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Abstract—Memristive biosensors have demonstrated excellent 

capabilities for ultrasensitive bio-detection. In the present work, 
memristive biosensing chips are designed, fabricated and 
implemented in a for the first time presented multi-panel on-chip 
detection for discrete sensing of a target molecule through 
separate functionalization of individual devices on the same chip. 
The biosensing scheme is validated by means of labeled (i.e. 
fluorescence) and label-free (i.e. electrical) characterization 
methods. This novel memristive multi-panel sensing paradigm 
paves the way for fast and ultrasensitive PoC (point-of-care) 
devices allowing the detection of specific targets in complex 
matrixes where non-specific molecules are present as well, and 
opening great potential for the application of memristive 
phenomena in multiplexed ultrasensitive bio-detection and 
theranostics.  
 

Index Terms— Memristive Biosensors; Bio-functionalization; 
Multi-panel detection;  

I. INTRODUCTION 
EMICONDUCTOR nanowires may provide low-cost 

microchips and therefore are considered as effective and 
highly promising building blocks for miniaturized 

bioassays dedicated to medical applications, in both diagnostics 
and therapeutics. In this framework, silicon nanowire-arrays 
that exhibit memristive electrical properties [1]-[3] are bio-
functionalized with receptor molecules i.e. antibodies or DNA 
aptamers, giving rise to the so-called memristive biosensors. 
These memristive sensors have already successfully achieved 
ultrasensitive detection for cancer biomarkers, demonstrating 
atto-molar concentration sensing performance [4] as well as 
effective screening of therapeutic compounds, along with the 
possibility for continuous drug monitoring [5] therefore 
showing immense potential for ultrasensitive and precise 
biosensing. The bio-detection is based on the hysteresis 

modification appearing in the electrical characteristics upon the 
introduction of charged biological species on the nanodevices’ 
surface (bio-functionalization procedures and target molecule 
uptake) [6], [7], [8].  

Moreover, the design and realization of memristive 
biosensing electronic platforms was realized and validated [9], 
[10] providing a fast, fully-automatized and simultaneous 
sensing output of multiple individual memristive biosensors on 
a single chip. Highlights of the development steps of 
memristive biosensors are summarized in Table I.  

 
Table I. Developing Memristive Biosensors 

Physical and Chemical Sensing 
Anti-rabbit  [6] 
pH [11] 
VGEF [12] 
Prostate Specific Antigen (PSA) [4] 
Tenofovir (TFV) [5] 
Theoretical Study and Modelling  
Equivalent circuit modeling  [7], [13] 
Physical modeling  [8] 
Integration, optimization towards PoC schemes  
Bio-functionalization  [14] 
Microfluidics  [15] 
Electronic platforms [9] [10] 
Multi-panel on-chip sensing  Present work 
 
Meanwhile, the importance of multi-panel detection in a lab-

on-a-chip framework is even more pronounced when 
considering the aspect of theranostics applications where both 
disease biomarkers and therapeutic compounds are 
simultaneously monitored in order to reflect the effect of the 
treatment [16]-[19]. This scheme may involve target molecules 
that are competing or complementary to each other. The first 
case concerns for instance a disease marker and the specific 
therapeutic drug or its metabolites, evaluating the efficiency of 
the medical treatment in the form of a feedback loop, allowing 
appropriate adjustments for enhancing the therapy [20]-[22]. 
The case of complementary markers refers to simultaneous 
detection of multiple biomarkers indicating the same disease or 
disorder targeting at a more accurate evaluation of the disease 
evolution and providing enhanced diagnosis [23]. Furthermore, 
the discrete sensing of specific biomarkers when included in a 
more complex matrix or cocktail of multiple substances 
consists another significant challenge in biosensing.  

