The Complexity of
Self-Dual Monotone 7-Input Functions

Eleonora Testa, Winston Haaswijk, Mathias Soeken, Giovanni De Micheli

Integrated Systems Laboratory, EPFL, Switzerland

Abstract—The study of the complexity of Boolean functions has
recently found applications in logic synthesis and optimization
algorithms, as for instance in logic rewriting. Previous works
have focused on the minimum length of Boolean chains for
functions up to 5 inputs, being represented in terms of 2- and
3-input operators. In this work, we study the complexity of self-
dual monotone 7-input Boolean functions in terms of 3-input
majority operators. We use enumeration-based and SAT-based
exact methods to find (i) the minimum number of operators
in the shortest formula of a Boolean function, and (ii) the
minimum length of its Boolean chain. Different generalizations
and restrictions of majority Boolean chains are considered to
represent functions. For instance, we consider leafy Boolean
chains in which each step has at least one fanin that is an input
variable, or majority Boolean chains that use complemented
edges.

I. INTRODUCTION

The study of Boolean functions and in particular their
complexity [1] plays a central role in logic synthesis and
optimization. In this work, we focus on self-dual monotone
functions and their representation as multi-level logic networks
that only use the majority operator. In order to define the
complexity of a logic Boolean function, we thus introduce the
concept of majority Boolean chain.! Given a Boolean func-
tion f(x1,...,x,) of n input variables, a majority Boolean
chain [2] is a way of representing functions defined as a
sequence (Ty41,...,Tnir), With the property that each step
1 in the chain combines 3 previous steps or inputs using a
3-input majority operator, such that forn+1 <i<n+4r:

Ti = <$1(i)$2(¢)9€3(i)>
T1(1) < Ta@) < T3() < i (1)

A leafy majority Boolean chain is a majority Boolean chain
for which z(;y < n for all steps . In other words, each step in
such Boolean chain is constrained to have at least one previous
step which is an input variable. The inherent complexity of a
Boolean function is studied here according to two different
measures, being (i) the combinational complexity, and (ii) the
length. The combinational complexity of a Boolean function
f, denoted as C(f), is defined [2] as the minimum length
r of the majority or leafy majority Boolean chain such that
Zptr = f(21,...,2,). Note that the definition of Boolean
chain allows for multiple fanouts: multiple distinct steps in
the chain may refer to the same input or step z;. On the other

In [2] Knuth called them median Boolean chains.

hand, the length L(f) is defined as the number of 3-input
majority operators (leafy or not leafy) in the shortest formula
for f. It can be easily verified that L(f) = C(f) for n < 3,
and that L(f) > C(f) [2].

Generally, the study of the complexity of Boolean functions
deals with finding some upper bounds [3], [4] or lower
bounds [5] over a set of primitives. In our case, we are instead
concerned with finding exact numbers both for the length
and the combinational complexity over majority operators.
Similar problems have already found application in the logic
synthesis and optimization field [6]—[8], as, for instance, logic
rewriting algorithms optimize logic networks by replacing
small subnetworks with optimized Boolean chains [6], [7].
In [2], the complexity for all 4- and 5-input Boolean functions
in terms of 2-input Boolean operators have been studied,
while 3-input Boolean operators have been used in [9]. Having
exact numbers for the combinational complexity of some small
functions can help to find tighter upper bounds for larger
functions by using arguments from Boolean decomposition.
Recently, the complexity for the majority-of-n-input (majority-
n, [10], [11]) functions over majority Boolean chains has
been considered in [12]. The work in [12] uses a BDD-based
method to find the combinational complexity of monotone
functions, with particular stress on the use of leafy majority
Boolean chains. It has been demonstrated that for the majority-
n functions up to 7 inputs, the combinational complexity is
invariant when considering majority or leafy majority Boolean
chains. Further, the work in [12] proves that all majority-
n functions can recursively be constructed from self-dual
monotone functions. For this reason, the study of minimum
Boolean chains for self-dual monotone functions plays a
key role in finding new upper bound for the complexity of
majority-n functions.

