
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Soeken M, Meuli G, Schmitt
B, Mozafari F, Riener H, De Micheli G. 2019
Boolean satisfiability in quantum compilation.
Phil. Trans. R. Soc. A 378: 20190161.
http://dx.doi.org/10.1098/rsta.2019.0161

Accepted: 11 October 2019

One contribution of 13 to a theme issue
‘Harmonizing energy-autonomous computing
and intelligence’.

Subject Areas:
quantum computing, computer-aided design

Keywords:
quantum computing, quantum programming
languages, quantum compilation, Boolean
satisfiability, logic synthesis

Author for correspondence:
Mathias Soeken
e-mail: mathias.soeken@epfl.ch

Boolean satisfiability in
quantum compilation
Mathias Soeken, Giulia Meuli, Bruno Schmitt,

Fereshte Mozafari, Heinz Riener and Giovanni

De Micheli

EPFL, Lausanne, Switzerland

GDM, 0000-0002-7827-3215

Quantum compilation is the task of translating a
quantum algorithm implemented in a high-level
quantum programming language into a technology-
dependent instructions flow for a physical quantum
computer. To tackle the large gap between the
quantum program and the low-level instructions,
quantum compilation is split into a multi-stage flow
consisting of several layers of abstraction. Several
different individual tasks have been proposed for the
layers in the flow, many of them are NP-hard. In this
article, we will describe the flow and we will propose
algorithms based on Boolean satisfiability, which is a
good match to tackle such computationally complex
problems.

This article is part of the theme issue ‘Harmonizing
energy-autonomous computing and intelligence’.

1. Introduction
Quantum computers promise to solve tasks such as
quantum simulation [1] (e.g. quantum chemistry [2]) and
quantum cryptoanalysis [3] (e.g. Shor’s algorithm [4])
computationally faster than a classical computer. Various
practical prototypes have recently been proposed [5–7].

Although quantum computers have not reached
the scale to tackle any unsolved open problem yet,
researchers have been studying how to efficiently
program them. Complete programming flows already
exist, which take as input a quantum algorithm described
in a quantum programming language and compile it into
a set of instructions that describe the interactions with
the physical device (e.g. [8–10]). This process is called
quantum compilation and the generated set of instructions
is referred to as a quantum circuit.

2019 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0161&domain=pdf&date_stamp=2019-12-23
http://dx.doi.org/10.1098/rsta/378/2164
mailto:mathias.soeken@epfl.ch
http://orcid.org/0000-0002-7827-3215

2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

Programming flows allow users to describe their quantum algorithm through the use of
symbolical representations of relevant sets of low-level instructions. In addition, they provide
compilation methods to generate quantum circuits for each high-level instruction. A good
quantum compilation method minimizes the number of resources used to perform the algorithm:
number of qubits and number of expensive instructions (requiring complex interactions with the
physical device).

Many quantum algorithms require arithmetic operations, e.g. addition, inversion and
multiplication, which usually need large amounts of resources to be computed. For this reason,
the quality of the compilation method provided by the programming flow is crucial: if this task is
not performed efficiently, arithmetic operations will require too many qubits and/or instructions
to be performed in practice.

In this work, we focus on a versatile method used to compile arithmetic operations specified
as Boolean functions, called hierarchical quantum compilation [11–13]. It takes as input a Boolean
function, represented by its most compact representation: a logic network. In addition, it allows
us to specify the number of available qubits for the computation. With these data, it tries to
find a quantum circuit minimizing the number of expensive quantum instructions. Hierarchical
quantum compilation consists of three stages. First, the logic network is represented in terms of a
k-LUT network (lookup-table network). In the second stage, each of the logic gates are mapped to
qubits, which will store the temporary computed value of the gates. Finally, in the third stage, each
mapped LUT logic gate is decomposed into quantum gates that are supported by the targeted
physical device.

The choice of the targeted quantum hardware has an influence on the quantum compilation
algorithms. Current quantum technology will likely not enable reliable fault-tolerant quantum
computing within the next few years [14]. This is mainly due to the large amount of
noise in the qubits and quantum operations, which requires a significant overhead cost to
perform quantum error correction [15]. Until then, researchers investigate which applications
can be performed with the quantum computers that will be available in the next few
years, having about 50–100 noisy physical qubits unprotected by error correction. Such
computers are termed noisy intermediate-scale quantum computers (NISQ) [14]. It has already been
demonstrated that, despite the noise, practical applications such as quantum chemistry for small
problem instances can already be solved on such devices [16]. In this scenario, hierarchical
compilation is capable of synthesizing optimal quantum circuits, matching the limited available
resources. Eventually, the resulting computation must fit the few qubits available in NISQ
computers and perform a limited number of expensive operations, according to the hardware
technology.

The advantage of hierarchical quantum compilation is that it is breaking down the complex
task of finding a quantum circuit for a large Boolean function into several dedicated combinatorial
problems. SAT-based methods are excellent candidates to efficiently tackle these subproblems,
as they are able to find results of very good quality, with a positive impact on the entire
flow. It is well-known that naive monolithic SAT-based approaches do not scale. Nevertheless,
the hierarchical framework provides an excellent application for this class of algorithms since
large problems are decomposed into smaller ones. In this paper, we present different SAT-
based techniques used to tackle several subproblems in a LUT-based hierarchical quantum
compilation flow.

2. Preliminaries

(a) Quantum computing
Quantum computers can be seen as an array of n qubits [17]. A single qubit ϕ can be in the state
|ϕ〉 = (a0

a1

)= a0|0〉 + a1|1〉, where |0〉 = (1
0
)

and |1〉 = (0
1
)

represent the classical states 0 and 1, and
a0 and a1 are complex-valued amplitudes such that |a0|2 + |a1|2 = 1. In other words, a quantum

3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

state is a superposition of the two classical states. As an example, the state |+〉 =
(

1/
√

2
1/

√
2

)
is a

balanced superposition between 0 and 1. When measuring a single qubit, it collapses to the state
0 with a probability of |a0|2 and to the state 1 with a probability of |a1|2. One can also describe
the joint state of all n qubits by

∑2n−1
i=0 ai|i〉, where |i〉 is one of the 2n classical states over n bits

and
∑2n−1

i=0 |ai|2 = 1. The basic states |i〉 are one-hot column vectors with 2n elements which are
all 0 except for row i (counting from row 0), which is 1. The probability that the quantum state
collapses to the classical state i after measuring all qubits is |ai|2. Due to the quantum mechanical
effect of entanglement, some quantum states cannot be described in terms of the qubits’ individual
quantum states. One example is the Bell state 1/

√
2(1 0 0 1)T, which collapses with the same

probability to the states 002 = 010 and 112 = 310 after measurement. The measurement result of
one qubit reveals the measurement result of the other one.

