing. So, 
why learning for some technology applies equally 
well for others is a question there. Now you can look 
at totally new computer architectures.

Antun Domic: You have things like in-memory 
computing, super low-temperature electronics, and 
quantum computing. Of course, success would 
have to be based on being able to cover a wide 
range of problems as opposed to just one algo-
rithm. The second part is that the IO of any special-
ized processor, compared to the more traditional 
processors, will be very important, but also it would 
force us to reconsider algorithms. An algorithm that 
was pretty good on a standard computer may not be 
at all appropriate for execution on a quantum-type 
machine. The IO problem is very serious, and also 
the memory access, which is another problem too 
to look at.

Antun Domic: My comments would finish with, 
number one, algorithmic development that contin-
ues to be very badly needed as traditional computers 
will do the bulk of the work of the over the next, five 
years, let’s say. Heuristics keep deteriorating as the 
problems get larger. So, basic research, particularly 
with parallelization, would be very important. Also, if 
you could have changes in algorithms to go to, let’s 
say quantum computer, which also would require 
research. The successful applicability of ML and big 
data type techniques, in my opinion, can be achieved 
if you correctly target the narrow parts of flows so 
that you would get significant improvements there. 
I think a full flow for complete chip design is not a 
very feasible thing at this moment. New architectures 
could be of great help. As I say, if you had quantum 
or in-memory computing or similar things, the key 
part for the commercial EDA programs would be 
how wide a problem you can attack, as opposed to 
narrow areas such as having just a very fast covering 
algorithm for logic minimization. 

Antun Domic: If you’re looking at running a cov-
ering algorithm a million times, reducing the time of 
the covering is not going to help you that greatly, but 

maybe other areas could be different. So, for me, the 
true key thing would be wideness of application and 
solving the IO-type problems. 

Giovanni De Micheli: Thank you Antun. The 
next speaker will be Jason

Jason Cong: Thank you Nanni for organizing 
the session. Unfortunately, the topic of my talk was 
dismissed by Antun in the very first bullet. He says, 
“There’s no customization needed for EDA tools.” 
So, let me try to make a case, try to salvage some of 
these points. The reason we actually need custom-
ization is that we are toward the end of the more 
Moore’s Law scaling, and the CPU performance is 
not getting much better, certainly not doubling every 
1–2 years. So, what other ways to improve that? But 
we still have a lot more transistors. Therefore, we 
think these transistors can be used to do specializa-
tion. Someone may ask, “What about the multicore?” 
You can do that, but if you do a calculation, even 
with multicore, very soon you hit the power density 
limit. You can fit a thousand cores, but you cannot 
turn them out at the same time, that’s the concept of 
dark silicon, unfortunately.

Jason Cong: So, we argue that it’s actually the 
right time to put in a lot of specialization to maxi-
mize the performance. Maybe they don’t have to be 
totally dedicated, they can be programmable. So 
what’s the implication? So, we should revisit some 
of these old techniques that achieved 100× – 1000× 
improvements through specialization. Let’s think 
about the domain of EDA, circuit emulation is defi-
nitely a good example. We can speed up the circuit 
simulation by a factor of 100,000 through hardware 
emulation. That is somewhere around a half-billion 
to a billion dollars commercial market out there. 
People buy these expensive emulation machines. 
What else is possible? This is also an example Antun 
mentioned: There was some work over 10 years ago 
to speed up lithography simulation, which my group 
was involved.

Jason Cong: In deep submicron technologies 
what you see is not what you get. You have to do an 
inverse transformation to figure out the right mask 
to have. You have to do this optical imaging process 
which is much computationally expensive. So, we 
started with the Hopkins equation and generated an 
FPGA-based accelerator through our high-level syn-
thesis (HLS) tool, we could actually get 15× speed 
up and also a 100× energy efficiency improvement. 
It sounds like a good idea for an EDA startup, but 
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it’s a bit too late if you start now. A company called 
Brion Technology provided a commercial solution 
based on FPGA acceleration doing exactly this 
and it got acquired by ASML about 10 years ago 
for $270 million. But we don’t have to be limited to 
EDA. In fact, we have a unique opportunity to ena-
ble and allow more people to actually use hardware 
acceleration techniques to improve performance 
and energy efficiency in many domains. Let me tell 
you another example we did that came out of an 
Expedition in Computing (funded by NSF) project 
that we had 10 years ago that was working within the 
 medical domain.

Jason Cong: One thing I learned from that 
project is not to do a computed tomography (CT) 
scan if you can help it because a CT scan takes 
about 2000 X-rays of you, and that’s very close to 
your lifetime limit for radiation exposure. You may 
worry about the radio exposure going through air-
port security. This is a million times worse. So, we 
come up with the idea that maybe we can reduce 
the CT radio exposure using the concept called the 
compressive sensing to do a low-dose CT scan. It’s 
a new and exciting algorithm. Unfortunately, then 
the computations time becomes very long, it’s like 
18 hours. You don’t want to wait that long for the 
result. So, this is where we come in with the hard-
ware acceleration. We use a system that has four 
FPGAs on Intel’s front-side bus (FSB) together with 
a CPU as our customized architecture.

Jason Cong: We did bring it down from 
18 hours to 6 minutes! This is a good example to 
show you there are a lot of acceleration opportu-
nities by actually thinking about algorithm and 
hardware codesign to make algorithms such as 
compressive sensing practical. Now the good news 
is that it’s much easier to do this customization. 
You don’t even have to buy an FPGA card and put 
it into your servers; you just go to Amazon AWS 
which offers the FPGAs for acceleration.

Jason Cong: Now, I use it for my graduate class 
and undergraduate class: The students have both 
GPUs and FPGAs, and you pay a dollar and half for 
an hour to use the FPGA roughly. You use it (online) 
as long as you want or as short as you want. The 
challenge, however, is how to program such a beast? 
I want to show you that you don’t have to always 
come in with an RTL design. Some of you may 
remember that we presented a number of papers at 
this conference on our HLS work in the last decade.

Jason Cong: Our research led to a spinoff 
company called Auto ESL, which is now part of the 
Xilinx, and the HLS tool is called the Vivado HLS. 
You can start writing C or C+ programs we can 
compile into Xilinx FPGAs. This is also on Ama-
zon now and you can go to use that. This improves 
the designer productivity significantly. If you do a 
Google scholar search for example, you’ll see there 
are 3000 plus papers citing that the Vivado HLS. It’s 
been widely accepted. That’s just academic work. 
There are probably equal or more industry usage 
which didn’t show up as publications. However, I 
have to admit that even though we are the original 
inventor, or developer of Vivado HLS, it’s not that 
easy to use. You have to add in a lot of pragmas to 
do unrolling, data tiling, pipelining, and so on, to 
get good performance. 