In this paper, partly motivated by the recent results in [12],
we enumerate all self-dual monotone 7-input functions and
classify them according to their length and their combinational
complexity over both majority and leafy majority Boolean
chains. There are 1,422,564 such functions, distributed over
716 classes according to input permutation (P-equivalence).
The classification over majority Boolean chains has first been
presented in [2], both according to C(f) and L(f). Here,
we use our own implementation of the algorithm from [2]
to enumerate all 1,422,564 functions and to reproduce their
classification according to their length. On the other hand,
we propose our own strategy to compute the combinational

complexity for all 716 classes, which is a SAT-based exact
synthesis method. By comparing our results with the ones
in [2], we confirm that, when using majority Boolean chains,
the largest L(f) is 11, while the largest C(f) is 8. Moreover,
we also present results on leafy majority Boolean chains,
focusing on the differences with respect to the majority case.
We demonstrate an increase in the maximum length, while
we show that the worst combinational complexity remains
unaffected. However, the combinational complexity does not
remain unchanged for all functions, i.e., 40 functions have
increased combinational complexity when built using leafy
majority chains. As a last result, we show that inverters
have an impact on the minimum Boolean chain of self-dual
monotone functions. It is theoretically known that inverters can
decrease complexity even in monotone functions [13], here we
demonstrate and give concrete examples for the complexity of
7-input functions.

II. PRELIMINARIES

This work focuses on the complexity of self-dual monotone
functions. While the concept of complexity has already been
defined, we give here some notions about self-dual monotone
functions. Further, we also introduce input permutation classes
and SAT-based exact synthesis, as they will be used in the
following discussion.

A. Self-Dual Monotone Functions

A Boolean function f(x1,x2,...,2,) is monotone if and
only if f(x) < f(y) whenever x C y. This means that for the
bitstrings * = x1...Z, and Yy = Y1 ... Ym, it follows z; <
y; for all 7. A monotone Boolean function can be expressed
using only AND (A) and OR (V) operators, without using
complementation [2]. Being (xyz) the majority-of-three-input
(majority-3) operator and considering that (x0y) = x Ay and
(x1ly) = xVy, it follows that any monotone Boolean functions
can be written using only majority-3 operators and constants,
without using inverters.

A Boolean function f(xy,xo,..
satisfies

S Tn) s self-dual if it

flxi, o, ... xn) = f(Z1,T2,. -, Tn)

where the ~ is used to represent the complementation. In
other words, it states that negations can be freely propagated
from the inputs to the output. A monotone Boolean function
expressed over A and V operators is self-dual if the symbols A
and V can be interchanged without affecting the value of the
function. The majority-3 is an example of self-dual function.

Another useful definition is the one of normal Boolean
function, also called 0-preserving function [14]. A Boolean
function f(x1,x2,...,2,) is normal if

£(0,0,...,0)=0

More generally, a Boolean chain is normal if and only if all
its operators are normal.

The majority operator is monotone, self-dual and normal.
When considering functions over 7 inputs, there are 1,422,564

self-dual monotone functions. A majority chain always com-
putes a monotone and self-dual function. Also, for each mono-
tone and self-dual function, there exists a majority Boolean
chain that computes it.

B. Input Permutation Equivalence

Two Boolean functions are P-equivalent if they are equiva-
lent up to permutation of their inputs. As an example, functions
f=anband g = aAb are equal if we swap the input a with
input b and thus are said to be P-equivalent. P-equivalence
is used to group functions into P-equivalent classes which
consist of all functions equivalent up to permutation of the
inputs. A class for a function f is denoted here as [f]. When
two function f and g belong to the same class, i.e., g € [f],
they are P-equivalent. Each class can be represented using the
canonical representative f of the class, which is the function
f € [f] that has the truth table corresponding to the smallest
integer value. More details about efficient exact and heuristic
algorithms for P classification can be found in [2].

In this work, we are interested in studying the complexity
of Boolean functions. A key property is that all P-equivalent
functions, i.e., functions which are in the same class, have
the same combinational complexity C'(f) and the same length
L(f), which means that when g € [f], C(f) = C(g)
and L(f) = L(g). All self-dual monotone 7-input Boolean
functions can be grouped into 716 classes according to the
permutation of their inputs. The key idea is that, thanks
to P-equivalence, we can study the complexity of self-dual
monotone 7-input functions by looking at C'(f) and L(f) for
only 716 functions, instead of for all 1,422,564 functions. This
is preferable, since the number of P classes is significantly
smaller than the number of functions. Thanks to this property,
P-equivalence and its generalization to NPN [15] are largely
used in logic synthesis, for instance in logic rewriting and
exact synthesis [7], [16].

