
Multiplier Architectures: Challenges and
Opportunities with Plasmonic-based Logic

(Special Session Paper)

Eleonora Testa∗, Samantha Lubaba Noor†, Odysseas Zografos‡,
Mathias Soeken∗, Francky Catthoor‡§, Azad Naeemi†, and Giovanni De Micheli∗

∗EPFL, Lausanne, Switzerland
† Georgia Institute of Technology, Atlanta, USA

‡IMEC, Leuven, Belgium
§KU Leuven, Leuven, Belgium

Abstract—Emerging technologies such as plasmonics and pho-
tonics are promising alternatives to CMOS for high throughput
applications, thanks to their waveguide’s low power consumption
and high speed of computation. Besides these qualities, these novel
technologies also implement logic functionalities uncommon to
traditional technologies that can be beneficial to existing CMOS
architectures. In this work, we study how plasmonic-based devices
can complement CMOS technology to achieve a more efficient
implementation of multiplier architectures, which are the core
of state-of-the-art data- and signal-processing circuits. A critical
part of modern multipliers is the partial-product reduction step,
used to reduce the partial product tree into a 2-input addition.
In CMOS technology, this step is achieved by using compact
and fast counters. On the other hand, the proposed plasmonic
cells naturally implement counters of 3-, 9- and 27-inputs within
a few logic levels at ultra-high speed. Thus, we present novel
multiplier architectures, which take advantage of large plasmonic-
based counters to reduce the number of cells and logic levels
in the partial product reduction step of the multiplication. Our
experimental results show that 3 levels and 30 counters are needed
when 27-input cells are used. On the other side, 6 levels and 72
counters are employed with 9-input cells. Finally, we present
various 16 × 16 multiplier implementations mixing 9- and 27-
input cells, focusing on the trade-off in the number of counters,
levels, and area of each architecture.

I. INTRODUCTION

To overcome the intrinsic scaling limitations of CMOS,
emerging technologies are going to play a key role in the near
future [1]. Novel emerging technologies such as plasmonics
and photonics devices are promising alternatives to CMOS,
because of the low propagation losses and their high speed of
computation [2], [3]. In particular, plasmonic devices based on
surface plasmon polaritons (SPP, [4]) overcome the limits of
nanoscale photonics devices and efficiently implement Boolean
functions uncommon to traditional CMOS technologies such
as majority [3], [5] and threshold-based logic functions [6].
Furthermore, the integrated electric field at the output of a
single plasmonic device is proportional to the number of input
bits that are equal to 1 [3]. Thus, each plasmonic device
intrinsically implements a circuit able to count the number
of 1s of an input stream within one logic cell. Such circuit is
known as digital counter, and, to our knowledge, this capability

of plasmonics logic has never been exploited before in state-
of-the-art literature.

Digital counters are generally important in the implementa-
tion of modern arithmetic architectures, and they play a key role
in the implementation of multipliers. Multiplier architectures
are fundamental in the design of microprocessors, digital signal
processors, and integrated data-processing [7]. Furthermore,
many computations and algorithms also involve multipliers;
as an example, efficient architecture implementations can be
beneficial for highly computational intensive algorithms, such as
convolutional neural network (CNN, [8]). While there are many
and diverse approaches for the design of multipliers trading-off
area and delay, we are interested in parallel multipliers [9], [10];
in particular, in n-bit 2-input n×n Wallace-tree multipliers [9].
The key component of a Wallace-tree multiplier is the partial
products reduction step used to reduce the sum of the partial
products into a 2-input addition. Many and diverse solutions
to speed up the partial-product reduction array have been
proposed [7], [11], [12], [13]. In CMOS technology, this is
usually achieved by using compact and fast counters over 3
inputs (also called carry-save adders). Here, we propose a
plasmonic-based device that naturally implements counters up
to 27 inputs within few logic levels, retaining a quasi-constant
cell delay for different number of inputs.