Jason Cong: So, we have been working on fur-
ther improvement of FPGA programmability in the 
past five years. There’s another spinoff out of our 
research program called Falcon Computing. It pro-
vides the Merlin compiler which is very easy to use. 
It supports OpenMP like programming style. If you 
can program for multicores, you should be able to 
program for FPGAs. Experimental results show 35× 
performance gain and 5× to 10× productivity gain. In 
the current research, we want to make it even easier. 
You don’t even have to start from C, you can start 
from Caffe, Tensorflow, Spark, Halide, which are all 
called the domain specific languages (DSLs), for ML, 
image processing, etc. We have an efficient backend 
to compile these DSLs into optimized microarchi-
tectures, such as systolic arrays, stencils, and a new 
class of architecture called the CPPs stands for com-
postable parallel pipelines.

Jason Cong: We also use ML techniques to search 
to get the best possible result. Our goal is to democra-
tize customized computing for FPGAs and accelera-
tor designs. For the EDA community, this is an excit-
ing time to think about what else we can accelerate 
beyond circuit emulation for logic verification. Nanni 
mentioned SAT. I think it’s a good idea because if you 
can do the SAT, it has several applications, such as 
various kinds of graph algorithms. They are all funda-
mental to EDA. By offering automated compilation 
flow for customizable computing, we can enable 
many more applications domain experts to use hard-
ware acceleration for their application domains.

Jason Cong: We should feel very proud of what 
the EDA industry has done. When I was an intern 
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at National Semiconductor, this is back in the late 
1980s. Next to me, was this row of layout designers 
doing channel routing, global routing, who are now 
all replaced by automated tools. Then, later on, I 
spent some time at Intel as a consultant. You can see 
they have a room for a circuit logic synthesis designer 
and now it’s all probably replaced by Synopsys tools. 
So, what we are doing is actually AI, right? 

Jason Cong: The funny part is that once we 
completely automate some highly intelligent human 
tasks, with comparable quality as human designers, 
it is no longer called AI. Our field was given a name 
called design automation. They make a big fuss if 
one can compete with a chess player or play Go. But 
we can beat the circuit designer and logic designers. 
Somehow it’s not considered AI. Here is a story. I’m 
on the department hiring committee. When our AI 
faculty proposed a few names for consideration, I 
said, “We just hired several ML faculty in the past two 
years.” They said, “Oh no, no Jason, these are not ML 
faculty, these are AI Faculty.” I said, “Well, is there 
a big difference between AI and the ML?” They say, 
“Yeah, absolutely.” So, I went back to search, what’s 
the difference between AI and ML? The most inter-
esting answer I find out says, “If some code is written 
in Python, most likely it’s ML. If it’s written in Power-
Point, that’s AI.” Unfortunately, we implement on our 
EDA tools in C or maybe assembly, so we are way 
beyond AI. Of course, that’s intended to be a joke. 

Giovanni De Micheli: Thank you very much 
Jason. I think the HAL computer was AI, the one of 
movie “a space odyssey.” So, let me switch to the 
third speaker, Massimiliano Di Ventra, from San 
Diego, University of California at San Diego. 

Massimiliano Di Ventra: Thank you Nanni, for 
inviting me to this panel and thank you all for being 
here. So, I’ll be talking about a new computing par-
adigm, we call mem (memory) computing. In fact, 
I will be talking about the digital version of memcom-
puting, which is scalable. Memcomputing stands for 
computing within memory, and by memory, we don’t 
mean just storage, but generally time nonlocality. 
The ability of a system to actually remember its past.

Massimiliano Di Ventra: If you’re interested, 
I urge you to look at the literature on memcomput-
ing. I also cofounded the company MemComputing 
Incorporated which is releasing the software as a 
service to solve the problems that I’ll show you in 
a moment. These machines are, as I said digital in 
the sense that they map integers into integers. This is 

fundamental to actually have scalable machines, 
but once you know that input and output are digital, 
there is nothing that prevents us from using anything 
in between.

Massimiliano Di Ventra: At the moment, we 
solve problems using algorithms, but we would like 
to use physics to go from input to output. However, 
unlike quantum computing that uses certain quan-
tum features we want to use nonquantum systems, 
and ideally, we would like to have machines that 
can be fabricated with present technology. That’s 
what I will show you.

Massimiliano Di Ventra: So, as I said in between 
the input and output we will have a type of physics 
that uses dynamical systems with memory. Follow-
ing these ideas, we came up with a concept, we call 
universal memcomputing machines, which apart 
from an input and an output, and a control unit that 
tells the machine what type of program to execute, 
they perform computation in memory by what we 
call mem-processors. Dynamical systems with mem-
ory execute the processing of information and the 
information is stored at the end of the computation 
by those dynamical systems.

Massimiliano Di Ventra: So, the information 
never gets out of the memprocessors. This is not just 
mathematics but can, in fact, be built in practice, 
either with memory elements or even in CMOS that 
emulates memory elements. Here is an example of 
an AND-logic gate, and we use electrical circuits to 
represent it. For example, if this terminal is a logic 
one and this is a logic zero, then it is not satisfying 
the logical function of an AND gate. So, this termi-
nal reads the other two terminals and realizes it’s in 
a wrong configuration. It will inject current so as to 
satisfy the logical proposition of the gate. 

Massimiliano Di Ventra: So, these gates, 
which we call self-organizing logic gates, are not 
like  standard gates because they can accept the sig-
nals from both the standard input and the standard 
output. They’re able to self-organize to the correct 
logical proposition, irrespective of where the signal 
comes in. This is fundamental because we essen-
tially transform logic into physics so that we can 
invert literally Boolean problems or Algebraic prob-
lems as we have done those as well. These gates 
can be as I said realized: in practice even within 
CMOS. So, you don’t need special materials. Here is 
an example of a problem we actually tackled which 
is a MaxSAT problem where you have a Boolean 
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formula with clauses related to each other by log-
ical ANDs. The logical circuit is then a collection 
of logical ORs related to each other, and what we 
do is essentially let this system self-organize to the 
correct solution.