C. SAT-based Exact Synthesis

Exact synthesis is the problem of finding optimum Boolean
chains that represent given Boolean functions and respect
given constraints [17], e.g., in the type of operators. In this
paper, we concentrate on size optimum results, but extensions
that aim at depth optimum have also been considered [18],
[19]. The first example of SAT-based exact synthesis can be
found in [20], and successive analyses and improvements have
been considered in [21], [22]. The key idea behind all these
methods is to verify if it is possible to realize a function f
with a Boolean chain of size r, using a sequence of SAT
formulas, i.e., encoding the problem in Conjunctive Normal
Form (CNF). The size r is at first initialize at 0, or at some
given value, and at each loop it is increased if a solution is
not found, i.e., the result is UNSAT. If the results is SAT,
an optimum size Boolean chain can be extracted from the
obtained solution. In this paper, we focus on SAT-based exact
synthesis to study the combinational complexity of Boolean
functions. It has already been proven in [9] that SAT-based
exact synthesis methods can efficiently be employed to address

this task. Indeed, the combinational complexity of Boolean
functions can be extracted directly from an optimum size
Boolean chain, as it corresponds to the number of steps in
the optimum solution.

We refer the interested reader to [17], [23] for a more
detailed review on exact synthesis.

III. SELF-DUAL MONOTONE 7-INPUT FUNCTIONS
CLASSIFICATION

In this section, we describe the algorithms used to enu-
merate and classify self-dual monotone 7-input functions with
respect to their length and their combinational complexity over
majority operators. First, we illustrate the implementation of
an algorithm to classify functions according to their L(f). The
same algorithm allowed us to obtain the truth table for all the
716 self-dual monotone 7-input functions. Then, we propose
a SAT-based exact synthesis method to classify the obtained
7-input functions according to their combinational complexity.
Both the majority and the leafy majority Boolean chains are
considered.

A. Length L(f): Algorithm L

This section describes an exact algorithm to evaluate the
length of self-dual monotone functions in terms of majority
operators. We start by describing the algorithm for majority
operators, which is inspired by the one in [2]. In particular, it is
a 3-input majority-based version of “Algorithm L presented in
Section 7.1.2 of [2]. Finally, we address the changes necessary
to make the algorithm work for the leafy majority case.

The idea is to compute the length of all 1,422,564 functions
by enumerating all functions with length 0,1,2,...7. Each
function f with L(f) = r is built as (ghi), where g, h,
and ¢ are three functions already enumerated and whose sum
of lengths is equal to » — 1. This is practically obtained by
enumerating and storing all self-dual monotone functions from
previous lengths. As we are using only majority operators,
each function built using previously obtained self-dual mono-
tone functions is self-dual and monotone and can be added
to the list itself, if not already there. The algorithm is also
called [2] Find normal length as it works only on normal
Boolean chains.

The pseudocode is depicted in Alg. 1. The input is a
vector containing the truth tables for the 7-input variables.
The first part of the procedure initializes the count to the
total number of functions (line 1 in Alg. 1) and the length
for the input variables to O (lines [3-5] in Alg. 1). The table
function_to_length maps each function, represented as truth
table, to its length. The algorithm’s outer loop takes into
account the total number of functions, and it ends once the
counter hits 0. The inner while loop considers different values
for j,k, and [, which are the lengths of functions g, h, and
i, respectively. Function f is computed as the majority of
functions g, h, and ¢, using all combinations over the three
functions whose lengths sum is equal to current_length — 1
(lines [21-27] of Alg. 1). The length of f is equal to
current_length, further, as all functions from previous steps

Algorithm 1 Algorithm L to compute L(f)

Input: Truth tables of input variables x
Output: function_to_length

1: count < 1,422,564

2: current_length = 0

3: for each variable €), do

4: Sfunction_to_length(variable) < current_length

5: end for

6: while count > 0 do

7. current_length = current_length + 1

8: J k=0

9: I = current_length — 1

10: while [> 0 do

11: for each combination of g,h,i € function_to_length with
length j, k, [respectively do