In this work, we study how plasmonic-based logic can
complement CMOS technology to achieve a more efficient
implementation of a multiplier architecture. We present a novel
16× 16 multiplier architecture, which takes advantage of large
plasmonic-based counters to reduce the number of cells and
logic levels in the partial product reduction step of the Wallace-
tree multiplication architecture. As different plasmonic cells are
available (3-, 9-, and 27-input cells) we propose various 16×16
multiplier architectures trading-off the number of counters and
logic levels. The experimental results show that, when using 27-
input plasmonic counters, 3 levels and 30 counters are sufficient
to reduce the height of the partial product tree; when 9-input
counters are involved, instead, 72 counters and 6 levels are
necessary. Hybrid solutions (i.e., using both 27- and 9-input
counters) have a number of levels between 3 and 6, with a
number of counters up to 53. We also present an area estimation
of each plasmonic logic counter assuming a structure similar to

Fig. 1: Structure of the 27-input primitive from [3]. The gate
structure is simulated using 3-D simulation in the finite differ-
ence time domain (FDTD) solver of Lumerical Solution [14].

the one presented in [3]. Each plasmonic cell is simulated using
3-D simulation in the finite difference time domain (FDTD)
solver of Lumerical Solution [14]. We describe results over
two different layouts, focusing on the trade-off between area
and latency for the different 16× 16 multiplier architectures.

The remainder of the paper is organized as follows. Sec-
tion II introduces the preliminaries on plasmonic technology
and the functionality of the cells, while Section III explains
how to use large plasmonic-based counters for the partial-
product reduction step of Wallace-tree multipliers. Section IV
illustrates the results over a 16×16 multiplier together with an
area evaluation of the plasmonic cells, and Section V concludes
the paper.

II. PLASMONIC GATES

In this section, we detail the plasmonic devices. First, we
present the structure of a single plasmonic gate and give an
example of a 27-input cell. Then, we illustrate the functionality
of 3-, 9- and 27-input plasmonic devices.

A plasmonic-based device as implemented in [3], [6]
is based on the propagation of surface plasmon polari-
tons (SPP, [4]), which are electromagnetic waves propagating at
the interface between a dielectric and a metal. It thus consists
of a waveguide used to transmit the information, built with
metal-insulator-metal (MIM) configuration (e.g., Ag-SiO2-Ag).
The 3-, 9- and 27-input plasmonic devices have already been
discussed in [3], [5]. We consider the 27-input structure, shown
in Fig. 1, as an example. It consists of three stages: each stage
having the 3-input primitives, a combiner, and an output region.
This is the largest building block that can be implemented today
using the mentioned plasmonic technology. This is due to the
fact that the propagation losses of SPP put a limitation on the
maximum number of cascaded stages (i.e., the number of levels
of the circuits). Currently, it is not efficient to have more than
three stages, which means that, after the third stage, either an
amplifier or a converter to voltage domain is necessary [3].

The important feature of plasmonic logic and wave com-
puting is the ability to efficiently implement functionalities
that are complex to realize in CMOS, e.g., large majority and
threshold gates [3], [5]. For the logic operation, the phase of
the plasmonic wave is considered as the computational state

0 1 2 3
Number of logic 1 bit in input combination

0.4

0.6

0.8

1

1.2

P
ea

k
of

 n
or

m
al

iz
ed

 in
te

gr
at

ed
ou

tp
ut

 fi
el

d,
 E

y,
pe

ak

Threshold-3

Threshold-2

Threshold-1

Fig. 2: Peak of the normalized integrated electric field at the
output of the 3-input primitive. The output value is proportional
to the number of 1s in the input combination.

variable, i.e., phase 180◦ for logic 0 and 0◦ for logic 1. The
27-input gate can be used to implement not only a majority-of-
twenty-seven-input, but also threshold functions [6]. The same
holds for the 3- and 9-input primitives.