Quantum computations that change the quantum state of n qubits can be described in terms of
2n × 2n unitary matrices. However, it is impractical to represent such unitary matrices explicitly
and to physically realize these operations for large n. As an alternative one can describe quantum
computations as a composition of small matrices, representing basic instructions, called quantum
gates. Parallel composition is modelled using the Kronecker product and sequential composition
as a matrix product. The Kronecker product between two matrices A of size m × n and B of size
p × q is defined as:

A ⊗ B =

⎛
⎜⎜⎝

a11B . . . a1nB
...

...
am1B . . . amnB

⎞
⎟⎟⎠ .

A simple example for a quantum operation is the NOT gate, also called the X gate, described
by the unitary matrix X = (0 1

1 0
)
. It flips the amplitudes of a single-qubit quantum state, and

in particular, X|0〉 = |1〉 as well as X|1〉 = |0〉. The following example illustrates how to describe
quantum computations using small quantum operations in the quantum circuit model (see also
figure 1).

Example 2.1. The following circuit shows a quantum computation on two qubits, which are
each initialized to the state |0〉, i.e. they are in the joint state |00〉.

H

CNOT

1/ 2(|00Ò + |11Ò)
|0Ò
|0Ò

The horizontal direction denotes time. Each horizontal line corresponds to the life-line of a
qubit, representing time, and one can place operations onto them. First, the Hadamard gate
H = 1√

2

(1 1
1 −1

)
is applied to the first qubit. Usually, a quantum gate is depicted as a framed box

labelled with the name of the operation. No gate is applied to the second qubit, which implicitly
corresponds to applying the identity operation I = (1 0

0 1
)
. The joint operation to both qubits can

be described as the Kronecker product of both matrices H ⊗ I, which is a 4 × 4 unitary matrix.
Afterwards, the two-qubit CNOT operation is applied to both qubits, where

CNOT =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ .

The CNOT gate has a special notation where the first qubit applied to the CNOT gate, called the
control qubit, is drawn as a solid dot and the second qubit, called the target qubit, is drawn as a
‘⊕’ symbol. A CNOT gate inverts the target qubit whenever the control qubit is assigned 1.

4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

|x1Ò

|x2Ò

|x3Ò U3

U2
U1

Uf

c1

c2

c3

quantum state |x1Ò = a0 with two

complex-valued amplitudes a0 , a1 such that

|a0|2 + |a1|2 = 1. Values |a0|2 and |a1|2

are the outcome probabilities to be in state
0 or 1 after measurement. States |0Ò = 1

0

1
0and |1Ò = are the classical base states.

quantum states of n qubits
contain 2n amplitudes for each of
the possible Boolean basis states.

qubit operations on
n qubits are 2n × 2n

unitary matrices.

single-qubit operations
are complex-valued
2 × 2 unitary matrices.

classical Boolean functions
are embedded into unitary
operations.

measurement collapses
quantum state into
classical state 0 or
1 based on outcome
probabilities.

a1

Figure 1. The quantum circuit model in a nutshell.

The overall quantum operation performed by the quantum circuit can be described as the
product of all operations performed in each time step, i.e.

(CNOT · (H ⊗ I)) |00〉 = 1/
√

2(|00〉 + |11〉).
There are many quantum gates of interest. An important family of gates consists of

the z-rotation gates Rz(θ) = diag(e−iθ , eiθ). The gates S = eiπ/4Rz(π/4) and T = eiπ/8Rz(π/8) are
frequently used gates of this family.1 Similarly, one can define rotation gates Rx and Ry for
rotations around the other two axes. A gate library is a set of gates which is universal, i.e. for any
2n × 2n unitary matrix U there exists a finite sequence of gates to either exactly represent U or to
approximate it as arbitrarily precise [17]. We call the gates in a gate library elementary gates. Typical
gate libraries for current NISQ devices are for example {CNOT, U3}, where U3 is an arbitrary
2 × 2 unitary matrix, used, e.g. in IBM’s quantum computers, or {CZ, Rz(θ), Rx(kπ/2)}, where
CZ = diag(1, 1, 1, −1) is a controlled Z gate, Rz(θ) is a z-rotation gate with arbitrary precision
and Rx(kπ/2) is an x-rotation gate where the possible rotations are controlled by an integer
k ∈ {0, 1, 2, 3}, used, e.g. in Rigetti’s quantum computers. The commonly used gate library in
fault-tolerant quantum computing is Clifford+T which consists of CNOT, H, and the T gate.

All the described gates are primitive operations on modern quantum devices. However, for
the modelling and compilation of quantum circuits, more abstract gates are useful, which require
further decomposition into elementary quantum gates, such as single-target gates. For some given
Boolean control function f (x1, . . . , xn), a single-target gate computes the unitary operation

Uf : |x〉|y〉 �→ |x〉|y ⊕ f (x)〉, (2.1)

where x = x1 . . . xn, which permutes the state of the quantum state according to f (x). The
diagrammatic notation for single-target gates is as follows:

x1 x1...
xn xn

y

f

...

y f (x1 , . . . , xn)

(2.2)

The X gate and the CNOT gate are special cases of single-target gates in which f = 1 and f =
x1, respectively. These gates are also generalized by multiple-controlled Toffoli gates, which are

1The constant factors eiπ/4 and eiπ/8 are unobservable in quantum systems, but are a technicality to be consistent with the
literature.

5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

single-target gates where f can be described in terms of a single product term or f = 1 (the empty
product term). For more details on quantum computing the reader is referred to the literature
(e.g. [17–19]).

(b) Hierarchical quantum compilation
Given an n-input m-output Boolean function f (x1, . . . , xn) = (y1, . . . , ym) with x = x1 . . . xn and y =
y1 . . . ym, the mapping

Of : |x〉|y〉|0l〉 �→ |x〉|y ⊕ f (x)〉|0l〉, (2.3)

describes a 2n+m+l × 2n+m+l unitary operation, which permutes the amplitudes of a quantum
state according to f (x). Such unitary operations are key in quantum algorithms for integer
factorization [4] or Grover’s search algorithm [20]. The task of quantum compilation for such
unitary operations is to find a quantum circuit that realizes the operation without the need to
explicitly represent Of but only based on a symbolic representation of f , e.g. given as a logic
network. It can be seen that the n inputs are passed through n qubits |x〉 that can be in an arbitrary
quantum state. The outputs are computed onto m qubits, which can be in an arbitrary state |y〉.
Note that ‘⊕’ refers to the bitwise XOR operation. Finally, compilation can make use of l additional
helper qubits, called ancillae, which are all in state |0〉 before and after the computation, but can
be used to store intermediate temporary results. Restoring the additional qubits to the |0〉 state
is crucial, since intermediate computation results that remain in the output quantum state are
perceived as noise by subsequent operations in the quantum algorithm, eventually leading to
wrong results. The number of additional qubits is application- and hardware-specific. As an
example, in order to realize an 8-input, 8-output Boolean function in this form on a 20-qubit
quantum computer, one can use at most l = 4 ancillae. If m = 1 and l = 0, the unitary operation Of
is a single-target gate.