12: f < (ghi)

13: if f & function_to_length then

14: Sfunction_to_length(f) + current_length

15: count < count — 1

16: if count =0 then

17: return function_to_length

18: end if

19: end if

20: end for

21: if j + k = current_length — 1 then

22: j=Jj+1

23: k=3j

24: else

25: k=k+1

26: end if

27: l = current_length — 1 —j — k

28: end while
29: end while
30: return function_to_length

are self-dual and monotone, it follows also function f is
self-dual and monotone. Thus, if the function is not already
present in the function_to_length map, it is saved in the
map together with its length. The algorithm ends when all
functions have been computed, and it returns all functions and
their corresponding lengths.

In practice, few changes to Alg. 1 allowed us to save not
only all 1,422,564 self-dual monotone 7-input functions, but
also the 716 representatives of the P-classes. The for loop in
line 11 of Alg. 1 consists practically of 3 loops over g, h,
and 7. The algorithm consists thus of 5 nested loops, whose
complexity grows with current_length. Experimentally, to
save runtime, we used the map function_to_length to search
for the existence of function f (line 13 of Alg. 1), while the
loops over g, h, and i have been performed using vectors
of truth tables. Further runtime has been saved by using the
commutativity property of majority, thus by disregarding all
combinations of g,h, and ¢ already considered in different
orders.

Alg. 1 works over majorities operators. We also designed
a second algorithm to work on leafy majority formulas. To
constraint Alg. 1 with leafy operators, we constrained variable
7 to be always equal to 0, thus to consider only input variables.
It means function g loops over all input variables xj, while h
and ¢ can consider functions with larger lengths. The rest of
the algorithm and the general idea remain the same as Alg. 1.

Algorithm 2 SAT-based exact method to compute C(f)

1: function synthesize_maj(f, r, S)

2: S < Restart SATSolver

3: CreateVariables(S, f,)

4: AddMainClause(S, f,r)

5 AddFanInClauses(S, r)

6: AddOtherClauses(S, f,r)

7: if Solve(S) then return Majority Boolean chain
8: else

9: return synthesize_maj(f,r + 1,5)

10: end if

11: end function

B. Combinational Complexity C(f): Exact Synthesis

In this section, we present a SAT-based exact method to
evaluate the combinational complexity of self-dual monotone
7-input functions in terms of majority operators. The combina-
tional complexity is invariant under input permutation, thus we
apply the SAT-based exact method only to the 716 P-classes,
whose number is significantly smaller than the total number
of functions. The truth tables for the 716 functions have been
obtained by using Algorithm L described in Section III-A. As
in the previous section, we first present the general method
that works over majority Boolean chains, we then describe
the differences to the implementation in order to consider leafy
majority Boolean chains.

The implemented exact synthesis algorithm starts by trying
to find a Boolean chain for function f using r = 0. If a solution
exists with r steps, the algorithm returns a majority Boolean
chain that implements function f, otherwise it searches a
solution with larger size (r 4 1). The algorithm increases the
number of steps until a solution is found.

This idea is described in the recursive procedure depicted
in Alg. 2, which is applied to each function f separately. The
inputs of the algorithm are (i) the function specification f (for
instance, given as truth table), (ii) the number of steps r, and
(iii) the SAT solver S. For the majority Boolean chain, we used
the same encoding presented in [8], [24]. This is an extension
that works over 3-input Boolean operators of the encoding
first proposed by Knuth [22] for 2-input Boolean operators.
In our case, the operations of each step are limited to the
majority operator, without allowing inversions. The clauses
are the same as discussed in [22]. The main clause is the
one which encodes the truth table of the circuit, while the
fanin clause assures that each step has exactly 3 distinct inputs.
AddOtherClauses consists of both necessary and additional
clauses proposed in [19], which can be added to reduce the
solving time of the SAT solver. More details about both clauses
formalization and additional clauses can be found in [19], [22],
[23]. Alg. 2 is first applied to each function using » = 0, r is
then increased until a solution is found. It is worth noting that
this method allows to not only count the number of functions
for each combinational complexity, but also to obtain their
implementation in terms of majority operators.

