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Abstract. Exclusive-or sum-of-products (ESOP) expressions are used
as intermediate representations in quantum circuit synthesis flows, and
their complexity impacts the number of gates of the resulting circuits.
Many state-of-the-art techniques focus on minimizing the number of
product terms in a ESOP expression, either exactly or in a heuristic
fashion.

In this paper, we investigate into ESOP optimization considering two
recent quantum compilation flows with opposite requirements. The first
flow generates Boolean functions with a small number of Boolean vari-
ables, which enables the usage of methods from exact synthesis; the
second flow generates Boolean functions with many Boolean variables,
such that heuristics are more effective. We focus on the reduction of
the number of T gates, which are expensive in fault-tolerant quantum
computing and integrate ESOP optimization methods into both flows.
We show an average reductions of 36.32% in T-count for the first flow,
while in the second flow an average reduction of 28.23% is achieved.

Keywords: reversible logic synthesis - logic optimization - ESOP - quan-
tum circuit

1 Introduction

Quantum compilation is the problem of translating a computational description
of a quantum algorithm into basic quantum operations. Two main approaches
are used in practice: 1) manual compilation, where a designer manually syn-
thesizes (and optimizes) each component of the computational description and
generates the final quantum circuit by hand, and 2) automatic compilation,
which supports designers in the synthesis task by offering fast and scalable
solutions to systematically explore the design space. On the one hand, automatic
synthesis allows designers to deal with larger problems that are too complex to
be tackled manually; on the other hand, systematic design space exploration
enables designers to identify optimization capabilities otherwise overlooked.
Recent attempts in the field of automatic quantum compilation include LUT-
based Hierarchical Reversible Logic Synthesis (LHRS) [25] and Decomposition
Based Synthesis (DBS) [23]. The former framework, LHRS, uses a hierarchical
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method to synthesize quantum circuits from specifications provided in form of
combinational logic designs. The designs are first decomposed into networks
of look-up tables (LUTSs). Then, a quantum circuit is assembled by translat-
ing each LUT into quantum gates. The latter framework, DBS, uses Young-
subgroup based reversible synthesis [3] to compile quantum state permutations
into quantum circuit. Both frameworks, LHRS and DBS, use exclusive-or sum-
of-products (ESOPs) as representations of reversible logic gates generated during
the translation process.

ESOPs are a classical two-level logic representation consisting of one level
of AND-gates, followed by one level of XOR-gates. They provide a compact
logic representation of Boolean functions, and are, for some classes of function-
s, exponentially more compact when compared to the sum-of-products (SOP)
representation [21]. This compactness can be particularly recognized when XOR-
intensive circuits, such as the parity function, need to be represented and makes
ESOPs useful to describe arithmetic and cryptographic primitives [15].

Over the years, many advanced synthesis and optimization methods have
been discovered for ESOPs. Exact methods [16,/19,/20] target the minimization
of the number of product terms in an ESOP, such that the number becomes
provably minimal. Their applicability, however, is limited to Boolean functions
with at most 7 Boolean variables. Moreover, they often require large tables of pre-
computed information and need a substantial amount of runtime to guarantee
minimality.

Heuristic methods [13}[201/27] are capable of reducing large-scale ESOPs with
thousands of cubes by repeatedly applying simple cube transformation rules that
first expand and then collapse cubes. Such transformation-based optimization
strategies are fast, lead to significant reductions, and can be applied even if
ESOPs with many Boolean variables are considered. Heuristic methods, however,
cannot guarantee optimality and their progress often strongly degrades over
time—the chances of finding a pair of cubes that can be collapsed decreases and
the improvement saturates.

Overall, in this work, we target fault-tolerant quantum computation and
analyze the impact of ESOP optimization methods on the number of T gates
of the final quantum circuit. The T gates have been recognized as the most
expensive gates in fault-tolerant quantum computing [1].

We integrate advanced ESOP optimization methods, both heuristic and ex-
act, into recent quantum compilation flows. In particular, we consider LHRS
and DBS as two possible application scenarios with opposite requirements:
DBS uses simple specifications, such that only a few Boolean functions with
a relatively small number of Boolean variables have to be synthesized. In this
case, exact synthesis methods are useful and allow us to generate ESOPs of
provably minimal size. In LHRS, however, ESOP optimization has to deal with
many and larger Boolean functions. In this case, we advocate heuristic ESOP
optimization methods to keep the approach scalable.