Hierarchical quantum compilation (also known as LUT-based hierarchical reversible logic
synthesis [11]) is a framework to find quantum circuits for Of when f is represented as a logic
network. As illustrated in figure 2, the framework performs the following three steps:

(i) Decompose f into a k-LUT network using k-LUT mapping (more details in §3a).
(ii) Assign the logic gates of the k-LUT network to the n + m + l qubits in the resulting

quantum circuit, making sure that no more than l temporary values are stored at any
time. Key algorithms to ensure this constraint in this step are based on reversible pebbling
games [21,22], which will be introduced in §3b. The logic gates are computed in terms of
single-target gates.

(iii) Map each single-target gate into a quantum circuit of elementary gates supported by the
targeted quantum device. Two possible algorithms for this step are illustrated in §§3c,d.

(c) Boolean satisfiability
The Boolean satisfiability (SAT) problem asks whether a given n-variable Boolean function f
represented in conjunctive normal form (CNF) has a satisfying assignment, i.e. whether there
exists an x ∈Bn such that f (x) = 1. A CNF is a conjunction of clauses, a clause is a disjunction of
literals, and a literal is a variable or its negation.

Example 2.2. The function f (x1, x2, x3) = (x1 ∨ x̄2) ∧ (x2 ∨ x3) ∧ (x̄1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) is
satisfied when x1 = 0, x2 = 0, and x3 = 1.

The SAT problem is NP-complete [23], yet many powerful SAT solvers [24,25] exist that can
efficiently solve several problems of practical interest even when n is large. In order to use SAT
solvers for practical applications, the decision problem to be solved must first be expressed in
terms of a SAT formula in CNF. Such an encoding is crucial and can have a significant impact
on the overall run-time of the SAT solver. In this paper, we illustrate several algorithms which
require an encoding of the original domain problem into a SAT formula.

6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

logic network

k-LUT
mapping

qubit
mapping

single-target gate
quantum circuit

single-target gate
decomposition

elementary gate
quantum circuit

§3a §3b §§3c,d

k-LUT
network

Figure 2. Hierarchical quantum compilation flow.

3. LUT-based hierarchical reversible logic synthesis

(a) LUT mapping
LUT mapping is an algorithm that transforms an arbitrary logic network into a k-LUT network. A
necessary condition to find such a mapping is that each gate in the initial logic network has no
more than k inputs. A logic network over the n primary inputs x1, x2 . . . , xn is a sequence of r gates
xn+1, xn+2, . . . , xn+r, where each gate

xi = fi(xi1 ⊕ pi1 , xi2 ⊕ pi2 , . . . , xiki
⊕ piki

) for n < i ≤ n + r (3.1)

is defined by means of a ki-input Boolean gate function fi and fan-ins xij ⊕ pij , with 0 ≤ ij < i, which
are either primary inputs, previous gates, or the constant x0 = 0. The constant complementation
flags pij give the possibility to complement a fan-in. They are part of the gate definition, but not
part of the input variables to the gate function. We refer to the set {x0, x1, . . . , xn+r} as nodes of
the logic network. Finally, the multi-output Boolean function represented by the logic network is
represented in terms of outputs y1, . . . , ym, where

yj = xoj ⊕ pj, (3.2)

with 0 ≤ oj ≤ n + r. The node xoj is called an output driver.
Cut enumeration [26,27] is a key technique used in LUT mapping. Cut enumeration finds for

all nodes xi in a logic network subcircuits, called cuts, with no more than k inputs that are rooted
in xi. The inputs of these subcircuits, called leaves, separate the root xi from the primary inputs of
the logic network. We refer to the set of all leaves corresponding to a cut to xi as CUTS(i) in the
remainder. A LUT mapping [26,28] assigns some nodes in the logic network to a cut in a way such
that

— all primary outputs in the logic network are mapped to a cut, and
— if a node is mapped to a cut, then each leaf of the cut must be mapped unless it is a

primary input.

A SAT-based LUT mapping algorithm was first proposed in [29]. In general, in order to
describe a problem as a SAT formula, we must find a suitable encoding in terms of Boolean
variables in the SAT formula and clauses that restrict the satisfying solutions to solutions of the
problem, if they exist. The problem is formulated as a SAT problem with variables mi for each gate
xi and variables sC for each cut C from all gates. The variables mi are 1 if gate xi has a mapping.
The variables sC are 1 if cut C has been chosen for a mapped gate. Three different types of clauses
are needed to constrain the problem such that the solution corresponds to a valid mapping. First,
if a gate xi is mapped, then at least one of its cuts must be chosen:

m̄i ∨
∨

C∈CUTS(i)

sC. (3.3)

7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

Furthermore, if a cut C has been chosen, then each of its leaves must be mapped unless the leaf is
a primary input:

(s̄C ∨ ml) for all l ∈ C when l > n (3.4)

Finally, each output driver must be mapped:

moj for all 1 ≤ j ≤ m. (3.5)

While these three types of clauses are sufficient in order to find a valid mapping, the resulting
mappings may not be of good quality. For example, the SAT solver could simply assign all
variables to 1 in order to satisfy all clauses. We need some way of adding a cost function to
the SAT formula. While multiple cost functions are possible, we illustrate the idea by finding a
mapping that minimizes the size. For this purpose, we further restrict the number of mapped
nodes to L by adding the cardinality constraint

n+r∑
i=n+1

mi ≤ L. (3.6)

Cardinality constraints can be translated into CNF in various different ways (e.g. [25,30,31]). In
order to find the smallest mapping, one can initialize L with a start value and then decrease it as
long as a satisfying solution can be found. Possible start values are the number of gates r or the
size of some initial mapping that has been found using a heuristic mapping algorithm. Optimized
6-LUT networks for the EPFL benchmark2 obtained using this problem formulation are shown
in [29].

Example 3.1. Figure 3a shows a logic network with primary inputs x1, x2, x3 and characterized
by a sequence of r = 3 gates x4, x5, x6. The SAT problem declares the variables m0, m1, m2,
one for each gate in the network. If two possible cuts are stored for each gate: CUTS(0) =
{c00, c01}, CUTS(1) = {c10, c11} and CUTS(2) = {c20, c21}. The CNF formulae defining a valid solution
with two LUTs are:

(m̄0 ∨ sc00 ∨ sc01) ∧ (m̄1 ∨ sc10 ∨ sc11) ∧ (m̄2 ∨ sc20 ∨ sc21) ∧∧
l∈c00

(s̄c00 ∨ ml) ∧
∧

l∈c01

(s̄c01 ∨ ml) ∧ · · · ∧
∧

l∈c21

(s̄c21 ∨ ml) ∧

(m̄0 ∨ m̄1 ∨ m̄2),

where the last row defines the cardinality constraint with L = 2.