In order to constrain Alg. 2 to work only with leafy majority
Boolean chains, we changed the AddFanInClauses in order
to constrain the first input of each step to be one of the input

variables. The fanin of each step ¢ is encoded in the select
variable s;ji;, which is true if steps x;, x and x; are the
children of step z;. In the leafy case, the fanin clause is
changed to ensure x; < n. The rest of the algorithm remains
the same as Alg. 2.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental results both
for the length and the combinational complexity of self-
dual monotone 7-input functions. First, we present our results
for the majority case. Then, we give a comparison between
majority and leafy majority Boolean chains.

We have implemented the proposed algorithms using the
open source EPFL Logic Synthesis Libraries [25]. Algorithm L
has been implemented using the truth table library kirty.
The SAT-based exact method has been implemented using
the exact logic synthesis library percy.> We have used the
“maj_encoder” and the Glucose SAT solver [26], [27]. All
the experiments have been carried out on Intel Xeon E5-2680
CPU with 2.5 GHz and with 256 GB of main memory.

Regarding the majority Boolean chains, the results of clas-
sification have already been presented in [2]. Our results have
been obtained using Algorithm L (Alg. 1) and are shown in
the first part of Table I. The first three columns of Table I show
both the number of classes and the number of functions for
each length. The largest length is equal to 11 (in agreement
with the results from [2]). Consider as an example function
f = (zixowszyxs51627), Which is the majority-of-seven-
inputs (majority-7). Its L(f) has been demonstrated both here
and in [2] equal to 8, given by:

(1 (zo(@srazs)(z3rexr)) (Ta(Tom6x7)(T325(T52627))))

2)

While for the length we have implemented the same al-
gorithm presented in [2] to obtain our results, for the com-
binational complexity we have used an alternative approach,
i.e., SAT-based exact synthesis. The results are obtained ap-
plying Alg. 2 on all 716 functions, with a total runtime
of 4038 seconds and 2997 seconds for the majority and
leafy majority Boolean chains, respectively. The runtime for
the method presented in [2] on majority Boolean chains is
6894 seconds. Note also that while Knuth’s algorithm only
counts the number of functions for each class, in our case
extra memory and runtime are necessary in order to also get
the majority networks implementations.* Our results for the
combinational complexity are shown in columns 4 and 5 of
Table I. As we used a SAT-based exact synthesis method,
we have computed the combinational complexity only for the
716 classes. The maximum combinational complexity is 8 (in
agreement with the results in Table II). The shortest chain for
function f = (z1z2x324252627) needs 7 steps and it is given
by:

2 Available at: https:/github.com/msoeken/kitty
3 Available at: https:/github.com/whaaswijk/percy
4Available at: https://github.com/eletesta/7input_classification

TABLE I: L(f) and C(f) for all 716 self-dual monotone 7-input classes

Majority Computation

Leafy Majority Computation

L(f) Classes Functions C(f) Classes Licaty (f) Classes Functions Cleaty (f) Classes
0 1 7 0 1 0 1 7 0 1
1 1 35 1 1 1 1 35 1 1
2 2 350 2 2 2 2 350 2 2
3 8 3745 3 9 3 8 3745 3 9
4 38 35203 4 48 4 35 33628 4 45
5 139 270830 5 201 5 123 233660 5 191
6 313 699377 6 354 6 272 600887 6 347
7 176 367542 7 98 7 210 449673 7 114
8 34 43135 8 2 8 50 84519 8 6
9 3 2310 9 0 9 12 14770 9 0

10 0 0 10 0 10 1 1260 10 0
11 1 30 11 0 11 0 0 11 0
12 0 0 12 0 12 1 30 12 0

Ty = (T17374), T9 = (TeT7Ts), Ti0 = (T5T8T9)
T = (T5T6T7), Ti2 = (V1T3711), T13 = (T4T11712)

T14 :<CE2$109313> 3

This last result matches the one demonstrated both in [2]
and [12].