Massimiliano Di Ventra: Here is an example 
that actually was not done by us, but by the super-
computer center on a single core using Matlab code. 
They chose to compare our solver with two of the 
winners of the 2016 MaxSAT competition. This is the 
time versus the number of variables. You can see the 
standard solvers, state-of-the-art solvers, following an 
exponential curve, but our solver scales linearly and 
if you extrapolated the standard solvers, it would 
take more than the age of the universe for a prob-
lem with 2 million variables while our solver did it 
on a single core in 2 hours. In fact, I don’t have time 
to show you all the other problems that we tackled, 
but we have now a lot of examples, and we tackled 
several NP-hard problems from MaxSAT to Max-Cut, 
etcetera, and compared with the winners of the Max-
SAT competition and we are always orders of mag-
nitude better than standard algorithms. By the way, 
we are simply numerically solving the differential 
equations that represent these machines.

Massimiliano Di Ventra: We are literally using 
standard computers to simulate differential equa-
tions and look for the steady states of these equa-
tions, which are the solutions. Then, we extended 
this to integer linear programming, which is alge-
braic, it’s not Boolean, and we succeeded in solv-
ing in 60 seconds, a problem that was unsolved for 
about 10 years. This was actually certified by the 
computer scientists that maintain the MIPLIB library 
in Berlin. In fact, if you go on their website, it says the 
first feasible solution was found by memcomputing. 
Then, we looked at accelerating deep learning and 
we do better in software unsupervised learning than 
D-Wave in hardware and better than the state of the 
art in supervised learning. We applied memcomput-
ing also to Spin Glasses where we compared with the 
standard algorithms and our scales again polynomi-
ally, and the company actually is engaged with other 
companies to tackle several other problems.

Massimiliano Di Ventra: For example, here 
you see the fifth Airbus loading problem, which 
is one of the five problems that Airbus put out for 
quantum computing when it is available. The fifth 
one is essentially an integer linear programming 
problem. The person who actually did it could solve 

it in  subquadratic time. Now we have tackled over 
100,000 instances of very tough problems, in several 
classes algebraic or Boolean. So let me conclude. 
What I showed is that there is a new class of machines 
we call universal memcomputing machines that are 
able to compute complex problems efficiently.

Massimiliano Di Ventra: These are physics-based 
machines and they’re nonquantum. So, you have two 
possibilities to implement them. You can either do 
it in hardware and as I said you don’t need special 
materials. Of course, if you have, for example, resis-
tive memories that you can integrate with transistors, 
which would be ideal, but you actually can emulate 
time nonlocality (memory) with CMOS. Unlike quan-
tum computing that needs to be built in hardware, 
you cannot simulate a quantum computer on a stand-
ard computer efficiently.

Massimiliano Di Ventra: Our machines are 
nonquantum and so the equations of motion of 
these machines are simply coupled ordinary dif-
ferential equations, and we can actually simulate 
them efficiently in software. I showed you several 
examples. If you want to do real-time computing, of 
course, you need the hardware. You cannot do it 
offline. But, in general, you can solve many of these 
problems offline. Besides these, machines are very 
robust against noise and disorder, and we actually 
showed that using topology.

Giovanni De Micheli: Thank you Max, and the 
fourth speaker, last but not least, is Martin Roettler 
from Microsoft and he’s going to talk about quantum 
 computing. 

Martin Roettler: Thank you very much Nanni 
and thanks for having me on this panel. Let me just 
begin by saying that this is a very exciting time for 
quantum computing and that we are at a juncture 
where these technologies are emerging and we are 
beginning to see actual devices. Yesterday, there 
was a great talk in one of the breakout sessions by 
Leon Stok who reported on the IBM device. So, you 
can actually explore these devices already now. 
Here I’m going to take a slightly different twist on 
the problem. I’m going to show you what a quan-
tum computer is potentially good for and then I also 
want to give you a glimpse of the impacts of EDA on 
quantum computing, hopefully giving you an idea of 
what kind of problems we can tackle using EDA for 
the problem of compiling quantum programs. 

Martin Roettler: Let me begin by briefly men-
tioning the type of problems for which a quantum 
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computer is good. This is by no means an exclusive 
list, but those are the problems that might have a 
business value. The list includes things like cryptog-
raphy, where historically those were the first appli-
cations for quantum computers and they still are. 
It’s a very active research field, like what impacts a 
quantum computer has on cryptography. But from 
the business point of view, that’s probably not a big 
market where we can sell that or offer services to 
many customers.

Martin Roettler: So, the applications are more 
likely to be in areas like computational chem-
istry, questions around how to design chemical 
reactions, how to design catalysts that have high 
efficiency and high yields. Those typically lead 
to hard computational problems. Computational 
chemist tries to solve these problems but the com-
putations suffer from either being fast but inaccu-
rate or if the methods are accurate, then they scale 
very poorly with the dimension of the problem, 
which is exponential.

Martin Roettler: If you have higher orbitals in 
your molecules, the methods are very, very slow. In 
material science, similarly, you have problems that 
could be tackled by a quantum computer. A pro-
totypical problem is the Hubbard model which is 
a representative model problem and a hard prob-
lem for classical simulations. Sort of our guinea pig 
or our benchmark problem, what we can solve in 
principle with the quantum computer. Then the big 
promise is that in areas such as ML, quantum com-
puters can help because they have amazing capa-
bilities for specific tasks. It turns out that you can-
not map everything well to a quantum computer. 
Rather, the quantum computer is good for specific 
tasks. Research showed that quantum computers 
are good for finding periods of exponentially long 
functions. That’s amazing but that doesn’t seem to 
have a lot of real-world applications. What’s more 
interesting is the ability to simulate the process 
that’s described by a Hamiltonian and the ability to 
amplify amplitudes.

Martin Roettler: Finally, you can also invert 
linear systems of equations exponentially faster 
than you can do on a classical machine. There are 
several caveats about that last application. It’s not 
as easy as saying, “Look here’s my linear equation 
please invert it.” You have to kind of carefully make 
sure that the problem needs to be well conditioned 
essentially, and you must have access to the matrix 

element of your transform. But if you have that then 
the quantum computer can give you an exponential 
speed up.