Figure 3 illustrates the quantum compilation process of the 2-LUT network obtained
decomposing the 3-input function f (x1, x2, x3), that consists of two subfunctions g and h where
f (x1, x2, x3) = h(g(x1, x2), x3). Recall that we use unitary operations Ug and Uh to compute g and h
using three qubits, where two qubits hold the input values and a third qubit that is initialized to
0 stores the output result. Figure 3c shows a quantum circuit that computes f as a composition
of g and h using five qubits: three data qubits for |x1〉, |x2〉, and |x3〉, and two ancillae, which
are initialized to |0〉. The circuit in figure 3c does not realize a unitary operation such as described
in (2.3), as the value for |g〉 still remains at the end of the computation. Since all unitary operations
are reversible, a value can be uncomputed by applying the inverse operation, as long as all
original input values for the computation are still available. Figure 3d illustrates how the inverse
operation can uncompute the intermediate value for g.

(b) Quantummemory management
In the previous section, we illustrated how decomposed functions can be mapped into quantum
circuits using ancillae. For a given Boolean function, there exist several decompositions, and for
each decomposition, there exist several mappings, which might require a different number of

2https://github.com/lsils/benchmarks.

https://github.com/lsils/benchmarks

8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

x1

x4

x5

x6

x2 x3 x1 x2 x3

f

f

g

h

g h g h g

|x1Ò
|x2Ò

|x3Ò
|0Ò |gÒ

|0Ò

|x1Ò
|x2Ò

|x3Ò
|0Ò

|0Ò

|x1Ò
|x2Ò

|x3Ò
|gÒ

| f Ò

|x1Ò
|x2Ò

|x3Ò
|gÒ

| f Ò

(b)(a) (c) (d)

Figure 3. An example of mapping a function f into a quantum circuit; (a) logic network implementing f ; (b) functional
decomposition of f as a directed acyclic graph; (c) quantum circuit implementing f that does not uncompute g, thereby leaving
an intermediate value that can interfere with quantum states in superposition; (d) does uncompute g by applying it again in
reverse order. (Online version in colour.)

y2

y1

a b

c d

e

f

a b c d e f d c b a
a b c d e d c b f a

a c a b d
b
e a c f a b d b

x1 x2
x4x3

|x1Ò
|x2Ò
|x3Ò
|x4Ò
|0Ò
|0Ò
|0Ò
|0Ò
|0Ò
|0Ò

|x1Ò
|x2Ò
|x3Ò
|x4Ò
|0Ò
|0Ò
|0Ò
|0Ò
|0Ò

|x1Ò
|x2Ò
|x3Ò
|x4Ò
|0Ò
|0Ò
|0Ò
|0Ò

|x1Ò
|x2Ò

|y1Ò
|y2Ò

|x3Ò
|x4Ò
|0Ò
|0Ò
|0Ò
|0Ò

|x1Ò
|x2Ò

|y1Ò

|y2Ò

|x3Ò
|x4Ò
|0Ò

|0Ò
|0Ò

|x1Ò
|x2Ò

|y1Ò

|y2Ò

|x3Ò
|x4Ò
|0Ò

|0Ò

(e)

(b)

(a)

(c)

(d)

Figure 4. (a) Decomposition graph for 4-input/2-output function; (b) Bennett mapping [32]; (c) eager mapping [11]; (d)
mapping using pebbling strategies [33]; (e) resource usage histograms [33]. (Online version in colour.)

ancillae. This motivates the need for effective quantum memory management strategies that map
a decomposition into a quantum circuit using a given number of qubits.

Figure 4 illustrates three strategies of how one decomposition can be mapped into a quantum
circuit using a different number of ancillae. The graph in figure 4a shows a decomposition
of two Boolean functions y1 and y2 into six subfunctions a, . . . , f , where the subfunction a
is shared by both functions. Figure 4b shows the mapping into a quantum circuit using the
Bennett strategy [32], in which first all intermediate and function values are computed, and then
all intermediate values are uncomputed. This strategy uses one ancilla for each subfunction,
therefore leading to l = 4 ancillae and 10 qubits for the overall quantum circuit. We emphasize
time spans in which an ancilla carries an intermediate value by drawing it with a thick red

9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

line. As an alternative to the Bennett strategy, one can uncompute intermediate values eagerly
as illustrated in figure 4c, where intermediate values for b, c and d are not needed after e
has been computed. The uncomputation frees up an ancilla that can now be used to compute
f , and therefore one less ancilla is needed. Mappings that use fewer qubits can be achieved
by permitting to temporarily uncompute intermediate values. Such a strategy is illustrated in
figure 4d. However, fewer qubits also result in an increase in computation and uncomputation
steps. Consequently, the aim is to find a mapping sequence that leads to the fewest number
of computation and uncomputation steps, while maximally using the available qubits. The
checkerboards in figure 4e illustrate qubit utilization: each row corresponds to an ancilla, each
column corresponds to a time step, and a cell is filled black if the qubit holds a computed value
in that time step.

In order to find mapping strategies that lead to the fewest number of computation and
uncomputation steps, we exploit an analogy to the reversible pebble game [21]. A solution to the
reversible pebble game yields a feasible mapping strategy for the quantum memory management
problem [33]. The reversible pebble game is played on a directed acyclic graph G = (V, E) with a
set of outputs O ⊆ V. Each state in the game is described in terms of a configuration C ⊆ V, which
is a subset of vertices that are assigned pebbles. The goal of the game is to find a sequence of
configurations C1 = ∅, C2, . . . , Ck = O such that v ∈ (Ci � Ci+1) implies that w ∈ (Ci ∩ Ci+1) for all
(w, v) ∈ E. In other words, a pebble can only be added or removed from a vertex v if all its children
w are pebbled. We call such a sequence C1, . . . , Ck a p-solution if |Ci| ≤ p for all i. We derive a
sequence of computation and uncomputation steps from a valid p-solution to a pebble game if p
ancillae are available. The input graph G is the decomposition graph. Operation j is computed at
time step i, whenever j ∈ Ci ∩ Ci+1, and uncomputed at time step i, whenever j ∈ Ci ∩ Ci+1.

The formal description of the reversible pebble game can readily be expressed in terms of a SAT
problem which solves the decision problem Does there exist a p-solution with k steps?, initialized
with some lower bound for k that is incremented until a solution exists. The SAT problem is
expressed over variables v(s) for each v ∈ V and 0 ≤ s ≤ k, where v(s) is supposed to be true, if and
only if v ∈ Cs, i.e. whether v is pebbled at step k. Initially, no vertex is pebbled and eventually all
the output vertices must be pebbled:

∧
v∈V

v̄(0) and
∧

v∈V\O

v̄(k) ∧
∧
v∈O

v(k). (3.7)

The following clauses ensure a correct transition from one configuration to the next one:

∧
v∈V

⎛
⎝(v(s) ⊕ v(s+1)) ⇒

∧
(w,v)∈E

w(s) ∧ w(s+1)

⎞
⎠ (3.8)

for all 0 ≤ s < k. Finally, the cardinality constraint

∑
v∈V

v(s) ≤ p (3.9)

for all 1 ≤ s ≤ k ensures that at each step no more than p vertices are pebbled. A comparison
between the Bennett strategy and the SAT-based strategy is presented in [33], with a focus on
the trade-off between qubits and quantum operations.