In this work, we exploit each plasmonic device as a counter.
The peak of the normalized integrated electric field at the output
of each 3-input primitive is depicted in Fig. 2. The output is
proportional to the number of input signals equal to 1. In other
words, the plasmonic cell implements a circuit that counts the
number of 1s of the input bit-stream, i.e., a digital counter.
As the 9- and 27-input gates present the same functionality, it
means that plasmonic cells implement counters up to 27 inputs
within 3 plasmonic levels. Note that plasmonic circuits operate
at a frequency of around 1THz and ultra-low energy levels
that cannot be achieved by their CMOS counterparts at this
frequency [6]. In the next section, we will explain how to use
these properties to speed up the partial product reduction step
in modern multipliers.

It is worth mentioning that we envision each plasmonic
device to work as proposed in [6]. It means that at the output
of each logic primitive, a plasmonic waveguide carrying a
reference signal merges with the output signal [3], [6] to
convert the phase information into amplitude information, and
thus to avoid THz phase detection. A plasmonic waveguide
photodetector [15] can be tightly integrated with the output
plasmonic waveguide, converting the amplitude information to
the electrical domain.

III. PLASMONIC DEVICES FOR PARTIAL PRODUCT
REDUCTION

Plasmonic devices efficiently implement digital counters up
to 27-input. In this section, we take advantage of such property
to build a more compact and faster multiplier architecture, by
reducing the number of counters and logic levels in the partial
product reduction step of Wallace-tree multipliers.

Given two n bitstreams a and b, a Wallace-tree architecture
for the multiplication between a and b comprises three steps:
(i) the array of n2 AND gates to compute the partial products
between each bit of a and b; (ii) the step made of counters to
reduce the sum of the partial products into a 2-input addition;

(1,2:3) counter

(3,4,3:5) counter

Fig. 3: 4×4 multiplier product array, reduced to 2-input addition
by 2 counters: (3,4,3:5) and (1,2:3).

(iii) the final 2-input addition [9]. Note that, in the following, we
envision step (i) and step (iii) to be implemented using standard
CMOS technology; we thus focus on the implementation of
the second step with only plasmonic counters. In general, in a
Wallace-tree implementation, step (ii) is obtained using carry-
save adders. The number of levels l required in a Wallace-tree
to reduce the height h of the tree to 2 is given by [16]:

l = dlog1.5(
h

2
)e (1)

As an example, for a 4-input multiplier, h = 4, and 2 levels of
carry-save adders are needed.

In the following discussion, we refer to (x : y) counters [10]
as circuits that count the number of 1 bits over x input bits of
equal weights, and output of y bits of increasing weight. For
instance, a carry-save adder is a (3:2) counter. The output is a
y-bit word whose value is the sum of the inputs bit, and it is
given by:

v =

x−1∑
i=0

bi (2)

where bi is the binary value of the ith input bit. This
class of counters is used in multiplier architectures [9], [10]
to reduce the partial product tree by dividing it into columns
of three partial products each. Many and diverse optimizations
using CMOS implementation of (7:3), and (5:3) fast counters
have been proposed [13], [16]; a (4:2) counter has also been
investigated [17].

In this paper, we extend the definition of counters [13] to
consider successively weighted input columns. The sum of the
columns is produced by taking the weights into account. We
refer to these counters [13] as (xk−1, xk−2, . . . , x0 : y), where
k is the number of inputs columns, xi is the number of bits
in the column of weight 2i. The output is a y-bit word whose
value is the sum of the inputs bit, and it is given by:

v =

k−1∑
i=0

ci−1∑
j=0

bij2
i (3)

where bij is the value of bit j in column i. As an example,
a (5,5:4) counter has been presented in [13].

Fig. 4: Reduction of the partial product tree of a 16 × 16
multiplier using 27-input plasmonic devices. Counters over
more than one column are represented in blue; while counters
over one column are not represented to ease the notation.

It follows that (i) a 9-input plasmonic device implements
the following counters: (9:4), (3,3:4); (ii) while a 27-input
plasmonic gate can be used as: (27:5), (4,4,3:5), (9,9:5). Note
that, while complete utilization of the inputs is desirable, this is
not a necessary condition. It thus follows that all “underutilized”
arrangements of the counters are possible.