Martin Roettler: There is a big hope that will 
help in ML tasks. Okay, so briefly on the chemistry 
side, this slide is to just give you a flavor that even 
quantum algorithms, if they are truly inefficient, it 
will basically not help you. So, for computational 
chemistry, the typical approach is to map the prob-
lem to the Hamiltonian. This is a description of the 
electronic structure of a molecule. You can describe 
it in the so-called Born–Oppenheimer approximation. 
Then the chemist asks questions like what are the 
ground state energies of that molecule? What are 
the excited states energy energies of the molecule? 
Those are hard problems.

Martin Roettler: For classical machines, once 
the number of spin orbitals in your system goes 
beyond a hundred there’s absolutely no hope to get 
a very accurate estimate of the ground state energy. 
For a quantum computer, if you have an algorithm 
that scales poorly, the first algorithm that was found 
for the problem had a scaling of N to the 11th. It 
would still take billions of years to solve it even on a 
quantum computer and that’s not good.

Martin Roettler: There were many algorithmic 
improvements that finally brought it down to a range 
of a few minutes, and there were several scientific 
breakthroughs that got us there. It was by no means 
trivial to go from the simple method that’s based 
on “trotterization” to refined methods that cleverly 
reorder terms to get a cancelation. So, basically you 
order the terms so that you can peep-hole a lot of the 
terms away in the circuit end results. Classical simu-
lations don’t go very far, so you can maybe simulate 
up to like 30, 40 spin orbitals. For really interesting 
molecules such as a ferredoxin or nitrogenase—
nitrogenase is an enzyme used in nature to harvest 
nitrogen from the air—you actually need that. So, 
you need about a hundred spin orbitals at a mini-
mum to make a good chemistry model.

Martin Roettler: Briefly, let me mention the 
crypto side. At Microsoft, we analyze for instance 
what it really takes to tackle RSA on a quantum com-
puter. We wanted to map out the entire circuit and 
optimize it and, and see it in front of us, test it and test 
vectors through and we can do it for RSA. For Shor’s 
algorithm, we can basically test the entire circuit 
at scale as it is just classical logic, except two Had-
amard gates and a phase gate. Then, the rest of the 
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algorithm consists of 108 gates, which are all classi-
cally describable, namely the so-called Toffoli gates.

Martin Roettler: The beauty of that is strictly you 
can send in a classical test vector and send it to the 
network and get out a classical bit vector and you 
can check whether that’s the correct one. We did 
this for RSA and we did it for elliptic curve cryptogra-
phy, basically for the curves that are underlying most 
of the digital currencies. These are curves over large 
prime fields with 256 bit primes. For the estimates, 
we implemented the entire finite field arithmetic. It 
turns out you need about 2,300 logical qubits, which 
means error-corrected and really good qubits.

Martin Roettler: This was recently improved 
by the Google group. They showed that by further 
optimizations you can actually solve RSA 2048 with 
about 20 million noisy qubits. They claim they can 
do it under certain assumptions on the scaling and 
the clock speed. I’m not quite sure that you can really 
solve RSA 2048 in 8 hours, but there is definitely new 
thinking also around these crypto problems and it 
has a high impact on that field. These developments 
lead to a new kind of cryptography that’s emerging 
right now in the United States as an effort by NIST 
to benchmark this and there’s a heavy competition.

Martin Roettler: I think there’s still 60 contenders 
in the competition for the new standards for postquan-
tum cryptography. Other speedups are the already 
mentioned computational chemistry and linear alge-
bra problems. Also, some optimization problems can 
experience a speedup. Let me talk about the program-
ming side now. What I mentioned so far were abstract 
ideas of algorithms. The next step is to program these 
algorithms and to write code. To help with this, at 
Microsoft we develop a language called Q#. The aspi-
ration is to be high level and scalable. High level here 
means that as a programmer you don’t want to be 
bogged down with writing assembly code all the time.

Martin Roettler: When you design a new 
library, you probably want to work at a lower level 
and write optimized code and make sure your 
library is as efficient as possible. But when you then 
design new algorithms, you don’t really want to 
think about circuits and internals of libraries all the 
time. You want to think more in terms of “I want to 
have that operation whenever I want to perform a 
modular addition” or “I want to have a floating-point 
operation.” For those cases, we have a rich set of 
libraries already and Q# allows you to plug them 
together in new and creative ways. In addition to 

this, there is a framework that’s very similar to Visual 
Studio, and Visual Studio Code that allows you to 
get on-the-fly incremental type checking and helps 
you to develop unit tests.

Martin Roettler: There’s a lot of documenta-
tion available for Q# and it runs cross platform. That 
means, you can run Q# on NET core, which is open 
source, and you can run it on Mac or Linux as well. 
When it comes to new libraries, we look into what 
the actual domain-specific aspects are. What do 
we actually need? That is kind of the underpinning, 
but we also need chemistry libraries. That’s why we 
partnered up recently with a government lab called 
PNNL, Pacific Northwest National Labs. They have 
this flagship product called NWChem. It’s a chem-
istry software for modeling. There are many other 
chemistry packages out there. 

Martin Roettler: NWChem runs on all the lead-
ership machines, you can for instance run it on Sum-
mit and other HPC machines. We use NWChem to 
output a format that we can then read into our quan-
tum development kit which Q# is part of. There you 
can actually simulate a chemistry model. For this, 
you need an actual mapping of the chemistry prob-
lem to a quantum algorithm. Eventually, you can 
feed the knowledge about the quantum algorithm 
back and learn something about chemistry mode-
ling. That means you can in principle get a virtuous 
cycle. These complex workflows are examples of 
things you can do to program a quantum computer 
at scale. You can perform resource estimations, you 
can analyze the circuits, compute their depth and 
the critical path. And you can already today investi-
gate the memory footprint of various algorithms. This 
is important as there is typically a lot of choices of 
how to implement a given algorithm, even for the 
problem of mapping a chemistry problem even to a 
quantum computer. For this specific problem, there 
are already three or four different choices you can 
encode the problem at the top level.

Martin Roettler: But then you can pick different 
algorithms to simulate, and each algorithm has dis-
tant different instantiations typically of parameters 
inside. That is a big space to be explored. Today, you 
can already do this exploration at the resource level. 
You can count the number of qubits and the num-
ber of primitive gates. The so-called T-gates is a very 
important primitive gate. They are the basic fault- 
tolerant gate that you need to make a universal quan-
tum computer and they are expensive to realize. 
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Martin Roettler: Ironically, T-gates are not 
very expensive at the physical level as they are just 
a basic pulse applied to one of the qubits. But at 
the fault-tolerance level, the situation reverses and 
T-gates are actually very difficult to manufacture 
from the so-called T-states. You need special parts 
of the chip that create these T-states. This costs a 
lot of area on the chip. Clearly, we want to mini-
mize how many T-gates are in a circuit. Here, you 
can already explore the different molecules for var-
ious chemistry benchmarks, how many T-gates you 
would need, and then you can optimize your algo-
rithm and see what the impact is.