In this work, a proof-of-concept study demonstrating multi-
panel detection paradigm involving memristive biosensors and 
individualized sensing is for the first time presented and 
validated through electrical and fluorescence characterization 
techniques. This biosensing scheme paves the way for 
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individualized biomarker sensing in a complex matrix, as well 
as for multiple biomarkers/drugs detection on the same chip and 
application in theranostics. Sensing chips of memristive 
biosensors conjugated with metallic extension electrodes are 
validated for successful sensing performance and then 
implemented for multi-panel sensing.  

II. MATERIALS AND METHODS  

A. Memristive Biosensing chips 
Two-terminal silicon (Si) nanofabricated wire-arrays 

exhibiting memristive electrical properties are acquired through 
a top-down fabrication process using Silicon-on-Insulator 
(SOI) wafers as described in [7], by implementing electron 
beam lithography and Deep Reactive Ion Etching (DRIE). The 
wires are suspended and anchored between Nickel Silicide 
(NiSi) pads forming Schottky-barriers and serving for the 
electrical characterization of the nanodevices. Metal lines are 
integrated on top of the already fabricated nanostructures and 
serve as extension line electrodes to the NiSi pads of the 
devices, as described in [9]. The metal lines are designed taking 
into consideration the fact that the hysteretic properties of the 
memristive biosensors are sensitive to additional resistive 
elements introduced in series to the nanofabricated devices, 
eliminating or even completing masking the memristive 
properties of the nanodevices. For this reason, the extension 
lines design follows the outcomes of a relevant computational 
study and calculations [9], [13] for respecting the resistance 
tolerance of the system. A common source and separated drains 
are considered for individual measurement of twelve integrated 
sensors (as seen in Fig. 1) that allow possibility for adequate 
statistical analysis to determine average value and standard 
deviation. This statistical analysis is required for obtaining 
reliable results and overcome the variability of the sensors 
originating from the DRIE process. In addition, such realization 
of multiple sensors allows the possibility for simultaneous 
sensing (multi-panel sensing), that consists the main aim of the 
present study.  

To confirm the sound functionality of the metal lines the 
memristive devices were functionalized by exposure of the 
surface to antibody against Prostate Specific Antigen (PSA), i.e. 
anti-PSA antibody (Abcam-ab10185), solution in Phosphate 
Buffered Saline (PBS) (pH 7.4 Sigma-Aldrich) for 4 h at room 
temperature, thoroughly rinsed with the same buffer and gently 
dried with N2 flow. Then, the antigen uptake was performed 
through successive 45 min incubations of the sensing chip in 
solutions of PSA (Millipore Angebot R-1939458.1; 539834 
purchased from Merck) in PBS. The measurements were 
performed with the prober needles placed on the Pt pads instead 
of the NiSi pads.  

The electrical monitoring of the memristive nano-bio-sensors 
was performed utilizing the configuration consisting of a 
Cascade Microtech Probe Station in combination to a Hewlett-
Packard 4165A Precision Semiconductor Parameter Analyzer. 
Fluorescence characterization is carried out using scanner 
Typhoon Trio (GE Healthcare). 

B. Multiplexing approach for sensing 
A single-chip, detection in a multi-panel mode is for the first 

time attempted implementing memristive biosensors. The 

memristive devices included in the same 1 cm x 1 cm chip are 
first subjected to a silanization step with GPTES (440167, 
Sigma-Aldrich). Then the devices are separately bio-
functionalized with different antibody solutions. Antibodies 
either from mouse, goat or rabbit were diluted within PBS to 
get a final concentration of 0.5 mg/ml with 0.5% trehalose 
(T9449, D-(+)-Trehalose dihydrate from corn starch=99%, 
Sigma). Multiplexed biosensing requires post-fabrication 
nanowire functionalization with probe molecules, (though 
robotic spotting [24], ink-jet printing [25], selective heating 
[26], electrochemically [27], or via dip-pen nanolithography 
[28]). In this work, a micro-spotter (GeSim NanoPlotter 2.1) is 
used for specific and separate bio-functionalization of each 
nanodevice with the different antibodies under consideration, 
with a drop of 400 pL antibody-solution of an initial diameter 
set at 150 µm. A rabbit antibody is used as a positive-control 
bio-functionalization reagent and is spotted to various devices 
of the sensing chip. Meanwhile, three different negative 
controls are taken into consideration: a mouse and a goat 
antibody both applied at the same concentrations as the positive 
control as well as plain buffer solution (PBS).  