The proposed plasmonic counters are employed here to
reduce the partial product tree of multipliers. Consider as an
example the 4 × 4 multiplier product array of Fig. 3; note
that the partial product terms are represented as • to ease
the notation. The partial product tree consists of 16 terms
distributed over 7 columns of various sizes. Only one level and
two counters are needed in order to reduce the height of the
tree. The blue counter is a (3,4,3:5) counter, while the red one
has 2 + 1 × 2 = 4 inputs distributed over 2 columns. In the
next section, we present results in terms of number of counters,
levels, and area over a 16× 16 multiplier.

IV. RESULTS

In this section, we present the experimental results. We use
as running example a 16× 16 multiplier as this is commonly
used in CNN hardware accelerators [18]. First, we illustrate
different architectures: (i) one that use only 27-input devices,
(ii) one with 9-input plasmonic, and (iii) a blend of those
(called “hybrid” mapping in the following discussion). Then,
we conclude with an area estimation of the plasmonic cells
obtained by simulation and present various architectures trading-
off area, number of cells, and logic levels.

A. Architectures for the 16× 16 Multiplier
As discussed in Section III, the large number of inputs

of plasmonic counters allows us to reduce the number of
counters and levels in the reduction of the partial product

tree. Furthermore, we consider more than one column at the
same time, by taking into account different weights. We study
here a 16 × 16 multiplier architecture, whose tree is shown
in the top part of Fig. 4. It consists of a partial product tree
of 16 × 16 = 256 terms, over 31 columns of different sizes.
We consider plasmonic cells having 3, 9, and 27 inputs, thus
counters: (27:5), (4,4,3:5), (9,9:5), (9:4), (3,3:4) and (3:2).
First, we present (together with an example from Fig. 4)
an architecture that uses 27-input cells. It means that, when
possible, the first choice is using 27-input cells.

The steps for the partial product reduction tree using 27-
input cells are presented in Fig. 4. The first level of plasmonic
counters consists of 20 parallel counters, with number of inputs
ranging from 9 to 25. Note that counters over one column are
not reported. The small number of counters is achieved due
to (i) the large size of the counters, and (ii) by considering
different weighted columns. The second level of counters is
depicted in the second step of Fig. 4, and consists of 9 counters,
from 25 to 7 inputs. The last level only needs one more counter
(3,3:4). It means that, when using mostly 27-input counters,
the architecture can be implemented using 30 counters, over 3
levels. This result is reported in the first columns of Table II for
the ‘27-input cells’ architecture. Note that the number of levels
refers to the number of counters on the topological critical path.
It is also worth mentioning that this example represents one of
the many and diverse architectures that can be implemented
with the plasmonic counters.

The same process can be achieved when only counters up to
9-input are allowed, i.e., 27-input cells are not involved in the
reduction step. In this case, the architecture needs 6 levels, and
72 counters (see ‘9-input cells’ architecture from Table II). It
is worth mentioning that while this could seem worse than the
previously described architecture, since the area of a 9-input
cell is up to 10× smaller than the 27-input one, this results
in a smaller overall area. As a consequence, complex global
trade-offs exist in the overall search space. Some solutions
with a blend of 27- and 9- input plasmonic counters (called
hybrid solutions) can also be built. These architectures range
between 6 and 3 levels, with a number of counters from 39 to
53. Results for ‘# counters’ (number of counters) and ‘# levels’
(number of counters on the topological critical path) for 10
hybrid architectures are summarized in the first two columns
of Table II.

B. Area Estimation and Results
In this section, we propose a layout and area evaluation

of plasmonic cells when used as counters based on simulative
models developed at GeorgiaTech. We also present the trade-off
in the number of levels, counters, and area of various 16× 16
multiplier architectures, when built using plasmonic-based logic
cells.

To use the plasmonic waveguides as counters, different
building blocks need to be considered. Each logic counter
cell should include (i) a plasmonic logic waveguide (described
in Section II), (ii) a plasmonic power splitter, (iii) reference
waveguides, and (iv) integrated detectors (see Fig. 5).