The second half of Table I shows the leafy majority results.
The worst L(f) is increased to 12, while the largest combi-
national complexity is still 8. As a general trend, functions
need more steps when the majority operators are constrained
to have at least one primary input. For example, note that the
number of chains with 8 steps is increased from 2 to 6. By
comparing the majority results with the leafy ones, we can
conclude that:

1) The class with the largest length is the same both in
majority and leafy majority computation, and it is the function
with truth table (in hexadecimal form):

fefefeaafeccf080fef0cc80aa808080

Its combinational complexity in both majority and leafy is
equal to 8 steps, obtained using the Boolean chain given by:

xg = (T5x6x7), To9 = (T2x3%5), T10 = (T1T8T9)
11 = (T3x7210), Ti2 = (T2T6T10), T13 = (T4T11712)

T4 =(T124213), T15 = (T5T13%14) 4)

2) Regarding the length, 98 functions out of 716 have
different length when comparing majority with leafy majority
formulas. The maximum difference in length is equal to 3.
This is true for functions:

feeaecacaecaaaaalfaaaaa88a8a8a880

feeeeeeaeeeaecc0fcc8a888a8888880
feeaeceOfacaa8al0faecaa8a0f8c8a880

3) For the combinational complexity, 40 functions out of
716 have a different combinational complexity when compar-
ing majority with leafy majority Boolean chains. In this case,
the difference is equal to 1 for all the functions.

4) Up to 3 steps, the results are the same both for majority
and leafy majority case. This was expected, if we consider

TABLE II: L(f) and C(f) for all self-dual monotone 7-input
functions taken from Section 7.1.2 in [2]

L(f) Classes Functions C(f) Classes Functions
0 1 7 0 1 7
1 1 35 1 1 35
2 2 350 2 2 350
3 8 3745 3 9 3885
4 38 35203 4 48 42483
5 139 270830 5 201 406945
6 313 699377 6 353 798686
7 176 367542 7 99 169891
8 34 43135 8 2 282
9 3 2310 9 0 0

10 0 0 10 0 0
11 1 30 11 0 0

that we are not allowing steps in the Boolean chains to have
two equal inputs.

5) For the majority-7, the length in the majority case is equal
to 8 and its complexity is 7. The combinational complexity
in the leafy case is unchanged (w.r.t. the majority case) and
equal to 7, as it has been demonstrated in [12] and seen
in (3). Further, we prove that also its length is unchanged
when considering leafy majority operators.

To further stress the difference between majority
and leafy majority Boolean chains, consider function
feeacacacecaaaaalfaaaaa88a8a8a880 as an example. When
considering its length, the difference between majority and
leafy majority is equal to 3. i.e., L(f) = 4 and Licasy (f) = 7.
The smallest majority Boolean chain needs 4 steps:

vy =(T173%6), To = (T174T5),

z10 =(T12227), 11 = (TsTyT10) (5)

In the leafy case, the same Boolean chain cannot be used, as
the last step x1; is the majority of three majority operators
in the previous steps. The function needs 5 steps in the leafy
majority Boolean chain, given by:

g =(r103%6), Tg = (T1T227),

T10 = (T178T9), T11 = (T5T8T9), T12 = (TaT10711) (6)

TABLE II: C(f) for 715 self-dual monotone 7-input functions
over majority Boolean chains with inverters

ain

Classes

[N o MV I NN S
I~
=3

As a last result, it is worth mentioning that our SAT-
based exact synthesis method was able to demonstrate better
combinational complexity for one of the 716 classes with
respect to the original results in [2]. The discrepancy was
due to a bug in the original version of the algorithm in [2],
which has been found and solved as a result of this work.
The original results obtained in [2] are listed in Table II. In
Table II, the number of functions with complexity 6 and 7
respectively are not in agreement with our results in Table I
(see highlighted numbers). In particular, for one function,
the SAT-based synthesis method was generating a smaller
combinational complexity.

The discrepancy has been discussed with the author, and
corrected in the most recent version of [2].