The above approach guarantees termination if there exists a p-solution. Otherwise, the SAT
formula is unsatisfiable for all k. In this case, it is difficult to analyse whether the formula is
unsatisfiable because k is still too large or whether there exists no solution. The problem lies in
the underlying methodology of increasing k until a solution is found, which is also referred to as
bounded model checking [34]. Alternative methods with the ability to prove that no solution can
exist, are property-directed reachability [35,36] or fixed-point computation [37]. However, these
methods cannot guarantee to find a solution with the smallest k.

10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

(c) ESOP-based synthesis
An exclusive sum-of-products (ESOP) form is an exclusive sum (using the ‘⊕’) operator of product
terms. Each Boolean function can have several different ESOP forms, e.g. one can express x1 ∨ x2
as x1 ⊕ x2 ⊕ x1x2 or as 1 ⊕ x̄1x̄2. ESOP forms are useful in quantum compilation since they allow
us to decompose a single-target gate into a sequence of generalized Toffoli gates. More precisely,
if f has the ESOP form c1 ⊕ c2 ⊕ . . . ⊕ ck, where each ck is a product term, then

Uf = Uc1 Uc2 . . . Uck . (3.10)

The above-mentioned example for the OR function can therefore be interpreted in the quantum
circuit model as follows:

x1

x1

x1

x2

x2

x2

x1
x2

y
= =

y ()

(3.11)

By finding an ESOP form for the control function of a single-target gate, one can use some of the
several presented Toffoli gate compilation techniques (e.g. [38–40]). A good heuristic to reduce
the compilation cost of a single-target gate using this method is to find a short ESOP with a fewer
number of product terms.

A SAT-based algorithm to find an ESOP form for an n-variable Boolean function f (x1, . . . , xn)
with the minimum number of product terms has been presented in [41] based on ideas in [42].
We follow a similar strategy as in the previous section by solving the decision problem Does there
exist an ESOP form for f with k gates? starting from some lower bound on k, increasing k until a
satisfying solution has been found. The SAT problem is expressed over Boolean variables pj,i and
qj,i for 1 ≤ i ≤ n and 1 ≤ j ≤ k, where pj,i is true, if and only if xi is contained in the jth product
term and qj,i is true, if and only if x̄i is contained in the jth product term. The SAT formula further
contains variables zj,l for 1 ≤ j ≤ k and 0 ≤ l < 2n. For all values l = (b1 . . . bn)2, the clauses

k∧
j=1

n∧
i=1

(z̄j,l ∨ (bi ? q̄j,i : p̄j,i)) and
k∧

j=1

(
zj,l ∨

n∨
i=1

(bi ? qj,i : pj,i)

)
(3.12)

ensure that if zj,l = 1, then the jth product term evaluates to 1 for assignment b1, . . . , bn and if
zj,l = 0, then the jth product term evaluates to 0 for assignment b1, . . . , bn, where the if-then-else
operator c ? t : e returns t if condition c is true and e otherwise. Note that in (3.12) all conditions of
the if-then-else operators are constants. Finally, the XOR constraint

k⊕
j=1

zj,l = f (b1, . . . , bn) (3.13)

guarantees that an odd number of zj,ls evaluate to 1 if function f evaluates to 1 for the input
assignment b1, . . . , bn, and to 0, otherwise. The XOR constraint in (3.13) is the only constraint that
involves the input function; it can be translated into clauses by adding auxiliary variables and
applying encoding schemes such as the one presented by Tseytin [43]. Results relative to this
encoding are reported in [41].

(d) Spectral-based synthesis
An interesting subclass of quantum circuits are those that can be constructed using only CNOT
gates and Rz gates. Such circuits are characterized by the phase polynomial representation (e.g. [44–
46]). A phase polynomial representation for a unitary 2n × 2n matrix U over n qubits is a tuple
(A, (θ1, f1), . . . , (θk, fk)), where A ∈ GLn(B) is a linear Boolean matrix, θi are real-valued angles, and

11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

fi are linear Boolean functions over n variables. A phase polynomial representation describes the
matrix

U : |x〉 �→
⎛
⎝ k∏

i=1

eiθi fi(x)

⎞
⎠ |Ax〉. (3.14)

Conversely, it can be shown that matrices obtained from a phase polynomial representation can
always be represented by a quantum circuit using only CNOT and Rz gates. A simple way to get
familiar with the phase polynomial representation is to read a phase polynomial representation
from a quantum circuit.

T
e

ip
4)) |x1x2Ò|x2Ò

|x1Ò
x1

(x1 + x2 – (x1
x1 x1

x2 x2T † T

x2 (3.15)

The phase polynomial representation for this circuit is(
I,
(π

4
, x1

)
,
(π

4
, x2

)
,
(
−π

4
, x1 ⊕ x2

))
, (3.16)

where I is the 2 × 2 identity matrix. This linear matrix can be obtained by considering the action
on the qubits performed exclusively by all CNOT gates.

By observing that x1 ⊕ x2 = x1 + x2 − 2x1x2, the operation performed by the quantum circuit
in (3.15) is e(iπ/2)x1x2 |x1x2〉, which is the controlled-S gate [17].

The controlled-controlled-Z operation, or CCZ in short, performs the action

CCZ|x1x2x3〉 = eiπx1x2x3 |x1x2x3〉 (3.17)

and is represented by the unitary matrix diag(1, 1, 1, 1, 1, 1, 1, −1). Since

4x1x2x3 = x1 + x2 + x3 − (x1 ⊕ x2) − (x1 ⊕ x3) − (x2 ⊕ x3) + (x1 ⊕ x2 ⊕ x3), (3.18)

one can derive that a phase polynomial representation for the CCZ gate is [44](
I,
(π

4
, x1

)
,
(π

4
, x2

)
,
(π

4
, x3

)
,
(
−π

4
, x1 ⊕ x2

)
,
(
−π

4
, x1 ⊕ x3

)
,

×
(π

4
, x2 ⊕ x3

)
,
(π

4
, x1 ⊕ x2 ⊕ x3

))
. (3.19)

There are many possible quantum circuits that represent this phase polynomial representation,
one example is

= eip|x2Ò
|x3Ò

|x1Ò

|x1x2x3Ò
T

T

T T

T †

T † T †

x1x2x3 (3.20)

The T and T† gates from left to right are applied to the polynomials x1, x2, x1 ⊕ x2, x3, x1 ⊕ x3,
x1 ⊕ x2 ⊕ x3 and x2 ⊕ x3. Since HZH = X, the circuit construction can be used to find a quantum
circuit over the Clifford+T gate basis:

=

H H

=

H

T

T

T

T†

T† T T† H

(3.21)

In [47], the authors showed how to extract and realize phase polynomial representations for
single-target gates based on the work presented in [48,49].