Martin Roettler: Another problem where EDA 
can make an impact on quantum computing is the 
so-called oracle problem. I don’t think that’s a great 
name. Oracles are basically subroutines that you 
need to execute on a quantum computer. Those 
subroutines are described by classical programs but 
they have to be executed in a quantum superposi-
tion of the inputs. Oracles are important in the con-
text of search problems, for SAT problems and vari-
ous other problems that have classical descriptions. 
There are great technologies to synthesize oracles 
and many are developed in EPFL by Mathias Soeken 
and Nanni. Also, there are other groups such as the 
one by Robert Wille at Linz and Dmitri Maslov at IBM 
does this kind of work too. 

Martin Roettler: The oracle problem consists 
in describing a problem classically as a Boolean 
function and then translating it into a reversible 
circuit. There are great tools and compilation flows 
for that. There are several open-source tools also 
that you can use to perform reversible circuit syn-
thesis. “Reversible” here means that you can run 
the circuit forward and backward and it doesn’t 
destroy information. Turning irreversible classical 
programs into reversible circuits is nontrivial and 
leads to an increase of memory. The basic issue is 
that it is not easy to do a memory garbage collec-
tion on a quantum computer.

Martin Roettler: Essentially, you have to  
un- compute whatever you did and return memory in 
the same clean state that you had at the beginning 
of the computation. If you don’t do that, you cannot 
have interference in your quantum computer. The 
technical reason for this is that otherwise the com-
putations would be distinguishable and that destroys 
quantum interference. This means that the problem 
of quantum garbage collection is a fundamental one. 

Early methods such as Bennett’s groundbreaking 
ideas from the 1970s can be applied but they use up a 
lot of quantum memory. Another method we develop 
helps to control the amount of memory used. 

Giovanni De Micheli: Thank you. I will start with 
a general question for all the panelists. If you just look 
forward, let’s say 25 years in the future, what are the 
types of problems that you would like to solve? Would 
the computers or the computing system that we can 
foresee be adequate and how will we design them? 
So, I will ask all of you to give your opinion.

Martin Roettler: Well I can stick my head out 
first and try to answer it from the quantum comput-
ing perspective. Twenty-five years is certainly at a 
time range where quantum computers might come 
into fruition, even scalable ones. What I would 
really like to see at that point is like applications, for 
instance, in drug discovery. There are problems in 
drug design that can in principle map to a quantum 
computer which then, in turn, could explore a big 
space of possibilities of how to optimize the design 
of new drugs. Quite possibly, this exploration can 
be guided by a gradient descent procedure where a 
quantum computer can help to evaluate a cost func-
tion. Today, we cannot evaluate the cost functions 
as they are hard for classical computers. 

Martin Roettler: That problem in itself will have 
a lot of EDA-related or computer science-related 
components to it because you need to map it to an 
architecture where you can eventually run it. Think 
of the quantum computer of the future of sort of like 
an FPGA-like structure. Having a two-dimensional 
mesh of computing elements.

Martin Roettler: You have to somehow go from 
the high-level description of your algorithm to the 
actual gates set on your mesh. There are many stages 
in there, involving several intermediate representa-
tions of the program that implements the algorithm. 
There are software and hardware efforts underway 
today to define those stages, where there are many 
hardware platforms, and programming languages. 
IBM has a language, Rigetti has a language, and 
Microsoft has a language. There are opportunities 
there to improve and evolve these languages and to 
standardize the process. There is a whole economy 
that can in principle grow around this. In a 25-year 
timeframe, I can certainly see applications arising 
within a supporting quantum economy. I think it 
would benefit our humankind tremendously if these 
things were to happen. 
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Giovanni De Micheli: Just to inject some con-
troversy. QC is useful because it uses nature to imple-
ment parallelism. The question is: Can we do it in a 
different way? I would like to ping Max and Jason on 
this issue to see whether actually we could achieve 
something similar without having to go down to 
20 mK which will make portable quantum comput-
ing complicated except in outer space.

Massimiliano Di Ventra: Yes, the answer is yes. 
We already have shown a lot of results. Indeed, I 
didn’t have time to show it but the parallelism of our 
machines, mem-computing machines, comes from 
the behavior of a system that is at a phase transition. 
So, essentially our machines go through a phase 
transition and they develop what we call long-range 
order. The ability of the machine to correlate at long 
distances even though the interaction between the 
components is local.

Massimiliano Di Ventra: It is a misconcep-
tion, no offense to the quantum computing guys, 
but it is a misconception that you need quantum 
effects like entanglement or tunneling to actually 
solve complex problems very efficiently because 
physics allows you to use many other phenomena 
like time nonlocality, and I’m pretty sure you may 
actually do it in other ways. The incredible thing is 
that if you use nonquantum systems like the ones 
that I just showed then you can do it even in soft-
ware, because you can actually simulate the dif-
ferential equations of the physical machines that 
we are suggesting, unlike quantum computers that 
require really the hardware to be built at milli-Kel-
vins, to actually see their full advantage. You can-
not simulate a quantum computer on a classical 
machine efficiently.

Massimiliano Di Ventra: Our machine, on the 
other hand, can be simulated, and we have now 
already simulated them efficiently on a wide vari-
ety of very tough problems. I would like to see, like 
Martin, application of mem-computing to material 
science problems, so drug design would be another 
one. So essentially trying to find the spectrum of quan-
tum Hamiltonians in general. We are already working 
on this and probably we don’t need 25 years to suc-
ceed. Again, because we actually have now physical 
systems that use a type of parallelism that is not entan-
glement and it doesn’t need cryogenic temperatures 
to actually survive. 

Giovanni De Micheli: I would actually put the 
question back to Jason. Do we need completely new 

architectures to exploit accelerators or could we just 
build them around standard system architectures?

Jason Cong: First to get back to the first ques-
tion about what’s the architecture in 25 years? That’s 
a long time. It’s very hard to predict even beyond 
10 years. I’m quite sure that two things will stay. 
First,  heterogeneity, as I don’t think that one type 
of technology or one type of device will dominate. 
Second, these devices have to be programmable. At 
UCLA we had been advocating for quite some time, 
we use this term called accelerator centric architecture.