The micro-spotting procedure finally results in discrete bio-
functionalization of different devices (Fig.1). Following the 
bio-functionalization the chip remains in a humid chamber for 
1 h in order to ensure the attachment of the bio-functionalization 
regents on the nanodevice surface. The additional humidity 
introduced, aims at the conservation of the liquid antibody-
solution drops which are very sensitive to evaporation issues. 
In order to prevent non-specific binding of proteins during the 
detection measurement, the remaining active GPTES-derived 
groups are passivated by applying 10 mM ethanolamine in PBS 
solution at room temperature. Washing process is further 
performed to remove unreacted molecules.  

An additional blocking step is carried out with PBS 
containing 3% gelatin from cold water fish skin. This further 
blocking forms a stable and specific receptor layer, due to the 
passivation property of neutrally charged gelatin molecules that 
aims to prevent the empty sites of the device active area from 
interacting with charged non-specific species from the analyte 
solution. Then, what follows is the antigen uptake through 
simultaneous incubation of all the nanodevices under 

 

Fig. 1. Optical microscopy image depicting the selective spotting with 
receptor molecules. A closer view of the surface of the multi-sensing chip 
is shown, depicting the twelve sensors locations, that are integrated with 
metal lines. The discrete functionalization scheme is visible for each 
individual sensor and shown as a droplet located exactly at the sensor’s 
regions. The memristive devices are integrated with the extension Pt 
electrodes in order to enable the electrical characterization as well as the 
integration with the electronic readout platform as reported in [9] and [10].  
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consideration for 45 min in humid environment. A pipette of 2 
µL is used to efficiently transfer a sufficient amount of antigen 
solution directly and restricted at the region of interest i.e. 
nanowires’ region. Two different aspects are considered 
through the antigen uptake. A selected region of the chip is 
incubated in a high concentration of antigen-tagged with 
fluorescent substance, destined for a fluorescence study and 
another region is incubated with successive 45 min incubations 
increasing antigen concentrations belonging to the range close 
and below the clinical range of most biomarkers, like for 
example PSA. Each incubation is followed by a washing step 
with gelatin, two washing steps with PBS and a final washing 
step with PBS 10% in order to remove any salts originated from 
the buffer. 

III. RESULTS AND DISCUSSION 

A. Performance of Memristive Biosensing chips 
The electrical response using the fabricated chips is acquired 

before and after the bio-functionalization process and antigen 
uptake with increasing antigen concentration (Fig. 2). The 
obtained results clearly show that the hysteresis is successfully 
maintained and the voltage gap is acquired as expected upon 
bio-functionalization and decreases with the increasing antigen 
uptake as shown in Fig. 2. 

B. Multi-panel sensing with memristive biosensors 
For the multi-panel detection two separate methods 

(fluorescence detection and label-free sensing through 
electrical characterization) are independently implemented to 
verify the multi-panel sensing capabilities of the memristive 
biosensors. 
 
1) Fluorescence Sensing  

The results obtained from fluorescence characterization are 
illustrated in Fig. 3. It is depicted that selected bio-
functionalization is successfully achieved and only the devices 
functionalized with the positive control antibody finally 
demonstrate the capability to bind the target antigens. Despite 
the fact that accurate bio-functionalization is achieved strictly 

at the region of each suspended nanowire, due to adhesion 
phenomena occurring during the incubation time the bio-
functionalization solution is slightly spread outside the target 
area and finally stabilized to a slightly larger droplet, after 
established hydrodynamic and hydrostatic forces equilibrium, 
as well as evaporation aspects.  
 