In our analysis, we consider two de-facto standard cost functions from logic
synthesis—the number of product terms and the number of literals—and propose
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a novel exact synthesis procedure for ESOPs. Our procedure allows users to
specify costs for each cube, considered during the synthesis process. We formu-
late the synthesis problem by introducing a weighted-version of the Helliwell
equation [17], and solve the problem using partial weighted MAX-SAT.

2 Preliminaries

2.1 ESOP representation of Boolean functions

Definition 1. An ESOP over n Boolean variables, z1,...,x, € B, is an ex-
pression of form t1 & --- @ ty, where each t; =1;1---1;y, is a product term (or
cube) of literals l; j € {zx1,...,2n,T1,...,&Tn} for 1 <i<kand1 <j <I[;. The
symbol @ denotes the modulo-2 addition (XOR-operation), and T; denotes the
negated Boolean variable z; for 1 <i < n.

An ESOP expression can be interpreted as a two-level logic circuit, which realizes
a possibly incompletely-specified Boolean function f : {0,1,—}" — B, i.e.,
flz1, ... ,xn) =t1 @ -+ @ty for all possible valuations of the Boolean variables
Llyeeoy Ty

2.2 ESOP-based reversible logic synthesis

Reversible circuits are logic networks with the same number of inputs and
outputs, composed of reversible gates. The most commonly used gates are the
single-target gates and the multiple-controlled Toffoli gates.

Definition 2. Let ¢ : B¥ — B be a Boolean function, called control function.
Also, let C = {x1,...,x} be the control lines and let vy ¢ C be a target line.
Then the single-target gate T.(C,t) : B"™ — B™ is a reversible Boolean function

which maps:
(1,0 2n) — {xt @ c(xy,...,Tr) otherwise

Definition 3. If the control function c can be expressed as a single product term
c= /\le(xi @ p;) using a single-target gate T.(C,t), where p;, 1 < i < k, are
the polarities of the controls, then we call the gate a multiple-controlled Toffoli
gate.

A multiple-controlled Toffoli gate is a reversible gate acting on the bits in
Z1,...,Tk,T¢, such that the bits in C remain unchanged and the bit z; flips if
the control function ¢(xy, ..., z;) evaluates to true.

ESOP-based reversible synthesis methods are based on the observation that
an ESOP can be directly translated into a reversible circuit, as each term of the
expression corresponds to a multiple-controlled Toffoli gate [5,/6]. The method
generates as many Toffoli gates as cubes in the expression, all cascaded and
targeting the same bit.
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Fig. 1. Example of a reversible circuit of mixed-polarity multiple-controlled Toffoli
gates
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Fig. 2. Two different state-of-the-art compilation flows for Boolean functions that use
ESOP-based reversible synthesis

Ezxample 1. The Toffoli network in Fig. [1| corresponds to the ESOP expression:
T4To O X3T2 B T3x2T1 D TyT3To O T3T221

Some optimization techniques aiming at reducing the cost of the generated
reversible circuits have been proposed in literature [12}|28]. The final circuit
reflects the quality of the ESOP expression, so the synthesis process is crucial
for this application.

3 Optimal ESOP for quantum compilation

The problem of automatically compiling a Boolean function into a universal
quantum library is largely addressed in literature [7}9,/22].

Among the available synthesis methods, hierarchical flows have the capability
of being scalable, as they are based on a logic network representation [1§],
e.g., LHRS [26]. The input to LHRS is a classical logic network, e.g., pro-
vided in a hardware description language; the output is a quantum network
realized in terms of Clifford+T gates. The framework is based on the usage of
k-feasible Boolean logic networks (k-LUT networks), which consist of look-up
tables (LUTs) with at most k inputs. Synthesis proceeds in two steps: (i) each
k-LUT is mapped into a reversible single-target gate with k control lines, (ii)
each reversible single-target gate is mapped into a Clifford+T network. LHRS
provides different methods to perform the second step. One method, the so-called
direct mapping, makes use of the ESOP representation of the control function
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of a reversible single-target gate, which can be directly translated into multiple-
controlled Toffoli gates [6](see Section and further translated into quantum
gates [11]. The flow of this method is shown in Fig. 2{a).