The structure of the logic gate has already been explained
in Section II. In order to obtain a counter-like behavior, it is

possible to count the number of logic 1s in the input data from
the integrated peak output of the logic gate using different
threshold levels as shown in Fig. 2. For example, in the 3-input
primitive of Fig. 2, ‘Threshold-2’ decides the most significant
bit (MSB) of the counter output. If the peak of the output
is greater than ‘Threshold-2’, MSB has value equal to 1;
otherwise, MSB will be 0. According to the value of the
MSB, ‘Threshold-1’ and ‘Threshold-3’ are employed to obtain
the value of the next significant bit. In other words, if the
MSB is 1, ‘Threshold-1’ decides the next significant bit, while
‘Threshold-3’ is used if the MSB is 0. As an example, for
the (3:2) counter, the output of the plasmonic gate needs to
be split into two signals to decide the MSB and the least
significant bit (LSB). The mentioned threshold functionalities
can be implemented in plasmonic by reference waveguides, as
described in [6]. In order to split the output of the logic gate,
instead, we introduce plasmonic power splitters.

A 1 × n power splitter consists of Y cascaded branches
dividing the output optical power of the main plasmonic gate
among n plasmonic waveguides. The number of split outputs n
depends on the number of output bits of the (x : y) counter. As
n increases, the SPP waves have to travel longer paths and the
transmission efficiency of the splitter decreases due to losses
in metal. The transmission efficiency is defined as follows:

T =

n∑
k=1

P k
out/Pin (4)

where Pin denotes the optical power into the splitter and
P k
out denotes the power flowing out of the kth split output

waveguide. The splitter has been simulated in the FDTD
solver of Lumerical Solution [14]: T decreases from 80%
to 40.4% as n increases from 2 to 5. A reference waveguide
and an integrated photodetector are associated with each output
waveguide of the power splitter. For the photodetector, a high-
speed metal-semiconductor-metal plasmonic photodetector with
a narrow Ge slot as an active region can be used [15].

We used the proposed blocks to estimate the area of each
plasmonic-based counter. First, the area of the plasmonic gate
depends on the number of stages or number of inputs, with
3-, 9-, and 27-input gates having areas of 0.84µm2, 9.13µm2,
and 83.4µm2, respectively. Cross-sectional dimensions of the
input side waveguides, splitter waveguides, and photodetectors
are 60nm× 100nm, 120nm× 100nm, and 90nm× 100nm,
respectively. To maintain a low crosstalk noise, we assumed
that the separation of the SiO2 slots is p = 300nm for the
entire plasmonic waveguide configuration. The bending angle
of the bent waveguides in both logic gate and Y branches
is chosen to be θ = 35.7o as in [3]. For the power splitter,
the width (Ws) can be calculated from the number of splitted
outputs n, the slot width w, and the slots separation p:

Ws = 2nw + (2n− 1)p (5)

The length of the splitter (Ls) depends on n which determines
the number of required Y branches (n − 1) as well as the
length associated with the longest bent waveguide (0.5n(p+
w)/ tan(θ)). For instance, Ls = 0.6µm, 1.6µm, and 1.9µm
for the 1 × 2, 1 × 3, and 1 × 4 splitters, respectively. The

TABLE I: Combined area of the splitter, reference waveguide,
and photodetector

Output # Stages Combined Combined Combined
in splitter in splitter length [µm] width [µm] area [µm2]

2 1 2.1 1.4 2.9
3 2 3.1 2.2 6.8
4 2 3.4 3.1 7.2
5 3 4.5 3.9 17.5
6 3 5.2 4.7 24.7
7 3 5.6 5.6 31.5
8 3 5.8 6.4 37.2
9 4 7 7.3 50.7
10 4 7.9 8.1 64.2
11 4 8.73 8.94 78
12 4 9.39 9.78 91.8
13 4 9.9 10.62 105.1
14 4 10.26 11.46 117.6
15 4 10.48 12.3 129

(a)

(b)

Fig. 5: Different layout for the plasmonic counter. (a) layout
1: minimum area, larger latency; (b) layout 2: larger area,
minimum latency.

reference waveguide adds an additional length of 500nm while
the length of the photodetector is Lp = 1µm. The combined
areas of the splitter, reference waveguide, and photodetector
are summarized in Table I for number of outputs (‘# Outputs’)
from 2 to 15. This covers all possible counters configurations,
from 3 to 27 inputs.