2) Label-free sensing   

The nanodevices, bio-functionalized with the different 
antibodies and the PBS, are electrically characterized (baseline 
measurement), followed by the electrical monitoring of the 
nanodevices with increasing antigen concentrations. The 
introduction of charged residues on the surface of the 
nanodevices, as it is expected, induces the appearance of a 
voltage gap in the semi-logarithmic current to voltage 
characteristics. Meanwhile, the binding of antigen (through the 
receptor-target molecule relation) introduces a masking 
contribution to the effect already brought by antibodies, 
resulting in a decreasing voltage gap. Indeed, the voltage gap 
presented at the electrical characteristics of the nanodevices 
functionalized with the positive control antibody demonstrates 
smaller values after the antigen uptake, verifying successful 
antibody-antigen binding (Fig. 4). However, no significant 
difference is recorder for the case of the negative-control bio-
functionalized devices (Fig. 4). Further study of the analytical 

 

Fig. 3.   Fluorescence results demonstrate the successful multi-panel bio-
functionalization.  
 

 

Fig. 4.  Electrical characterization results bringing proof of the successful multi-
panel bio-functionalization. The average value of the voltage gap acquired for 
increasing concentrations of four different molecules which are the target 
molecule and three negative controls. No significant signal difference is depicted 
for the case of the negative-control bio-functionalized sensors in contrast to the 
decreasing voltage gap trend with increasing concentration shown for the case of 
the target molecule.  

 

Fig. 2. Indicative semi-logarithmic current to voltage characteristics obtained 
for the same device measured at the Pt pads using the Probe Station and 
Keithley configuration. The different graphs correspond to the bare device, 
after the bio-functionalization with Ab and with increasing antigen uptake 
(from 1 fM to 10 nM).  
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performance of the nanodevices at the different antigen steps, 
demonstrates a decreasing behavior only for the nanodevices 
functionalized with the positive control antibody while the 
voltage gap for the other nanodevices remains constant at the 
levels of the values after the bio-functionalization. This finding 
brings proof of the possibility for efficient individualized bio-
functionalization of different nanodevices on the same chip. 
Moreover, these results demonstrate the capability of the 
memristive biosensors to provide discrete sensing of a target 
molecule against other non-specific molecules through a 
tailored functionalization of individual devices. Therefore, this 
study consists a very important step towards future 
implementation of the memristive biosensors for the detection 
of a specific biomarker or drug when it is included in a cocktail 
of substances where other (non-specific) biomarkers or drugs 
are included as well. As a more extended version of this 
scheme, multiple biomarkers can be detected paving the way 
for multi-panel applications and simultaneous bio-detection of 
different biomarkers on the same chip. Having proven the 
multi-panel memristive bio-sensing paradigm, this scheme can 
be combined in a straight-forward way with the memristive 
biosensing board prototype [10] as well as with the microfluidic 
circuits especially designed for memristive biosensors [15], as 
illustrated in the complete scheme shown in Fig. 5.  

IV. CONCLUSIONS 
In this work, a proof-of-concept multi-panel on-single-chip 

detection scheme implementing memristive biosensors is for 
the first time presented and validated. First, specially designed 
memristive sensing chips offering disposable sensing modules 
by integrating memristive wires and extension metal electrodes 
are validated for successfully providing the electrical 

characteristics of the devices before and after the bio-
functionalization and the target uptake steps.  Most importantly, 
this novel sensing paradigm demonstrates successful 
implementation of the memristive biosensors in a multi-panel 
sensing scheme in both labeled and label-free sensing. The 
system presented in this work paves the way for advanced bio-
detection with memristive biosensors, allowing individualized 
detection of specific targets in complex matrixes in the presence 
of non-specific molecules or in even more complex schemes i.e. 
cells, tumor extracts, holding also great promise for fast and 
ultrasensitive sensing in theranostics.  
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