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Abstract—Many quantum algorithms inherently assume a
specific initial state in order to perform the desired computations.
The preparation of such states itself requires a computation in
terms of a quantum circuit. In this paper, we investigate the
automatic state preparation of a specific subset of arbitrary
quantum states that are uniform superpositions over a subset of
basic states. We exploit that such functions can be represented
using Boolean functions, and propose an automatic compilation
algorithm that finds a quantum circuit for state preparation given
as input a Boolean function, which represents the desired state.
The proposed method provides an upper bound on the number
of quantum gates in the {Ry(θ),CNOT} gate set. In addition, an
optimization is presented that can reduce the number of quantum
gates in the generated circuit.

Index Terms—Quantum state preparation, Boolean functions,
quantum compilation, quantum algorithms.

I. INTRODUCTION

Quantum computing is concerned with developing comput-
ing technology based on the principles of quantum mechanics.
In classical computing, a bit is a single piece of information
that exists in one of the classical two states 1 and 0. In
quantum computing the fundamental unit of information is
a quantum bit, or qubit in short. The state of a qubit includes
the two basic states |0〉 and |1〉, but unlike a classical bit, the
state can also be any superposition of these states. Such state
is described using two complex amplitudes α and β, which
are entries in the state vector

(
α
β

)
. The combined state for n

qubits is described in terms of 2n complex-valued amplitudes.
In fact, each amplitude corresponds to the probability of the
quantum state being in one of the 2n possible basic states after
measuring all qubits.

A quantum operation on n qubits is described in terms of
quantum gates, which are modeled as 2n×2n unitary matrices.
A combination of these gates represents a quantum circuit,
which show the interaction of quantum gates with qubits in
the quantum computer. A quantum algorithm is a quantum
circuit that can solve a specific problem. Two well-known
quantum algorithms are Grover’s search algorithm [1], and
Shor’s algorithm [2] for period finding that can be used for
prime factorization.

In general the initial quantum state is the classical basic state
in which all bits are 0. Some quantum algorithms require a
specific quantum state at the beginning of the computation.
Consequently, an efficient quantum state preparation is an
important task in quantum compilation. More precisely, in
addition to the quantum circuit that performs the quantum

algorithm, a specific quantum circuit is required that prepares
the desired initial quantum state.

Some approaches [3]–[8] have been considered in the past
to prepare arbitrary quantum states. Since these approaches
can generated arbitrary quantum states, the input to such
algorithms are 2n complex-valued amplitudes, which limits
their scalability drastically. Further, some of the algorithms
require a rather abstract set of gates, which requires an
additional compilation step in order to run it on physical
quantum computers.

In this paper, we target a subset of all possible quantum
states called uniform quantum states. A uniform quantum state
is a quantum state that is a superposition of a nonempty subset
of basic states. In other words, all nonzero amplitudes in
such a state have the same value. Therefore, such states can
be characterized by a Boolean function where each minterm
corresponds to a nonzero amplitude. This enables a scalable
quantum state preparation (QSP), since many Boolean func-
tions of practical interest have small representations, e.g., in
terms of binary decision diagrams (BDD) or logic network.
Many important quantum states are uniform quantum states,
such as the uniform superposition of all basis states, the Bell
state, the W state, and the GHZ state.

We propose an automatic quantum compilation algorithm,
which takes as input a Boolean function and produces a quan-
tum circuit over the {Ry(θ),CNOT} gate set. The algorithm
is based on decomposition of the input function and a recursive
procedure on smaller subfunctions.

II. PRELIMINARIES

In this section, we introduce necessary background on
Boolean functions and quantum computation.

A. Boolean Functions

A Boolean function is a function of the form f : Bn →
B, where B = {0, 1}. The on-set and off-set of the function
are the sets of all input assignments that map to 1 and 0,
respectively. Formally, we define

on(f) = {x ∈ Bn | f(x) = 1}
off(f) = {x ∈ Bn | f(x) = 0}

(1)

We also define |f | = | on(f)| as the number of minterms in
f .



A Boolean function can be represented in terms of its truth
table, which is the column vector

f =
(
f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . ,

f(1, . . . , 1, 0), f(1, . . . , 1, 1)
)T
, (2)

where each entry corresponds to the function value of one of
the input assignments. In this paper, we use f to both refer to
the function and its truth table.