Jason Cong: The von-Neumann-based proces-
sors will do very less work because it’s inefficient, 
even though highly programmable. Our objective is 
to offload tasks to accelerators. In my opinion, accel-
erators are just like experts. So, quantum computing 
will never replace a standard microprocessor, but 
it’s a very powerful accelerator, so are some of these 
in-memory computing technologies and neuromor-
phic computing.

Jason Cong: I’m passionate about FPGA, just 
because it is programmable. We can argue whether 
it has the right granularity. Maybe it’s too fine grain, 
maybe we can add some course-grained computa-
tion. Maybe it doesn’t have to be all synchronous, 
maybe it can be asynchronous, maybe it can be 
event-driven and all of those, but it has got to be pro-
grammable. The challenge is how do I decompose 
complex computations in an intelligent way so that I 
can make use of all these accelerating technologies.

Jason Cong: Think about the job of CTO of a 
large corporation, Antun. You have all these experts: 
some people know how to do the engineering, some 
people know how to do marketing, some others how 
to do the sales. When something comes in and you 
say, “We’ve got to increase the revenue by another 
billion. How do you achieve that?” So, the decompo-
sition of the problem into the hands of these experts 
is the key. 

Antun Domic: Well, let’s look a little bit at history 
because some of us were in this business 25 years 
ago. In the early 1990s, I used to work at the Digital 
Equipment microprocessor group and it crossed the 
1 million transistors mark, and then Intel, IBM, every-
body crossed that magic numbers '91, '92, and '90. 
Today, they are that 10 billion plus transistors, so it’s 
four orders of magnitude in 25 years. Given that we 
don’t have to use all of them, Jason was mention-
ing dark siliconand all that. For example, the Intel 
processor that would cross 5 GHz in all processor 
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 systems is a chip with only eight processors. They 
have been restricted due to power.

Antun Domic: So, if you assume that we would 
go to another four orders of magnitude in 25 years in 
whatever a transistor is in 25 years, if you don’t have 
a  radically different power structure, which means 
that you are going to have only some processes oper-
ating. In my opinion, it should open the opportunity 
to put specialized processors and maybe configur-
able processors directly on a chip base. Then, they 
would be much more widely available as opposed 
to what you’re doing today in things like Amazon 
with a CPU and FPGA’s and all that.

Antun Domic: Maybe that will be all done on 
an on-chip and with much more standard program-
ming. The accelerators, as they have been men-
tioned, like a quantum computer and other things 
will be the auxiliary pieces that are important but 
will be used to offload certain things. It should open 
possibilities in totally new areas that I’m not going 
to speculate on, but, for example, medical appli-
cations should be something where more com-
puting could make a significant difference from 
that  perspective.

Giovanni De Micheli: Let me just pose another 
question to the panel and then of course. I would 
like to address the problem of bootstrapping. In the 
past, we have designed processors to design newer 
processors. Now we can have accelerators to design 
better accelerators. Can we use other technologies, 
for example, QC or memcomputing, to design more 
powerful QCs and mem-computers respectively?

Antun Domic: Let me give you a quick one. For 
example, suppose you have a quantum computer 
that solves some specific problems in EDA. Let us 
consider placement today in a large block. Today, 
place and route is limited on a flat basis on the 
10 million cell numbers. Placement for a block of 
that size takes between one and two days.

Antun Domic: If you could replace the place-
ments step by something that takes 10 minutes, 
not only it would be worth paying the overhead of 
dumping the data and bringing it back, it would be 
a significant improvement, and it would offer possi-
bilities that are never explored today. Because if you 
are going to spend two days doing placement, you 
are not going to explore too many floor plans and 
things that could give you better results. So not only 
it will be very beneficial, but it would open possibili-
ties that people cannot exercise today.

Massimiliano Di Ventra: Yeah. Following up on 
this, I fully agree. I think that maybe mem-computing 
could help as several levels in EDA by accelerating 
substantially certain tasks right? Routing for example 
and others. I see that. Not being myself an expert in 
EDA that’s the best I can tell you in that respect. I 
know in general terms what it is, but it’s worth trying 
to use it in specific parts of EDA to accelerate it. 

Antun Domic: The differential equation part is 
very critical in circuits simulation, for example.

Massimiliano Di Ventra: Yes. Following up on 
this, I fully agree. I think that maybe memcomputing 
could help at several levels in EDA by accelerating 
substantially certain tasks. Routing for example and 
others. Not being an expert in EDA that’s the best I 
can tell you in that regard. It’s worth trying to use it 
in specific parts of EDA to accelerate it. 

Antun Domic: The differential equation part is 
very critical in circuits simulation for example.

Jason Cong: Even at a higher level, you write a C 
program and compile it into FPGAs. You can decide 
where to insert pragmas, but how do you come out 
with the right architecture? So, this is the part that 
we are trying to automate and that this is also itself 
an area in need of acceleration because today we 
limit it to run for half a day. Then using reinforced 
learning and using some large-scale optimization, it 
actually can become very competitive.

Martin Roettler: Great question. From the quan-
tum computing point of view, let me first build on 
Antun’s answer. In principle, we can experience 
quadratic speedups over a classical algorithm that 
solves the same underlying problem. It is perfectly 
reasonable to expect that for constraint SAT prob-
lems you can obtain such a quadratic speedup. The 
other applications I can see are more specific to syn-
thesis tasks for approximating unitary operations. 

Martin Roettler: The issue here is that quantum 
computers cannot perfectly execute all the gates that 
are feasible. It’s not a continuous kind of an analog 
computation. You have discrete gates set, and you 
can use that to make finer and finer approximations. 
That leads to number-theoretic problems, in par-
ticular, if you want to find the approximations fast. 
Those problems, in turn, benefit from a quantum 
computer. If you had one already, you could actu-
ally solve number-theoretic problems like factoring. 
In fact, one has to solve quadratic equations over 
finite fields, but you can reduce them to factoring. 
If you had already a large quantum computer, you 
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can factor more efficiently and improve the compi-
lation step, which is a kind of a bootstrapping idea. 
But other than those specialized applications, I think 
it’s not likely that we can speed up arbitrary compu-
tations in the  quantum computer.

Giovanni De Micheli: We are taking new ques-
tions from the audience. Please use the mike and 
introduce  yourself.