Using the building blocks presented so far, we propose
two layouts for a specific (x : y) counter, as shown in Fig. 5.
We consider a (9:4) counter as running example. Layout 1
(Fig. 5 (a)) has 4 outputs: each output evaluates one bit of
the counter output (y0y1y2y3). First, MSB (y0) is computed
from OP1; from the value of the MSB, CMOS circuits set

Fig. 6: Trade-off: number of counters, number of levels and
Area1. Hybrid solutions are in blue.

the reference level for OP2 which calculates the next bit. The
process continues until LSB (y3) is decided from OP4. Layout
2 differs from Layout 1 in the evaluation of y2 and y3. As a
consequence, Layout 1 is more compact (one splitter 1× 4 vs
1× 5) but has higher latency as compared to Layout 2. While
in Layout 1 all the 4 outputs are sequentially computed one
by one, only 3 sequential stages are needed in Layout 2.

We used the two presented layouts and the data from Table I
to evaluate the area of each plasmonic counter. The total area
of each plasmonic counter-cell is given by the area of the
plasmonic cell (described before) plus the combined area of
splitter, photodetector, and references (ASRP) as proposed in
Table I:

Acounter = Aplasmonic cell +ASRP (6)

For each cell, two total area estimations are evaluated, cor-
responding to using Layout 1 or Layout 2. As an exam-
ple, the (9:4) counter has Area1 (using Layout 1) equal to
9.13 + 7.2 = 16.33 µm2, while Area2 (using Layout 2) is
9.13+17.5 = 26.63 µm2. It is worth mentioning that counters
over multiple columns (e.g., (3,3:4)) have the same area as
their one-column counterparts (e.g., (9:4)). Furthermore, in case
some inputs of the counters are not used, the area is decreased
as smaller splitters can be employed. For example, the area
of an (8:4) counter is different from the area of a (9:4), even
though they are implemented using the same plasmonic cell.

The results for the area evaluation are presented in the
second part of Table II. The table lists different implementations
of the reduction step of a 16×16 multiplier when mapped using
various plasmonic cells. The first row shows results for the 27-
input architecture presented in Section IV-A, with 3 levels and
30 counters. The first area estimation (column ‘Area1’) is the
one using Layout1, while the second area estimation (column
‘Area2’) is the one obtained from Layout2. The results for
‘Area3’ and ‘Area4’ compare to a hypothetical future downscale
of Layout1 by 10× and 20×, respectively. The same results are

TABLE II: Experimental results for 16× 16 multiplier

Mapping # Counters # Levels Area1 [µm2] Area2 [µm2] Area3 [µm2] Area4 [µm2]

27-input cells 30 3 2577 3869 258 138
9-input cells 72 6 1040 1240 124 121
hybrid1 46 3 2196 3155 229 122
hybrid2 52 4 1936 2790 201 136
hybrid3 43 5 2106 3301 218 115
hybrid4 46 4 2087 3078 211 150
hybrid5 53 6 1861 2791 191 149
hybrid6 48 4 2055 3068 208 148
hybrid7 42 4 2357 3536 236 158
hybrid8 43 4 2141 3416 223 115
hybrid9 39 5 2212 3486 226 119
hybrid10 39 4 2487 3723 253 135

presented for the 9-input architecture, having 6 levels and 72
counters. The “hybrid” rows describe the number of counters,
levels, and area estimate for other 10 architectures having
27-input cells interleaved with 9-input counters.