The positive and negative co-factors of a Boolean function
f(x0, . . . , xn−1) with respect to a variable xi are obtained by
assigning xi to 1 and 0, respectively. We define

fxi = f(x0, . . . , xi−1, 1, xi+1, . . . , xn−1)

fx̄i = f(x0, . . . , xi−1, 0, xi+1, . . . , xn−1)
(3)

We use co-factors in this paper to compute the influence on
the function’s output. We define

pf (xi) =
|fxi |
|f |

and pf (x̄i) =
|fx̄i |
|f |

. (4)

The intuition is that the co-factors partition the function’s on-
set into two halves. Note that pf (xi) + pf (x̄i) = 1. When f
is clear from the context, we simply write p(xi) and p(x̄i).

B. Quantum Operations and Circuits

A quantum circuit is a diagram to represent a quantum
program. A combinational quantum circuit consists of quan-
tum operations, connected using quantum wires transmitting
qubits, without fanout. This section reviews the basics of
quantum computation and circuits.

Qubits: A qubit models the basic unit in quantum comput-
ing that has two basic states, represented using |0〉 and |1〉.
In fact, a qubit can be any superposition of two basic states,
which can be denoted as

|ψ〉 = α0 |0〉+ α1 |1〉 =

(
α0

α1

)
(5)

Here, α0, α1 ∈ C with |α0|2 + |α1|2 = 1. The squared
complex numbers |α0|2 and |α1|2 indicate the probability that
the quantum state will collapse to the classical state |0〉 =

(
1
0

)
or |1〉 =

(
0
1

)
after the qubit is measured. Moreover, quantum

states over n qubits are represented by

|ϕ〉 =

2n−1∑
i=0

αi |i〉, (6)

a column vector of 2n complex values αi such that∑2n−1
i=0 |αi|

2
= 1. Each squared amplitude |αi|2 indicates the

probability that after measurement the n qubits are in classical
states i.

Quantum states can be combined by applying the Kronecker

product to produce larger ones, e.g.,
(

1
0

)
⊗ 1√

2

(
1
1

)
= 1√

2

(
1
1
0
0

)
,

which represents a 2-qubit state that is in the perfect superpo-
sition between the classical states 00 and 01 [9].

Quantum operations: As quantum operations in this paper
we consider quantum gates, which are modelled as unitary
operations which are applied on the qubits to alter their
states. A single-qubit quantum gate acts on a single-qubit, and
transforms its state into another quantum state. The single-
qubit gates are represented by 2 × 2 unitary matrices [10],
[11].

Since single-qubit states correspond to points on the Bloch
sphere [11], quantum operations on a single-qubit correspond
to rotations. There are three types of rotation gates Rx, Ry ,
and Rz regarding the three axis x, y, and z. Each rotation gate
is parameterized with a continuous angle θ ∈ R:

Rx(θ) =
(

cos θ2 −i sin θ
2

−i sin θ
2 cos θ2

)
Ry(θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
Rz(θ) =

(
1 0
0 eiθ

) (7)

Quantum gates that act on n qubits are represented in terms of
2n×2n unitary matrices. Some 2-qubit gates that we consider
in this work are:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


(8)

In fact, a CNOT gate consists of one control and one target,
the target will be flipped when the control is 1. A SWAP gate
changes the state of 2 qubits with each other.

Uniformly-controlled rotation gates: In this work, we make
use of a family of unitaries called uniformly-controlled rotation
gates [5]. These unitaries are 2n+1 × 2n+1 block diagonal
matrices of the form

Uα = Ra(α1)⊕ · · · ⊕Ra(α2n)

=

Ra(α1)
. . .

Ra(α2n)

 ,
(9)

where a ∈ {x, y, z} and α = (α1, . . . , α2n) are 2n rotation
matrices. The unitary is applied to n control qubits |x〉 and
1 target qubit |y〉. One of the 2n rotations is applied to the
target qubit depending on the value of the control lines. The
action of the unitary is

Uα : |x〉|y〉 7→ |x〉Ra(αx)|y〉. (10)

If |x〉 is in superposition, then a superposition of rotations is
applied accordingly.