David: I am David Pan from UT at Austin. I like 
to challenge Antun’s comment about placement. 
You said the largest blocks for placement have 
10 million cells and takes one or two days to place. 

Antun Domic: You can do 10 million cells, 
meaning counting a standard cell as a movable 
object. Today between four and seven days depend-
ing on how complicated the rules and the final 
refinements. So, if you look at that, and you assume 
that the placement itself takes 20% of the time, you 
see a very attractive target there because it is also 
an energy minimization problem on a space that has 
a very full range of peaks and valleys as you move 
through. But anyways, that’s the number.

David: Sorry. I guess my main point is that actu-
ally our group recently made some really nice pro-
gress, which will be reported tomorrow at tomor-
row’s session. We developed a new placement 
engine called Dream Place, 10 million cells in 5 min-
utes, state-of-the-art result. One of the main reasons 
why we can do this is that we cast this problem into 
equivalently solving a neural network learning prob-
lem, so we can greatly leverage the GPU hardware 
and software.

David: Then also it is massively parallel 
David: But now with this we can actually get a 

lot of parallelization, right? So, I just want to point 
that out. In this sense, we recast the problem into 
acceleration, leveraging the current acceleration 
that the community has spent a huge amount of 
effort around both hardware and software.

Giovanni De Micheli: Let me inject another 
question, that’s about the QoR. There are two parts 
to this question. First: How much would you pay for 
having 5% better QoR. Second: what about comput-
ing time and what about time spent in developing 
software for this.

Antun Domic: I’ll give you my opinion irre-
spective of affiliations, but if you look at the issue 
that I did mention and look at the public data. The 
number of chips that are being designed at 10, 7, 
and 5 nm is relatively small. But if you look at the 

percent of silicon that this small number of chips 
take in the world, how much is manufactured, it is 
about a third of all chips. So, and that percentage 
has been increasing, meaning a third of all silicon 
area, and the percentage keeps increasing. So, if 
you went to the companies that are designing chips 
that are going to have 100, 200 million copies, 5% 
reduction in area, or 10% reduction in power or so 
is huge.

Antun Domic: I will not quote numbers, but 
the total semiconductor industry revenue was 
about 450 billion last year. So, you can do the cal-
culation of how much people would pay for a 10% 
reduction in area, for example, if you went to Apple 
or  Qualcomm.

Jason Cong: Let me offer a different view. I 
mean for ASICs I totally agree with you. But then 
that’s where the design starts have decreased. I am 
quite different for FPGAs. Unfortunately, vendors 
like Xilinx or Intel have this terribly slow place and 
route tools that take days sometimes, to just finish 
the placement and routing.

Jason Cong: In the past, Auto ESL company has 
been spun off, and it got acquired by Xilinx. Another 
company, Neptune Design Automation, had the goal 
to speed up place and route. So at the time, I told 
them that for every 5× gain you get in QoR you can 
degrade tool performance by 5%. But then this is 
taken care by accelerators.

Jason Cong: So, David your example is fantastic, 
but I just suggest to forget about ASICs and do it for 
FPGAs. I want to compile circuits at the same speed 
I compile for processors. 

Giovanni De Micheli: QC should give us an 
opportunity to solve problems exactly. Unfortu-
nately, it doesn’t run right because mother nature is 
not nice to us and there are issues like coherence 
and noise. What is the roadmap to make QC robust 
and use it to enhance QoR?

Martin Roettler: That’s a great question. In a 
quantum computer, you have that choice of where 
in your computation you want to be highly accu-
rate and where you don’t. This means you have a 
choice where to distribute precision in computa-
tion. Finding the optimal distribution of precision is 
a nonconvex optimization problem. We did some 
initial research of the problems and found that 
the particular choice of precision distribution can 
make a difference of several orders of magnitude 
in terms of circuit size. Precision here is the target 



112 IEEE Design&Test

Roundtable

 approximation of the given unitaries but it can also 
mean how many bits of floating-point precision you 
want to give your arithmetic. 

Martin Roettler: Besides this, there is also the 
precision of the rotations as in how accurate you 
want to do them. In some parts of the algorithm, 
there might be a lot of slack and you don’t need a 
lot of precision as it will not impact the final output 
by much. In other parts of the algorithm, you might 
have to be really precise if you want to have a good 
answer. That’s an interesting problem from the syn-
thesis and design point of view. Generally, it is help-
ful to think of a quantum computer as a sampler. 

Martin Roettler: A given run may or may not give 
you the answer and often you can check the candidate 
solution. This works, for instance, for factoring where 
you can multiply the candidate solution out to check 
it. On the contrary, for optimization problems, we just 
care about a good enough answer. In that sense, a 
quantum computer can also be made to operate sim-
ilar to a classical annealer. Ultimately, you can experi-
ence some speedups on top of the classical methods, 
as Max mentioned earlier. For some problems, we 
can show that we get a quadratic speedup over the 
 classical annealer.

Giovanni De Micheli: Max, you’re building sys-
tems with feedback that converge to stable states. So 
you have coupled dynamical systems. So, isn’t this 
reinventing analog computing?

Massimiliano Di Ventra: With a major differ-
ence, the input and output are digital. So, you can 
read and write with finite precision. If it didn’t have 
that, and you had real numbers that represented 
both input and output, then you would need infinite 
precision in principle, which makes the machine 
susceptible to noise. That’s why I showed only the 
digital version of memcomputing machines. So, the 
input and output are digital. That’s fundamental, oth-
erwise you wouldn’t have scalability. Of course, you 
can do memcomputing also in a fully analog way, 
but it’s not scalable. It would be susceptible to noise.

Giovanni De Micheli: Robert, ask your question.
Robert: I am Robert Willie from JKU in list 

Austria. You talked about the vision and what will 
happen in 25 years. If I understood you correctly, 
right now the main problem is how to formulate the 
problems for the corresponding technologies. Let’s 
assume in 25 years you have resolved current prob-
lems, maybe with push-button methods. For exam-
ple, I will push a button and I get the best possible 

solution for a particular technology. Do you think 
then that the next problem will be to actually decide 
what technology to use for what application or is it 
already clear and or will it always, always be clear 
that for a particular application, I’m going to use a 
specific technology, such quantum computer, and 
for another application, I’m going to use another 
technology? Do you think this is a problem which 
can emerge in the next years? 