We next describe a SAT-based algorithm that finds a circuit with the smallest number of CNOT
gates to realize a given phase polynomial representation (A, (θ1, f1), . . . , (θk, fk)) over n qubits [50].
The algorithm solves decision problems of the form Does there exist a CNOT+Rz circuit with S
CNOT gates? starting from some lower bound on S, then incrementing S until a satisfying solution

12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

is found. The SAT formula is expressed over variables a(s)
i,j with 1 ≤ i, j ≤ n and 0 ≤ s ≤ S that

represent the linear operation of the quantum circuit after the sth CNOT gate. Furthermore,
variables c(s)

i and t(s)
i for 1 ≤ i ≤ n and 1 ≤ s ≤ S are used to represent the position of the control

and target line for the sth CNOT gate. Finally, variables p(s)
i,l for 1 ≤ i ≤ n, 1 ≤ l ≤ k, and 1 ≤ s ≤ S

indicate whether the linear function on qubit i at step s matches the parity term fl in the given
phase polynomial representation; and variables q(s)

l for 1 ≤ l ≤ k and 1 ≤ s ≤ S indicate whether a
parity term has been realized on any qubit at step s or before.

The following constraints need to be satisfied in order to find a valid solution. First, the initial
linear transformation at step 0 is the identity transformation and the final linear transformation
at step S should match A, i.e.

∧
1≤i,j≤n

[a(0)
i,j = δij] and

∧
1≤i,j≤n

[a(S)
i,j = Ai,j] (3.22)

where δij is the delta function δij = [i = j]. Next, there can be exactly one control and one target at
each step, and they must be on different qubits:

∧
1≤i<j≤n

[
(c̄(s)

i ∨ c̄(s)
j)(t̄(s)

i ∨ t̄(s)
j)
]

∧ (c(s)
1 ∨ . . . ∨ c(s)

n) ∧ (t(s)
1 ∨ . . . ∨ t(s)

n) ×
∧

1≤i≤n

(c̄(s)
i ∨ t̄(s)

i) (3.23)

for all 1 ≤ s ≤ S. More clauses ensure that the linear transformation at step s changes from the
transformation at step s − 1 according to the CNOT gate at step s. First, no change takes place if
the target is not on some qubit, i.e.

∧
1≤i≤n

∧
1≤j≤n

(
t̄(s)
i ⇒ (a(s−1)

i,j = a(s)
i,j)
)

=
∧

1≤i≤n

∧
1≤j≤n

(t(s)
i ∨ ā(s−1)

i,j ∨ a(s)
i,j)(t(s)

i ∨ a(s−1)
i,j ∨ ā(s)

i,j), (3.24)

for all 1 ≤ s ≤ S. Second, the row of the control line needs to be added to the target line, i.e.

∧
1≤i,i′≤n

i�=i′

∧
1≤j≤n

(
(c(s)

i ∧ t(s)
i′) ⇒ (a(s)

i′,j = a(s−1)
i′,j ⊕ a(s−1)

i,j

)

=
∧

1≤i,i′≤n
i�=i′

∧
1≤j≤n

(c̄(s)
i ∨ t̄(s)

i′ ∨ ā(s)
i′,j ∨ ā(s−1)

i′,j ∨ ā(s−1)
i,j)(c̄(s)

i ∨ t̄(s)
i′ ∨ ā(s)

i′,j ∨ a(s−1)
i′,j ∨ a(s−1)

i,j)

× (c̄(s)
i ∨ t̄(s)

i′ ∨ a(s)
i′,j ∨ ā(s−1)

i′,j ∨ a(s−1)
i,j)(c̄(s)

i ∨ t̄(s)
i′ ∨ a(s)

i′,j ∨ a(s−1)
i′,j ∨ ā(s−1)

i,j), (3.25)

for all 1 ≤ s ≤ S.
The clauses so far guarantee that the linear function of the circuit according to the CNOT

gates is computed correctly. Finally, we need to ensure that all parity terms fl are realized at some
step by some qubit. We do this in two steps. First, variables p(s)

i,l are true whenever the linear
transformation after step s on qubit i matches the parity term fl, ensured by

∧
1≤i≤n

⎛
⎝p(s)

i,l ⇒
∧

1≤j≤n

(a(s)
i,j = [xj ∈ fl])

⎞
⎠=

∧
1≤i≤n

∧
1≤j≤n

⎧⎪⎨
⎪⎩
(

p̄(s)
i,l ∨ a(s)

i,j

)
if xj ∈ fl(

p̄(s)
i,l ∨ ā(s)

i,j

)
if xj /∈ fl

(3.26)

for all 1 ≤ s ≤ S. Note that xj ∈ fl means that xj is in the parity term fl. Finally, we use variables q(s)
l

to assert that parity term l was realized on some qubit at step s or before, and then assert that all
parity terms must have been realized at the final step S:

q(s)
l =

∨
1≤i≤n

p(s)
i,l ∨ q(s−1)

l for 1 ≤ s ≤ S, and
∧

1≤l≤k

q(S)
l . (3.27)

Circuits obtained solving the problem as encoded in this section can be found in [50].

13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

4. Conclusion
In this work, we described a hierarchical compilation flow based on LUT-networks that is
particularly efficient when the quantum system is constrained. We proposed different SAT-
based algorithms that are used to find an optimal solution to several critical subproblems of the
compilation flow. Because SAT methods are not scalable, they find a suited application in the
hierarchical quantum compilation flow where complex problems are decomposed into smaller
ones. Nevertheless, they can also be applied to large problems when combined with heuristics.

We provide open source implementations for all mentioned algorithms in the EPFL logic
synthesis libraries [51], namely tweedledum,3 caterpillar,4 easy5 and mockturtle.6

The algorithms are able to solve several interesting problems. Nonetheless, there are open
problems which still seek solutions. For SAT-based k-LUT mapping, it is interesting to investigate
how associating a cost function with each LUT may improve the final result. For example, it
is possible to consider the cost of each LUT after being decomposed into elementary quantum
gates, as experimented in a heuristic solution in [52]. Similarly, it would be interesting to consider
resource-constrained reversible pebble games, which would enable to prefer solutions where
expensive computations are less often computed and uncomputed. In addition, the relation
between ESOP minimality and actual implementation cost is worth being investigated, as, e.g.
done in [53] by proposing a cost-minimal ESOP synthesis. Finally, to better address the hardware
capabilities for the quantum devices, it is desirable to consider layout constraints such as qubit
coupling constraints in the decompositions, as, e.g. done in [54,55].

Data accessibility. Github repositories to the software packages are mentioned in the paper.
Authors’ contributions. All authors contributed equally to the paper.
Competing interests. We declare we have no competing interests.
Funding. This research was supported by the European Research Council in the project H2020-ERC-2014-ADG
669354 CyberCare and by the Swiss National Science Foundation (200021-169084 MAJesty).

References
1. Feynman RP. 1982 Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488.

(doi:10.1007/BF02650179)
2. Low GH et al. 2019 Q# and NWChem: tools for scalable quantum chemistry on quantum

computers. (http://arxiv.org/1904.01131)
3. Roetteler M, Naehrig M, Svore KM, Lauter K. 2017 Quantum resource estimates for

computing elliptic curve discrete logarithms. In Int. Conf. on the Theory and Applications of
Cryptology and Information Security, Advances in Cryptology - ASIACRYPT 2017, pp. 241–270.