An example of a uniformly-controlled rotation gate with 2
controls is shown in Fig. 1. The figure also shows the visual
representation of the uniformly-controlled rotation gate on the
left-hand side.

III. PROPOSED METHOD

In this section, we introduce the problem definition and the
general idea of our approach to generate uniform quantum
states. We also discuss a synthesis approach and possible
optimizations to generate a quantum circuit for large abstract
gates.
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Fig. 1. A uniformly-controlled rotation gate

qn−1 : |0〉
qn−2 : |0〉

...

q1 : |0〉
q0 : |0〉

QSPf |ϕf 〉

Fig. 2. The problem of quantum state preparation

A. Problem Definition

In this work, we consider n-qubit quantum states that
are uniform superpositions over a nonempty subset of the
basis states |0〉, |1〉, . . . , |2n − 1〉. In such quantum states all
amplitudes of the state vector are either 0 or have the same
value α = 1/

√
s, where s is the size of the subset of basis

states. We exploit that such states can be characterized by a
Boolean function f : Bn → B such that f(x) = 1, if and only
if |x〉 is in the subset of considered basis states, and therefore
its corresponding amplitude is nonzero.

Example 1: The majority-of-three function
f = 〈x0x1x2〉 = x0x1 ∨ x0x2 ∨ x1x2 has the truth
table f = (0, 0, 0, 1, 0, 1, 1, 1)T . It encodes the uniform

quantum state |ϕ〉 = 1√
4


0
0
0
1
0
1
1
1

.

In other words, we are interested in generating a quantum
state |ϕf 〉 that corresponds to the normalized truth table of f

|ϕf 〉 =
f√
|f |

=
1√
|f |

∑
x∈on(f)

|x〉. (11)

In this paper, we propose automatic algorithms to find a
quantum circuit for generating such a state given as input
a Boolean function f in some representation. In particular,
we are looking for efficient circuit constructions for a unitary
QSPf where QSPf |0〉⊗n = |ϕf 〉. Fig. 2 summarizes our
problem formulation.

Note that many of the quantum states that appear in quantum
algorithms are uniform quantum states, e.g., the uniform su-
perposition of all basis states, for which f = 1 (tautology), the
Bell state, for which f = x̄1⊕x2, the generalized GHZ state,
for which f = x̄1x̄2 . . . x̄n ⊕ x1x2 . . . xn, and the generalized
W state, for which f = [x1 + x2 + · · ·+ xn = 1].

B. General Idea

To prepare an n-qubit uniform quantum state |ϕf 〉 using
Boolean functions, each qubit qi in the quantum circuit
corresponds to variable xi in f . In the remainder, we will

qn−1 : |0〉

qn−2 : |0〉
...

q1 : |0〉

q0 : |0〉

G(p(x̄n−1))

QSPfx̄n−1
QSPfxn−1

Fig. 3. The general idea
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x2x̄1

x2x̄1x̄0 x2x1x̄0

Fig. 4. The abstract quantum gates of QSP〈x0x1x2〉

use the function variable and the corresponding qubit in-
terchangeably, as well as the quantum state representation
with the corresponding Boolean function. We will outline our
proposed algorithm based on an n-variable Boolean function
f(x0, x1, . . . , xn−1).

The genral idea of our proposed algorithm relies on the
recursive circuit construction in Fig. 3. It can be shown that

QSPf |0n〉 = (QSPfx̄i
⊕QSPfxi

)(G(p(x̄n−1))⊗ I2n−1)|0〉,

where G(p) is a unitary transformation gate such that

G(p)|0〉 =
√
p|0〉+

√
1− p|1〉. (12)

Fig. 3 shows the application of this property in the quantum
circuit model for i = n− 1.

Applying this procedure for all variables for the majority
function f = 〈x1x2x3〉 from Example 1 leads to the circuit in
Fig. 4. For the sake of clarity, we only write the co-factors into
the boxes, e.g., the box labeled x2x̄1x̄0 refers to the quantum
operation G(pfx2x̄1

(x̄0)).
Notice that the two gates with target on q1 can be moved

next to each other, since the right-most gate commutes with
the two gates left of it, with target on q0. We can do this in
general, allowing us to retrieve a generic quantum circuit with
n uniformly-controlled one-qubit quantum gates as shown in
Fig. 5.