A second strategy (Fig. (b)) for quantum compilation is based on decom-
posing the initial function, given as a permutation, using the Young-subgroup
method described in [3]. It only differs from the first one for the function’s specifi-
cation and the decomposition strategy employed. Differences that will result in a
less scalable flow. The final steps are shared between the two flows: ESOP-based
reversible synthesis is used to generate a Toffoli network and successively each
Toffoli gate is compiled into quantum operations from the Clifford+7" library
using the method described in [11].

In this work, we address the Clifford+T universal quantum library, and
try to optimize the number of T gates by applying ESOP optimization to the
compilation flows. Nevertheless, our analysis and methods are applicable to the
other quantum libraries, as far as the implementations of Toffoli gates are known.

4 Motivation

In the following, we introduce the problem of finding the right ESOP synthesis
method to generate reversible circuits, which can be compiled into quantum
circuits with optimal characteristics: minimal number of T gates and reduced
number of Clifford gates.

Ezample 2. Given the Boolean function f(z) = Z1Tsx4 V ToTsxy V T1T223T4 V

T1Tox3T4 With = x1,..., 24, two possible ESOP expressions for f are:
Az) = T3T1 B Taty ® T3T2 B T1 ® Taly ® Tp ® T4T3T2T
B(z) = L4321 O X4T3T2T1 D Tax322 O T4T3

The first expression A(z) is composed of 7 product terms while the other ex-
pression, B(z), is smaller and has size 4. We can use these ESOPs to synthesize
a reversible network for f and successively we can compile them into quantum
gates using the algorithm described in [11]. The resulting networks and the
composition of the quantum circuits are reported in Fig[3} H is the number of
Hadamard gates, NOT and CNOT are respectively the number of X and the
number of controlled-X gates, T is the number of T' gates. It is clearly shown
how the second ESOP, independently from the smaller size, generates a quantum
circuit with more gates. Differently, the first ESOP, that has larger size, shows
characteristics allowing the compiler to create a circuit with reduced T gates,
and fewer gates in general. We want to identify which are the characteristics
that lead to a better quantum circuit. With this in mind, we can notice how
the first ESOP has cubes with less literals, with respect to the second ESOP.
Thus A(z) generates a reversible circuit with multiple-controlled Toffoli gates
with less controls and consequently a quantum circuit with less T' gates.
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Fig. 3. Synthesis results of two different ESOPs for the same function f

It is evident how the quantum compilation problem can take advantage of
optimal ESOP synthesis strategies. Consequently, in this work we apply state-
of-the-art ESOP synthesis and optimization methods, e.g., the heuristic EX-
ORCISM |14], into recent quantum compilation flows. In addition, we present a
constraint-based ESOP synthesis method that accepts an arbitrary cost function,
as Example[2]suggests that different cost metrics should be considered for ESOPs
in quantum compilation.

5 Constraint-based ESOP synthesis

The problem of finding an ESOP expression that realizes a Boolean function is
known as ESOP synthesis. The seminal work of Perkowski and Chrzanowska-
Jeske [17] introduces the Helliwell decision function to characterize the solution
space of ESOP synthesis for a given Boolean function.

5.1 Helliwell decision function

The Helliwell decision function Hf(g1,...,9x), K < 37, for a given Boolean
function f(x1,...,x,) describes synthesis as an odd-even covering problem in
terms of the minterms of f. For each possible product term in n Boolean
variables, a decision variable g;, 1 < ¢ < K, is introduced. The Helliwell decision
function is then defined by the logic equation

Al @ g|lormearl, (1)

mef geI(m)

where m € f denotes that m is a minterm of f and I maps each minterm to the
decision variables ¢;,, ..., g;, whose product terms are covered by m.

The logic equation is constructed in such a way that every satisfying
assignment ¢ for ¢ = g¢1,...,9x for H(g) directly corresponds to an ESOP
expression functionally equivalent to f.