4. Shor PW. 1997 Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput. 26, 1484–1509. (doi:10.1137/S0097539795293172)

5. Castelvecchi D. 2017 Quantum computers ready to leap out of the lab in 2017. Nature 541,
9–10. (doi:10.1038/541009a)

6. IBM. 2017 IBM builds its most powerful universal quantum computing processors. Press release, 17
May 2017.

7. Intel. 2017 Intel delivers 17-qubit superconducting chip with advanced packaging to QuTech. Press
release, 10 October 2017.

8. Soeken M, Häner T, Roetteler M. 2018 Programming quantum computers using design
automation. Design, automation and test in Europe 2018, 137–146. (doi:10.23919/DATE.
2018.8341993)

3github.com/boschmitt/tweedledum.

4github.com/gmeuli/caterpillar.

5github.com/hriener/easy.

6github.com/lsils/mockturtle.

http://dx.doi.org/doi:10.1007/BF02650179
http://arxiv.org/1904.01131
http://dx.doi.org/doi:10.1137/S0097539795293172
http://dx.doi.org/doi:10.1038/541009a
http://dx.doi.org/doi:10.23919/DATE.2018.8341993
http://dx.doi.org/doi:10.23919/DATE.2018.8341993

14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

9. Häner T, Steiger DS, Svore K, Troyer M. 2016 A software methodology for compiling quantum
programs. (http://arxiv.org/1604.01401)

10. Chong FT, Franklin D, Martonosi M. 2017 Programming languages and compiler design for
realistic quantum hardware. Nature 549, 180–187. (doi:10.1038/nature23459)

11. Soeken M, Roetteler M, Wiebe N, De Micheli G. In press. LUT-based hierarchical reversible
logic synthesis. IEEE Trans. on CAD of Integrated Circuits and Systems.

12. Markov IL, Saeedi M. 2012 Constant-optimized quantum circuits for modular multiplication
and exponentiation. Quantum Inf. Comput. 12, 361–394.

13. Markov IL, Saeedi M. 2013 Faster quantum number factoring via circuit synthesis. Phys. Rev.
A 87, 012310 . (doi:10.1103/PhysRevA.87.012310)

14. Preskill J. 2018 Quantum computing in the NISQ era and beyond. Quantum 2, 79.
(doi:10.22331/q-2018-08-06-79)

15. Gottesman D. 2010 An introduction to quantum error correction and fault-tolerant quantum
computation. In Symposia in applied mathematics, vol. 68, pp. 13–58. (http://arxiv.org/
0904.2557)

16. Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow JM, Gambetta JM. 2017
Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets. Nature 549, 242–246. (doi:10.1038/nature23879)

17. Nielsen MA, Chuang IL. 2000 Quantum computation and quantum information. Cambridge, UK:
Cambridge University Press.

18. Kitaev AY, Shen AH, Vyalyi MN. 2002 Classical and quantum computation, vol. 47. Graduate
Series in Mathematics. American Mathematical Society.

19. Saeedi M, Markov IL. 2013 Synthesis and optimization of reversible circuits - a survey. ACM
Comput. Surv. 45, 21. (doi:10.1145/2431211.2431220)

20. Grover LK. 1996 A fast quantum mechanical algorithm for database search. In STOC 1996
Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Philadelphia, PA,
22–24 May, pp. 212–219.

21. Bennett CH. 1989 Time/space trade-offs for reversible computation. SIAM J. Comput. 18, 766–
776. (doi:10.1137/0218053)

22. Královic R. 2001 Time and space complexity of reversible pebbling. In Conf. on Current Trends
in Theory and Practice of Informatics, Piestany, Slovakia, 24 November–1 December 2001, pp. 292–
303.

23. Cook SA. 1971 The complexity of theorem-proving procedures. In STOC 1971 Proceedings of the
third annual ACM symposium on Theory of computing, Shaker Heights, OH, 3–5 May, pp. 151–158.

24. Biere A, Heule M, van Maaren H, Walsh T (eds). 2009 Handbook of satisfiability. Amsterdam,
the Netherlands: IOS Press.

25. Knuth DE. 2015 The art of computer programming, volume 4, fascicle 6: satisfiability. Reading, MA:
Addison-Wesley.

26. Cong J, Ding Y. 1994 On area/depth trade-off in LUT-based FPGA technology mapping. IEEE
Trans. VLSI Syst. 2, 137–148. (doi:10.1109/92.285741)

27. Cong J, Wu C, Ding Y. 1999 Cut ranking and pruning: enabling a general and efficient FPGA
mapping solution. In FPGA 1999 Proceedings of the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays, Monterey, CA, 21–23 February, pp. 29–35.

28. Mishchenko A, Chatterjee S, Brayton RK. 2007 Improvements to technology mapping for
LUT-based FPGAs. IEEE Trans. CAD Integr. Circuits Syst. 26, 240–253. (doi:10.1109/TCAD.
2006.887925)

29. Schmitt B, Mishchenko A, Brayton RK. 2018 SAT-based area recovery in structural technology
mapping. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju,
South Korea, 22–25 January, pp. 586–591.

30. Bailleux O, Boufkhad Y. 2003 Efficient CNF encoding of Boolean cardinality constraints. In:
Principles and Practice of Constraint Programming – CP 2003 (ed. F Rossi), pp. 108–122. Lecture
Notes in Computer Science, vol. 2833. Berlin, Heidelberg, Germany: Springer.

31. Sinz C. 2005 Towards an optimal CNF encoding of Boolean cardinality constraints. In:
Principles and Practice of Constraint Programming – CP 2003 (ed. F Rossi), pp. 827–831. Lecture
Notes in Computer Science, vol. 2833. Berlin, Heidelberg, Germany: Springer.

32. Bennett CH. 1973 Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532.
(doi:10.1147/rd.176.0525)

http://arxiv.org/1604.01401
http://dx.doi.org/doi:10.1038/nature23459
http://dx.doi.org/doi:10.1103/PhysRevA.87.012310
http://dx.doi.org/doi:10.22331/q-2018-08-06-79
http://arxiv.org/0904.2557
http://arxiv.org/0904.2557
http://dx.doi.org/doi:10.1038/nature23879
http://dx.doi.org/doi:10.1145/2431211.2431220
http://dx.doi.org/doi:10.1137/0218053
http://dx.doi.org/doi:10.1109/92.285741
http://dx.doi.org/doi:10.1109/TCAD.2006.887925
http://dx.doi.org/doi:10.1109/TCAD.2006.887925
http://dx.doi.org/doi:10.1147/rd.176.0525

15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

33. Meuli G, Soeken M, Roetteler M, Bjørner N, De Micheli G. 2019 Reversible pebbling game for
quantum memory management. In Proc. Design, Automation and Test in Europe, pp. 288–291.