Given this general circuit construction, the overall cost
of the circuit is upper bounded by the cost for each of
the uniformly-controlled gates. Two factors have the largest
influence on the cost:
• The order in which the function is decomposed
• The truth values of the function

In the remainder of the paper, we show how the order of
decomposition the function affects the realization cost for the
uniformly-controlled gates. We also show that better upper
bounds can be achieved if the input function has special
properties.

IV. QUANTUM GATE REALIZATION

From the definition of Ry(θ) one can readily derive that

G(p) = Ry
(
2 cos−1(

√
p)
)
. (13)



qn−1 : |0〉

qn−2 : |0〉
...

q1 : |0〉

q0 : |0〉

Gn−1

Gn−2

G1
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Fig. 5. The general structure of the proposed algorithm

q2 : |0〉

q1 : |0〉

q0 : |0〉

Ry(θ1)

Ry(θ2)

Ry(θ4)

Ry(θ3)

Ry(θ5) Ry(θ6) Ry(θ7)

Fig. 6. The quantum circuit of QSP〈x0x1x2〉

Consequently, replacing all G gates by Ry gates in Fig. 5,
we obtain a circuit consisting only of multiple-controlled Ry
rotation gates.

The ith qubit requires at most 2n−1−i controlled Ry rotation
gates with n− 1− i controls. In order to run such gates on a
quantum computer synthesis is required. This is very expensive
when we decompose every multiple-controlled gate separately
using the well-known decomposition given in [12]. Even if
we divide these gates to two single-qubit gates, and multiple-
controlled Z gates (MCZ) and employ MCZ decomposition
presented in [13], every MCZ includes a cost of 2n−2 CNOTs
and 2n − 1 Rz rotation gates.

Instead, we utilize the decomposition method presented
in [14] to synthesize uniformly-controlled rotation gates di-
rectly into a sequence of CNOT gates and Ry rotations.
The decomposition of the ith qubit yields at most 2i−1 Ry
rotation gates and 2i−1 CNOTs. As a result, the quantum
state preparation affords at most 2n − 1 Ry rotation gates
and 2n − 2 CNOTs. Given this property results the quantum
circuit in Fig. 6 for the majority Boolean function.

V. DISCUSSION AND EVALUATION

A. Comparison over Previous Works

It is important to note that we address the specific case of
quantum state preparation in which the state is a uniform state.
The main advantage of our approach compared to existing ap-
proaches that generate arbitrary quantum states is that the input
state can be represented as a Boolean function in our case. As
a consequence, we can exploit that a compact representation
of the Boolean function is also a compact representation of
the input state. The main future research question is whether
one can find a compact quantum circuit, if it exists, without
exploring all elements of the function’s on-set.

B. The Effect of the Variable Reordering

In this section, we demonstrate an example that illustrates
the influence on variable reordering when performing the
decomposition. Consider the following example with two
different variable orderings.

TABLE I
THE RESULTS OF QSPf WITH 2 DIFFERENT ORDERINGS.

Ordering #CNOTs #Ry

x3 < x2 < x1 < x0 14 15
x2 < x0 < x1 < x3 10 10

Example 2: Given the function f(x0, x1, x2, x3) =
(1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1)T which
encodes the uniform quantum state |ϕf 〉 =

1√
10

(1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1)T . The circuit
shown in Fig. 7 realizes QSPf with the ordering
x3 < x2 < x1 < x0, whereas the circuit in Fig. 8
realizes QSPf with the ordering x2 < x0 < x1 < x3. In the
circuit of Fig. 8, all rotation angles applied to qubit q1 are the
same for all four control line assignments. Therefore, these
four gates can be replaced by a single-qubit rotation gate.
After transforming both circuits to the elementary quantum
gates, one obtains the costs summarized in Table I. This
demonstrates that a good variable ordering helps to reduce
the number of CNOT gates and Ry gates.