Ezample 3. Given the Boolean function f(x1,z2) = z1 V 22 with Boolean vari-
ables z1 and x4, the Helliwell decision function using 9 Boolean variables g1, .. ., go,
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Fig. 4. Three possible ESOP covering for the function f = x1 V x2

that are,

g1 =T1T2 g2 = T1X2 g3 = T1T2 G4 = T1X2
g5 =T1 Ge=7T1 gr==2T2 ¢gg=7=T2

99:1.

The SAT solver will find a selection of the cubes such that minterms for which
f evaluates to one are covered an odd number of times, whether minterms for
which f evaluates to false are covered an even number of times. Constraints must
be added to the problem in order for the SAT solver to find a valid solution. The
overall Helliwell decision function for f is:

H9) =(g1 D96 ® g Pg@0D1) A (2D gr®ge D go® 1D 1) A
(930 95Dgs D goD1D1) A (91D gs®gr Dgo® 1D 1)

Fig. [4] shows three possible ESOP covers on the Karnaugh map: g4, gs, gs and
94, 95, g7 and ge, go.

5.2 Size-minimal ESOP synthesis

Size-minimal ESOP synthesis is the problem of finding an ESOP expression
for a given Boolean function f with a minimum number of product terms.
Utilizing logic equation , the problem can be solved by computing minimum
satisfying assignments for Hy(g). An assignment ¢ is minimum satisfying if the
two conditions

(a) Hy(3) and (b) Vg : (g 4> g A Hi(9)) = 97 4, ()

hold, i.e., if § satisfies Hy and no other assignment that satisfies H; implies g.

In the following, the idea of utilizing the Helliwell decision function for
synthesizing size-minimum ESOP expression is generalized to synthesizing cost-
minimal ESOP expressions, where the cost function is provided as a part of the
input.
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5.3 Cost-minimal ESOP synthesis

Given a Boolean function f over n Boolean variables and a cost function & :
{0,1,—}" — Ny, that maps product terms to positive integer values (costs),
cost-minimal ESOP synthesis is the problem of finding an ESOP expression
t1 @ - @ty that realizes f such that /\f:1 k(t;) is minimal.

We present two different cost function, kg and k; to illustrate the idea of
cost-minimal ESOP synthesis. In general, the cost function should be picked
keeping the usage of the ESOP expression in mind.

The constant function

ro(t) =1 3)

defines unit costs for all product terms. If used, each ESOP expression obtained
as solution of cost-minimal ESOP synthesis has a minimum number of product
terms. The cost function

ra(t) = [t +1, (4)

where [¢| counts the number of literals in ¢, weights each product term by the
number of appearing literals. The additional 1 ensures that all costs—including
the costs of the empty product term—are greater than 0.

Ezample 4. Consider the Boolean function fi(x) = Z1Tox3zs V T1x9T3x4 V
T1ToX3T4 V T1ToT3L4V X1 ToX3T4 V T1T2T3T4 With x = 21, ..., 24. A cost-minimal
ESOP expression that realizes fi; with respect to cost function kg is

T1X9T4 D ToT3 © Tox3T4 © T1T2x3 O T1T3%4,

whereas a cost-minimal ESOP expression for the same Boolean function with
respect to cost functions ki is

L1 DTy D T3 DLy DT1T2T3T4 D T1X2X3%4-

5.4 Computing cost-minimal ESOPs

Next, we present the proposed SAT-based procedure for computing cost-minimal
ESOP expressions using (weighted) maximum satisfiability (MAX-SAT) [10].

MAX-SAT deals with solving over-constrained constraint satisfaction prob-
lems modulo Boolean logic. The problems consist of hard and soft clauses,
where each soft clause is associated with an integer weight greater than 0. The
constraint satisfaction problem initially is unsatisfiable and the task of a MAX-
SAT oracle is to find a minimal-cost relaxation of the soft clauses, i.e., the
oracle has to remove a subset of the soft clauses, such that the problem becomes
satisfiable while a given cost function is minimized.

Given a Boolean function f over n Boolean variables and a cost function « :
{0,1,—}" — N5, cost-minimal ESOP synthesis is solved in three steps:
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Fig. 5. Histogram showing the improvement over exact methods over PKRM with
respect to two different cost functions: number of terms (EXACT (unit)) and number
of literals (EXACT(lit))

1. Formulate the Helliwell decision function H(g) as described in .

2. Invoke a MAX-SAT oracle to find a satisfying assignment ¢ = ¢1,..., 0k
that minimizes Y25 k(g;) subject to CNF[H(g)] A (A, §i), where CNF
translates the XOR-clauses to conjunctive normal form (CNF).