34. Biere A, Cimatti A, Clarke EM, Zhu Y. 1999 Symbolic model checking without BDDs. In Tools
and Algorithms for the Construction and Analysis of Systems. TACAS 1999 (ed. WR Cleaveland),
pp. 193–207. Lecture Notes in Computer Science, vol. 1579. Berlin, Heidelberg, Germany:
Springer.

35. Bradley AR. 2011 SAT-based model checking without unrolling. In Verification, Model Checking,
and Abstract Interpretation. VMCAI 2011 (eds R Jhala, D Schmidt), pp. 70–87. Lecture Notes in
Computer Science, vol. 6538. Berlin, Heidelberg, Germany: Springer.

36. Eén N, Mishchenko A, Brayton RK. 2011 Efficient implementation of property directed
reachability. In FMCAD 2011 Proceedings of the International Conference on Formal Methods in
Computer-Aided Design, Austin, TX, 30 October–2 November, pp. 125–134.

37. Hoder K, Bjørner N, de Moura LM. 2011 μZ - an efficient engine for fixed points with
constraints. In Computer Aided Verification. CAV 2011 (eds G Gopalakrishnan, S Qadeer),
pp. 457–462. Lecture Notes in Computer Science, vol. 6806. Berlin, Heidelberg, Germany:
Springer.

38. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin
JA, Weinfurter H. 1995 Elementary gates for quantum computation. Phys. Rev. A 52, 3457.
(doi:10.1103/PhysRevA.52.3457)

39. Maslov D. 2016 Advantages of using relative-phase Toffoli gates with an application to
multiple control Toffoli optimization. Phys. Rev. A 93, 022311. (doi:10.1103/PhysRevA.
93.022311)

40. Abdessaied N, Amy M, Drechsler R, Soeken M. 2016 Complexity of reversible circuits
and their quantum implementations. Theor. Comput. Sci. 618, 85–106. (doi:10.1016/j.tcs.
2016.01.011)

41. Riener H, Ehlers R, Schmitt B, Micheli GD. 2020 Exact synthesis of ESOP forms. In Advanced
boolean techniques (eds R Drechsler, M Soeken). Berlin, Germany: Springer. (http://arxiv.org/
1807.11103)

42. Kamath AP, Karmarkar N, Ramakrishnan KG, Resende MGC. 1992 A continuous approach
to inductive inference. Math. Program. 57, 215–238. (doi:10.1007/BF01581082)

43. Tseytin GS. 1970 On the complexity of derivation in propositional calculus. In Studies in
constructive mathematics and mathematical logic, part II, seminars in mathematics (ed. AP Slisenko),
pp. 115–125. Berlin, Germany: Springer.

44. Selinger P. 2013 Quantum circuits of T-depth one. Phys. Rev. A 87, 042302. (doi:10.1103/
PhysRevA.87.042302)

45. Amy M, Maslov D, Mosca M, Roetteler M. 2013 A meet-in-the-middle algorithm for fast
synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr. Circuits Syst. 32, 818–830.
(doi:10.1109/TCAD.2013.2244643)

46. Amy M, Maslov D, Mosca M. 2014 Polynomial-time T-depth optimization of Clifford+T
circuits via matroid partitioning. IEEE Trans. CAD Integr. Circuits Syst. 33, 1476–1489.
(doi:10.1109/TCAD.2014.2341953)

47. Soeken M, Mozafari F, Schmitt B, De Micheli G. 2019 Compiling permutations for
superconducting QPUs. In 2019 Design, Automation & Test in Europe Conference & Exhibition,
Florence, Italy, 25–29 May, pp. 1349–1354.

48. Welch J, Greenbaum D, Mostame S, Aspuru-Guzik A. 2014 Efficient quantum circuits
for diagonal unitaries without ancillas. New J. Phys. 16, 1–15. (doi:10.1088/1367-2630/
16/3/033040)

49. Schuch N, Siewert J. 2003 Programmable networks for quantum algorithms. Phys. Rev. Lett.
91, 027902. (doi:10.1103/PhysRevLett.91.027902)

50. Meuli G, Soeken M, De Micheli G. 2018 SAT-based {CNOT, T} quantum circuit synthesis.
In Reversible Computation. RC 2018 (eds J Kari, I Ulidowski), pp. 175–188. Lecture Notes in
Computer Science, vol. 11106. Cham: Springer.

51. Soeken M, Riener H, Haaswijk W, De Micheli G. 2018 The EPFL logic synthesis libraries.
(http://arxiv.org/1805.05121)

52. Meuli G, Soeken M, Roetteler M, De Micheli G. 2019 ROS: resource-constrained oracle
synthesis for quantum computers. In Quantum physics and logic. (http://qpl2019.org/ros-
resource-constrained-oracle-synthesis-for-quantum-computers/)

http://dx.doi.org/doi:10.1103/PhysRevA.52.3457
http://dx.doi.org/doi:10.1103/PhysRevA.93.022311
http://dx.doi.org/doi:10.1103/PhysRevA.93.022311
http://dx.doi.org/doi:10.1016/j.tcs.2016.01.011
http://dx.doi.org/doi:10.1016/j.tcs.2016.01.011
http://arxiv.org/1807.11103
http://arxiv.org/1807.11103
http://dx.doi.org/doi:10.1007/BF01581082
http://dx.doi.org/doi:10.1103/PhysRevA.87.042302
http://dx.doi.org/doi:10.1103/PhysRevA.87.042302
http://dx.doi.org/doi:10.1109/TCAD.2013.2244643
http://dx.doi.org/doi:10.1109/TCAD.2014.2341953
http://dx.doi.org/doi:10.1088/1367-2630/16/3/033040
http://dx.doi.org/doi:10.1088/1367-2630/16/3/033040
http://dx.doi.org/doi:10.1103/PhysRevLett.91.027902
http://arxiv.org/1805.05121
http://qpl2019.org/ros-resource-constrained-oracle-synthesis-for-quantum-computers/
http://qpl2019.org/ros-resource-constrained-oracle-synthesis-for-quantum-computers/

16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190161

..

53. Meuli G, Schmitt B, Ehlers R, Riener H, De Micheli G. 2019 Evaluating ESOP optimization
methods in quantum compilation flows. In Reversible Computation. RC 2019 (eds M Thomsen,
M Soeken). Lecture Notes in Computer Science, vol. 11497. Cham: Springer.

54. Nash B, Gheorghiu V, Mosca M. 2019 Quantum circuit optimizations for NISQ architectures.
(http://arxiv.org/1904.01972)

55. Kissinger A, Meijer-van de Griend A. 2019 CNOT circuit extraction for topologically-
constrained quantum memories. (http://arxiv.org/1904.00633)

http://arxiv.org/1904.01972
http://arxiv.org/1904.00633

	Introduction
	Preliminaries
	Quantum computing
	Hierarchical quantum compilation
	Boolean satisfiability

	LUT-based hierarchical reversible logic synthesis
	LUT mapping
	Quantum memory management
	ESOP-based synthesis
	Spectral-based synthesis

	Conclusion
	References