Our results show that while the 9-input architecture has
twice as many counters and levels compared to 27-input one, it
results in areas which are more than 2× smaller. Furthermore,
the difference between ‘Area1’ and ‘Area2’ for the 9-input cells
(1040 vs 1240) is much smaller than the one of 27-input ones
(2577 vs 3869). The solution with 9-cells presents the smaller
areas overall. Fig 6 shows the trade-off results in the number of
counters, number of counters on the critical path (levels), and
area (evaluated as Area1). The solution with 27- and 9- input
cells are highlighted in red. As previously described, even if
the 9-input solution has a larger number of counters and levels,
it results in a much smaller area. Hybrid solutions present the
number of levels, counters, and area in between the two corners
cases.

V. CONCLUSION

In this work, we propose a novel plasmonic-based imple-
mentation of digital counters. Plasmonic logic can efficiently
implement counters up to 27-input, within few logic levels. We
thus take advantage of this property to successfully reduce the
height of the partial product tree of multipliers. Our results
show that for a 16×16 multiplier, 3 logic levels and 30 counters
are needed when 27-input cells are used. We also present an
area evaluation and different layouts of the plasmonic cells,
trading-off area and latency.

ACKNOWLEDGMENT

This research was supported by the EPFL Open Science
Fund, by the Swiss National Science Foundation (200021-
169084 MAJesty) and by the ERC project H2020-ERC-2014-
ADG 669354 CyberCare.

REFERENCES

[1] D. E. Nikonov and I. A. Young, “Overview of beyond-CMOS devices
and a uniform methodology for their benchmarking,” Proceedings of
the IEEE, vol. 101, no. 12, pp. 2498–2533, 2013.

[2] H. J. Caulfield and S. Dolev, “Why future supercomputing requires
optics,” Nature Photonics, vol. 4, no. 5, p. 261, 2010.

[3] S. Dutta, O. Zografos, S. Gurunarayanan, I. Radu, B. Soree et al.,
“Proposal for nanoscale cascaded plasmonic majority gates for non-
Boolean computation,” Scientific reports, vol. 7, no. 1, p. 17866, 2017.

[4] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon
subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003.

[5] E. Testa, M. Soeken, L. Amarù, and G. De Micheli, “Logic synthesis
for established and emerging computing,” Proceedings of the IEEE, vol.
107, no. 1, pp. 165–184, 2018.

[6] O. Zografos, F. Catthoor, S. Dutta, and A. Naeemi, US Patent Application
US20190064438A1, 2019.

[7] N. Sureka, R. Porselvi, and K. Kumuthapriya, “An efficient high speed
Wallace tree multiplier,” in International Conference on Information
Communication and Embedded Systems, 2013, pp. 1023–1026.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[9] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[10] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, 1965.

[11] J. Fadavi-Ardekani, “M*N Booth encoded multiplier generator using
optimized Wallace trees,” IEEE Trans. VLSI Syst., vol. 1, no. 2, pp.
120–125, June 1993.

[12] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for speed
optimized partial product reduction and generation of fast parallel
multipliers using an algorithmic approach,” IEEE Trans. on Computers,
vol. 45, no. 3, pp. 294–306, 1996.

[13] W. J. Stenzel, W. J. Kubitz, and G. H. Garcia, “A compact high-speed
parallel multiplication scheme,” IEEE Trans. on Computers, no. 10, pp.
948–957, 1977.

[14] “Lumerical, F. Solutions. Web source [https://www.lumerical.com/tcad-
products/fdtd/] ,” 2013.

[15] Y. Salamin, P. Ma, B. Baeuerle, A. Emboras, Y. Fedoryshyn et al.,
“100 GHz plasmonic photodetector,” ACS photonics, vol. 5, no. 8, pp.
3291–3297, 2018.

[16] S. Waser and M. J. Flynn, “Introduction to arithmetic for digital systems
designers,” 1982.

[17] D. Shen and A. Weinberger, “4-2 carry-save adder implementation using
send circuits,” IBM Technical Disclosure Bulletin, vol. 20, no. 9, pp.
3594–3597, 1978.

[18] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro et al., “Nullhop:
A flexible convolutional neural network accelerator based on sparse
representations of feature maps,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 3, pp. 644–656, 2018.