3. Construct the ESOP from the satisfying assignment g.

The described approach is independent of the choice of the MAX-SAT oracle
and the translation to CNF, but uses them as black-boxes.

6 Results

6.1 NPN4 equivalence classes

In this section, we evaluate the effect of different ESOP optimization methods
on simple Boolean functions. As benchmarks, we use the 222 representatives
of the NPN4 equivalence classes. We evaluate the number of product terms in
the ESOP, as well as, the number of T" gates in the generated quantum circuits
considering different ESOP synthesis methods and the proposed constraint-based
approach:
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Cost function ESOP Synthesis Method

PPRM PKRM EXORCISM EXACT (unit) EXACT(lit)
avg. ESOP size 777 4.69 3.41 3.41 3.42
avg. num. 1" gates 87.35 82.32 59.05 67.50 58.19

Table 1. Comparison of different ESOP synthesis methods

Positive Polarity Reed Muller (PPRM) [29),

Pseudo-Kronecker Reed Muller (PKRM) [4],

EXORCISM |14] and

EXACT(unit) and EXACT(lit) minimizing respectively kg and kq

L

We report the average number of product terms (size) and the average
number of T gates for each of the ESOP synthesis methods in Table [l PPRM
and PKRM are special cases of general ESOP expressions, that can be easily
derived from a given Boolean function but are sub-optimal when considering
the number of product terms. They are often used as starting covers for ESOP
optimization approaches. We report them to enable better comparability of the
achieved reduction. EXORCISM is a fast cube transformation heuristic, capable
of finding close to optimal ESOP expressions, starting from a PKRM cover of the
Boolean function. Nevertheless, EXORCISM is an heuristic method and does
not guarantee the minimality of the solution. In many cases, reducing the size
of an ESOP also leads to a reduction of the number of T gates. Consequently,
EXORCISM, EXACT (unit), and EXACT(lit) improve over PPRM and PRKM.
Reducing the number of literals also has a positive effect on the T' gates, i.e.,
EXACT(lit) achieves a better reduction than EXACT (unit). Moreover, EXOR-
CISM also improves over the EXACT (unit) method because its heuristic prefers
don’t cares over concrete values and reduces the overall number of literals in an
ESOP expression.

The histogram in Fig. [f] gives a more detailed overview of the improvement
in T-count of EXACT(lit) and EXACT (unit) over PKRM, respectively, for all
the 222 representatives in NPN4 equivalent classes.

Optimizing size and literals, however, does not minimize the number of
T gates, which we illustrate by example: consider the two equivalent ESOPs

C(.Q?l,ajg,(l}g) =1d T1x2 D xr12x2203 and D($17.’L‘2,l‘3) = X1X2X3 D To D T1.
(5)

Both ESOPs have the same number of product terms and the same number
of literals. To realize C(x1, z2,23) as quantum circuit, however, 23 T gates are
required, whereas for realizing D(x1,x2,x3) 16 T gates are needed. This results
suggest that in future work it would be valuable to identify more fitting cost func-
tions than the number of literals. In addition, future technology developments
could themselves require different cost functions. Our proposed constraint-based
method could provide the flexibility to enable future research in this direction.
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6.2 Integration into quantum compilation flows

In this section, we show the result of integrating the advanced ESOP optimiza-
tion methods into the quantum compilation flows DBS and LHRS.

To integrate optimized ESOP synthesis methods, we propose a pseudo-optimal
portfolio approach as described in Alg. [1} For each symmetric control function,
the ESOP expression esop is computed using the PKRM method, that is op-
timum in this case. If the number of inputs is smaller or equal to 4, we use
the exact methods to minimize the number of literals. For larger functions the
heuristic EXORCISM is used (command &ezorcism -q of abe [2]).