Jason Cong: It is a real problem, even today, for-
get about 25 years into the future. I have two students 
sitting in the room here. They have to answer this ques-
tion all the time: “Shall I use GPU to accelerate or I use 
an FPGA to accelerate.” We have made some good 
progress by now. So, an important key issue is whether 
to adapt the architecture to the application, right? But 
how do we adapt, which architecture do we choose?

Jason Cong: So, you don’t want an application 
expert to change the code too much. It must stay at 
a higher level.

Robert: Then, if I may, is this a problem that 
we can automate in the future or that needs to be 
addressed by the designers themselves?

Robert: I think it depends on how the EDA 
industry wants to grow. EDA should not just focus 
on the existing $200 billion semiconductor indus-
tries. There are several trillion dollars in the com-
puting industry to look at it. EDA companies should 
broaden their views. 

Martin Roettler: I can offer a take from the quan-
tum side. I really like your question. It’s a poignant 
question. How do we even express new ideas at a 
high level? It might be really hard to program these 
future devices because we just don’t know how to do 
that. How do we even express a new quantum algo-
rithm? In that sense, the entire quantum computing 
effort could be slowed down as it is hard to find new 
applications and in addition, it is hard to express 
them conveniently in a programmatic form. One idea 
maybe to help with that will be to have a language 
that allows you to design like even across different 
technologies. It could be a language that is so high 
level that you don’t have to worry about the underly-
ing compute fabric, whether it is an FPGA or a quan-
tum computer. I’m not sure if that will ever be feasible, 
but there is hope. 

Martin Roettler: The reversible synthesis prob-
lem is another example where a programmer can 
express new quantum algorithms without ever 
having to worry about quantum computing at all. 
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The compiler takes care of that, and it translates 
from the classical program to the quantum circuits. 
Of course, to do this compilation right is nontrivial, 
and there are also certain restrictions of the classical 
program: for instance, there might be only limited 
support for concurrency and there will probably be 
no interactive user input. Also, in contrast to stand-
ard computing, in quantum computing, all circuits 
are combinational as otherwise you would have to 
unroll a sequential  computation and undo it. This 
leads to many restrictions on classical programs. 
On the other hand, reversible synthesis is a power-
ful concept as it enables the programmers to write 
quantum programs even though they don’t have to 
be so familiar with the underlying quantum comput-
ing elements, which is really you cannot expect that 
from a general programmer.

Antun Domic: If we really had machines of 
any type with significantly more compute power, 
we should move upward in the level of abstrac-
tion. There have been successes with C-based syn-
thesis for FPGAs. On the ASIC side, the success has 
been much more limited. Verilog was introduced 
in 1987 and yes, there was SystemVerilog includ-
ing the test bench and a lot of progress but it’s still 
very much Verilog that drives the ASIC hip design 
downward. Maybe something else there would be 
much better.

Giovanni De Micheli: One more question and this 
relates a little bit more to EDA, but we can go beyond 
that. So, what problems are there for which we know 
that the existing solution is close to the best and which 
are the problems for which we know that we are still 
very, very far away from what we could achieve? For 
example, the two-level logic minimization problem is 
virtually solved. About 95% of the benchmarks that are 
relevant to engineers can be solved exactly, despite 
the fact that the covering problem and is NP complete. 
But there are some other problems for which we don’t 
know how far we are from the best. So, what is relevant 
actually? What is important to us?

Antun Domic: Let me give you a couple that 
would be important. You still do a lot of circuit simu-
lation that involves solving the differential equations. 
This is done more than people think because at the 
end you do need a reference. That’s why many of you 
could claim that a SPICE-like tool has the accuracy 
and all that, but the speed, you always want it to be 
faster. There are other areas, particularly logic place-
ment for example, if you have, millions and millions 

of cells, just the combinatorics tells you 10 million 
factorial combinations so forget it. So, there are spots 
where you have huge opportunities to get, as Martin 
says, to better solutions, not necessarily the optimal, 
but something much better.

Antun Domic: Problems in formal verification 
continued to show up in practical situations, where 
some equivalence checker ends up stuck after days. 

Jason Cong: Nanni, that’s a very good question. 
First, if you were to analyze it from a theoretical 
point of view we get stuck very easily because most 
of these problems are shown to be NP-hard and then 
you basically throw up your hands since we cannot 
do very much with it. But remember we are all solv-
ing a problem up to some constant known size. For 
example, we have 10 billion transistors in large chips 
today, as Antun said. If I can design with 10 billion 
transistors in a good way, then I’m happy.

Jason Cong: But then how do we know whether 
the place and route algorithm and the logic synthesis 
algorithm are doing a good job for that. So, we want 
to measure that numerically, but that’s also very dif-
ficult because you cannot get optimal solution using 
branch and bound and they using whatever ILP to 
get that. Antun reminded us that we did this work 
15 years ago. Using actually a quite clever method, 
we created a set of circuits, we call them PEKO cir-
cuits for placement, which stands for placement 
examples with known optimal.

Jason Cong: But the question you’re asking 
is very important, what we have to measure and 
then how to improve it. If we cannot measure, we 
cannot improve or even do not know where we 
are. So, I can tell you that the real challenge is to 
design accelerators.

Jason Cong: Just by looking at the ML accelera-
tor, we have maybe one of the first contributions in the 
area and we ask ourselves if we can get another 2×, 
4× improvement. But I know it’s very natural for us to 
ask the question about how far away from the optimal 
are we. There’s very little theory even to establish some 
kind of the complexity hierarchy for you to argue, right?

Antun Domic: Yeah, but that Jason it says the fol-
lowing. Even though we do have solutions for these 
10 million cell circuits, given the size of the search 
space, we don’t know if we are 50% from the optimal 
or 10% or 90% but I would bet that we are in the two-
digit range from the optimal. But there is room for 
optimization that would be extremely appreciated, 
as it relates to profits.
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Jason Cong: By the way, those circuits are 
still there, you can welcome to download but just 
try those.

Giovanni De Micheli: Just as a side comment. 
For example, at EPFL we keep up a public site where 
we have benchmarks, libraries, tools, and solution 
sets. For some problems, we keep track of the best 
solution obtained so far by the community. Every-
body interested is welcome to upload benchmarks 
and try to beat the current solutions. 

Giovanni De Micheli: We are coming to the 
end of our discussion. I would really like to thank the 
panelists for their time and effort in preparing this 
panel. I’d like to thank the audience as well. Let us 
give the panelists a round of applause. 
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