C. Comparison with Known Circuit Constructions

In this section, we want to investigate how the proposed
algorithm performs for known quantum states, for which there
exist efficient circuit constructions. In particular, whether the
algorithm can recover these constructions for the generalized
GHZ state and the generalized W state.
W state: The W state [16] is defined for 3 qubits and is

the superposition of all basis states with a single ‘1’:

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) (14)

The notion of a W state has been generalized for n qubits
which involves the superposition of all basis states with exactly
one ‘1’:

|Wn〉 =
1√
n

(|0 . . . 01〉+ |0 . . . 10〉+ · · ·+ |1 . . . 00〉) (15)

To understand the circuit construction for the generalized W
state, first note that if f = x̄1x̄2 . . . x̄n, then the corresponding
uniform quantum state is |ϕf 〉 = |0n〉 and therefore QSPf =
I2n , where I is the 2n × 2n identity matrix. In other words,
the quantum circuit for QSPf is empty.

The characteristic function for |Wn〉 is

f = [x0 + x1 + · · ·+ xn−1 = 1]

= x̄n−1 . . . x̄1x0 ⊕ x̄n−1 . . . x1x̄0 ⊕ · · · ⊕ xn−1 . . . x̄1x̄0.

We have, that the positive co-factor fxn−1 = x̄n−2 . . . x̄1x̄0,
while the negative co-factor fx̄n−1

= [x0 +x1 + · · ·+xn−2 =
1], which is the characteristic function for |Wn−1〉. Regarding
Fig. 3, this means that the circuit construction recurses in the
negative-controlled gate (for the negative co-factor), and that
the positive-controlled gate (for the positive co-factor) can be
removed, since QSPfxn−1

= I2n−1 . Fig. 9 shows the resulting
circuit for |W4〉.
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Fig. 7. The general circuit for QSPf using x3 < x2 < x1 < x0 ordering
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Fig. 8. The general circuit for QSPf using x2 < x0 < x1 < x3 ordering

q3 : |0〉

q2 : |0〉

q1 : |0〉

q0 : |0〉
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G(1/2)
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Fig. 9. QSP for the |W4〉 state

q3 : |0〉

q2 : |0〉

q1 : |0〉

q0 : |0〉

G(1/2)

Fig. 10. QSP for the |GHZ4〉 state

GHZ state: The Greenberger-Horne-Zeilinger (GHZ) state
[15] is a generalization of the 2-qubit Bell state and consists
of only two basic states. For a number of qubits n, it can be
formulated as

|GHZn〉 =
1√
2

(|0n〉+ |1n〉) . (16)

In the previous section, we made use of the fact that if the
characteristic f = x̄1x̄2 . . . x̄n, then the circuit to construct
|ϕf 〉 is empty. We now consider characteristic functions that
are minterms, i.e., |f | = 1. We can describe such functions
as f = xp1

1 x
p2

2 . . . xpnn , where the polarities pi ∈ {0, 1}, with
x1
i = xi and x0

i = x̄i. Note that the quantum circuit to prepare
this state has an X gate on qubit qi whenever pi = 1.

The characteristic function for |GHZn〉 is f =
x̄0x̄1 · · · x̄n−1 ⊕ x0x1 · · ·xn−1. We have that its negative co-
factor is fx̄n−1 = x̄0x̄1 · · · x̄n−2 and its positive co-factor is
fxn−1 = x0x1 · · ·xn−2. These are both minterms, and there-
fore the circuit for QSPf terminates after a single application
of the recursive procedure in Fig. 3. The resulting circuit for
|GHZ4〉 is shown in Fig. 10. In general, our algorithm can
find a quantum circuit that prepares the |GHZn〉 state with
the expected n− 1 CNOT gates and a single Ry gate.

VI. CONCLUSIONS

We discussed the preparation of a special family of quantum
states which are uniform superpositions of a subset of basis
states. We motivated this subclass by several quantum states in
the literature which are uniform quantum states. The advantage
of such states is that they can be characterized by a Boolean
function, and therefore permit a compact representation, if
the Boolean function has a compact representation—e.g., in
terms of a BDD or logic network. We have shown a recursive
algorithm to generate a quantum circuit based on uniformly-
controlled Ry rotation gates. Our algorithm can find the same
existing circuit constructions for the generalized W and GHZ
states.

In future work, we want to investigate symbolic implemen-
tations of the algorithm that work directly on a BDD or logic
network representation of the characteristic function. The goal
is to find a compact quantum circuit—if it exists—without
investigating each minterm separately. Futher, we would like
to explore classes of characteristic functions that lead to small
quantum circuits.
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