First we evaluate the improvement of the proposed method integrated into
DBS(Fig. Pb)). In Table [2] we show the synthesis results for reversible permu-
tations from Maslov’s reversible benchmark!. In addition we created reversible
functions MOD B"” — B", where:

n/g *
0 if =0
MODy,, = {gmmod@” —1if 1<z<2m-2
2n -1 otherwise

The data are showing a reduction in the number of T gates, with respect to the
PKRM method, for both the EXACT approaches. Nevertheless, we can see how,
if the synthesis is performed to minimize the number of literals in each cube,
the T-count can be further improved. In fact, the unit approach gets to 22.66%
improvement, while lit gives 28.23% improvement.

In a second experiment, we evaluate the integration into the LHRS frame-
work. In Table [3| we show results of synthesizing the arithmetic designs of
the EPFL benchmark? into quantum circuits. As explained in the preliminary
section, the first steps of the flow generate a reversible circuit made of single-
target gates, each one with a control function of maximum k inputs, where
k is the LUT size used to build the k-LUT network. An ESOP expression is
synthesized for each control function and translated into quantum circuits as
described in [6],/11]. We compare a flow integrating our pseudo-exact approach
against a flow using PKRM for the mapping of single-target gates. We report
synthesis results for LUT size (k) from 4 to 10. We obtain a maximum reduction
of number of T' gates in the case of k = 10 equal to 36.32% and a minimum
reduction in the case of k = 4 equal to 17.86%.

7 Open source implementation

The proposed SAT-based exact synthesis method is implemented in the open
source C++ library easy® [19,[24] using our own C++ implementation of R-
C2 [8] as MAX-SAT oracle. The easy library provides implementations of various
verification and synthesis algorithms for ESOP expressions.

!http://webhome.cs.uvic.ca/~dmaslov
2 https://github.com/1sils/benchmarks
3 https://github.com/hriener/easy
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Algorithm 1: Pseudo-exact optimal ESOP
input : control function f:B" — B
output: optimized ESOP expression of f
begin

if f € cache then
| return cache|f]

if f is symmetric then
| esop < PKRM(f)

else if n < 4 then
| esop «— EXACTLir(f)

else

| esop < EXORCISM(Y)
cache.insert(f, esop)
return esop

Table 2. Comparison between exact method and heuristic for small reversible functions

Permutation PKRM EXACT((lit) EXACT (unit)
Q T t[s] T t[s] T t[s]

hwb4 4 123 0.0 109 0.1 116 0.0
hwb5 5 514 0.0 337 59.9 447 0.3
hwb6 6 1361 0.0 993 0.9 993 0.9
hwb7 7 5331 0.0 3066 1.0 3066 1.1
hwbg& 8 13562 0.0 7654 1.2 7654 1.2
mod5-11 5 453 0.0 350 36.5 368 0.2
mod5_12 5 453 0.0 361 59.1 400 0.2
mod5-13 5 428 0.0 329 38.2 343 0.1
mod5-17 5 478 0.0 382 64.3 414 0.3
mod5_21 5 433 0.0 352 34.9 482 0.1
mod5_22 5 469 0.0 354 25.0 391 0.1
mod5_24 5 503 0.0 405 61.4 448 0.3
mod5_3 5 494 0.0 386 34.8 411 0.2
mod7.14 7 5201 0.0 2936 1.0 2936 1.0
mod7-3 7 4945 0.0 2957 1.0 2957 1.0
mod7.7 7 4859 0.0 3039 1.0 3039 1.0
prime4 4 102 0.0 95 0.0 106 0.0
prime5 5 367 0.0 271 28.5 289 0.1
prime6 6 1054 0.0 786 0.8 786 0.7
prime7 7 3600 0.0 2283 1.0 2283 0.9
prime8 8 8302 0.0 4420 1.1 4420 1.0

avg. reduction EXACT(lit) = 28.28%
avg. reduction EXACT (unit) = 22.66%

For the quantum compilation results, we interfaced easy with caterpillar®* and
tweedledum®. The first library is dedicated to quantum compilation, hierarchical
methods, and quantum memory management, whereas the second library imple-
ments state-of-the-art synthesis methods, e.g., Young subgroup decomposition
based synthesis.

4 https://github.com/gmeuli/caterpillar
® https://github.com/boschmitt/tweedledum
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Table 3. Synthesis of EPFL arithmetic benchmark on

PKRM Opt. PKRM Opt.
k Q T t[s] T t[s] Q T t[s] T t[s]
4 adder 511 5398 0.0 5356 0.4 bar 1415 76816 0.2 56320 1.8
5 448 16061 0.1 15151 0.5 1031 95576 0.3 63694 2.9
6 448 16271 0.1 15279 0.6 647 52750 0.2 50944 1.8
7 427 37259 0.1 36110 0.7 647 52750 0.3 50944 1.9
8 427 37963 0.1 36654 0.7 647 52750 0.3 50944 1.9
9 416 84076 0.2 72338 0.8 647 52750 0.3 50944 1.9
10 416 85509 0.2 72985 0.9 647 52750 0.3 50944 1.9
4 div 26467 757193 5.8 635999 12.4 hyp 64630 2448872 25.3 2208000 37.5
5 24474 851035 6.8 690622 15.1 56568 2647894 26.1 2156087 40.5
6 24083 876636 8.0 709586 19.0 50118 2860466 28.2 2145634 46.6
7 23944 939887 9.6 742327 23.8 48399 3501767 31.0 2817812 51.8
8 23808 1034583 11.2 773058 26.6 47581 4540244 36.9 3546120 66.7
9 23711 1204407 13.0 831482 30.5 46992 5379295 43.0 4158260 79.1
10 23633 1710038 15.4 875766 34.3 46933 6238649 50.0 4596940 94.4
4 log 10420 458335 2.4 380787 12.8 max 1484 54422 0.2 42684 5.4
5 9661 623957 3.2 492501 24.1 1346 76507 0.2 60597 6.4
6 8156 1033225 4.3 768429 49.4 1256 104109 0.3 79853 6.4
7 8141 1507690 5.1 883462 103.7 1149 148355 0.4 102310 6.0
8 4658 2196359 6.2 1228593 48.1 1067 209851 0.6 140106 6.9
9 4456 3393095 8.4 1912337 65.8 977 323027 0.8 200270 5.9
10 3697 5786642 10.8 3268408 74.8 929 355341 1.1 230118 5.6
4 mult 8194 359422 1.8 270268 6.2 sin 1962 71409 0.4 64103 14.5
5 8100 479930 2.2 368062 8.8 1818 82386 0.5 71471 19.4
6 6706 1034190 2.8 579420 11.6 1608 115107 0.7 92659 25.7
7 7050 1448336 3.7 847558 15.2 1553 137989 0.9 104092 27.3
8 5101 1371054 3.7 818914 16.6 1449 249964 1.2 157332 32.5
9 5165 2115333 5.2 1410009 18.3 915 794521 1.5 362082 33.2
10 4006 3657831 8.0 2417393 23.9 878 1241237 2.2 542136 37.2
4 sqrt 8686 317522 1.7 255275 6.4 square 6909 354552 1.5 240636 11.5
5 8351 344049 2.3 265948 6.8 6092 553311 1.9 308262 18.0
6 8332 391900 2.9 285310 7.8 4195 299574 1.8 206683 16.1
7 8152 448518 3.4 301246 8.4 4213 368160 2.0 261272 22.8
8 7986 709282 4.4 358215 9.5 3764 477446 2.3 341092 24.3
9 7976 720144 5.3 359296 10.6 3724 658343 2.9 445505 32.5
10 7966 1413589 7.0 540586 12.4 3792 876884 3.7 532124 41.4

min avg. improvement k=4 : 17.86 %
max avg. improvement k=10 : 36.32 %
avg. improvement: 26.36 %

8 Conclusion

In this work, we integrate ESOP synthesis methods into quantum compilation
flows in order to improve the quality of the produced quantum circuits. We
target fault-tolerant quantum computing and aim at minimizing the number
of expensive T gates. We consider two different compilation flows for Boolean
functions that make use of ESOP-based reversible synthesis.

For both frameworks this integration leads to promising results, which show
maximum 7T-count reductions of 28.23% in DBS and 36.32% in LHRS with
respect to PKRM. In conclusion, advanced ESOP synthesis methods, both exact
and heuristic, can be applied inside the quantum compilation flows that use
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ESOP-based reversible synthesis, to generate better circuits for fault-tolerant
quantum computing.
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