V. CONCLUSIONS AND FUTURE WORKS

We study the complexity of self-dual monotone 7-input
functions in terms of 3-input majority operators. Finding
minimum chains is not only of interest from a theoretical point
of view, but it also has practical application. For example, they
can be used in logic optimization and technology mapping.
Our method uses both state-of-the-art algorithms and exact
synthesis, based on P classification, to compute the complexity
of Boolean functions according to their (i) length, and (ii)
combinational complexity. We study the complexity in terms
of both majority and leafy majority Boolean chains, in which
majority operators are constrained to have at least one primary
input. In future work, we plan to further study self-dual
monotone 7-input functions in terms of different majority
Boolean chains. For instance, majority Boolean chains which
allow the use of constant signals, i.e., and/or operators, could
be considered. Also limited fan-out configurations in which
the fan-out of each node is constrained to be smaller than
a given value can be taken into account. A key role for
future developments is the use of inverters. It is already
known from complexity theory that the inverters could help
to reduce asymptotic bounds of size and depth of logic
networks for monotone functions [13]. In the future, we
plan studying the effect of inversions both on the length
and the combinational complexity of self-dual monotone 7-
input functions. Also for this case, leafy majority Boolean
chains could be considered. Towards this direction, we show
in Table III some preliminary results for the combinational

complexity of the 716 self-dual monotone Boolean functions
when using majority Boolean chains and inverters. The results
are obtained using a SAT-based exact synthesis method for
Majority Inverter Graphs [28], as presented in [8]. This
method is similar to the one presented in Alg. 2. At the time
of submission, 715 functions out of 716 were synthesized by
our exact synthesis method. Even if not complete, Table III
shows that the combinational complexity of 39 functions is
decreased thanks to the use of inverters. For instance, consider
function feeeece8faa8aaadfaaacaa0e8888880. The combinational
complexity over majority Boolean chain (with no inversion)
is equal to 7, given by the Boolean chain:

xg =(T1T324), Tg = (T2xeTs),
x10 =(T7x8%9), T11 = (T3T4T10),

T2 = <9C5$6$11>, 13 = <302365I12>7 T14 = <$1$10$13>

)

The same function can be synthesized using only 6 steps, if
we allow inverters:

rg = (T1T57), Tg9 = (T125T7), T10 = (T32478),

11 = (T2ZeTy) T12 = (T125T9), T13 = (T10T11Z12) (8)
ACKNOWLEDGMENTS

We would like to offer special thanks to Professor Donald
E. Knuth for sharing his implementation of Algorithm L and
for his valuable help and assistance. We further acknowledge
fruitful discussions with Alan Mishchenko.

This research was supported by the Swiss National Sci-
ence Foundation (200021-169084 MAlJesty), by H2020- ERC-
2014-ADG 669354 CyberCare, and by the EPFL Open Science
Fund.

REFERENCES

[1]1 1. Wegener, The complexity of Boolean functions. John Wiley, 1987.

[2] D. E. Knuth, The Art of Computer Programming, Volume 4A. Addison-
Wesley, 2011.

[3] W. Hesse, E. Allender, and D. A. M. Barrington, “Uniform constant-
depth threshold circuits for division and iterated multiplication,” Journal
of Computer and System Sciences, vol. 65, no. 4, pp. 695-716, 2002.

[4] M. Goldmann, J. Hastad, and A. Razborov, “Majority gates vs. general
weighted threshold gates,” Computational Complexity, vol. 2, no. 4, pp.
277-300, 1992.

[5] W. J. Paul, “A 2.5n-lower bound on the combinational complexity of
Boolean functions,” SIAM Journal on Computing, vol. 6, no. 3, pp.
427-443, 1977.

[6] M. Soeken, L. G. Amart, P.-E. Gaillardon, and G. De Micheli, “Op-
timizing majority-inverter graphs with functional hashing,” in Design,
Automation and Test in Europe, 2016, pp. 1030-1035.

[71 W. Haaswijk, M. Soeken, L. G. Amart, P-E. Gaillardon, and
G. De Micheli, “A novel basis for logic optimization,” in Asia and South
Pacific Design Automation Conference, 2017, pp. 151-156.

[8] M. Soeken, L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “Exact
synthesis of majority-inverter graphs and its applications,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 36, no. 11, pp. 1842—
1855, 2017.

[91 W. Haaswijk, E. Testa, M. Soeken, and G. De Micheli, “Classifying

functions with exact synthesis,” in Int’l Symp. on Multiple-Valued Logic,

2017, pp. 272-2717.

S. Amarel, G. E. Cooke, and R. O. Winder, “Majority gate networks,”

IEEE Trans. Electronic Computers, vol. 13, no. 1, pp. 4-13, 1964.

[10]

(1]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Neutzling, F. S. Marranghello, J. M. Matos, A. Reis, and R. P. Ribas,
“Maj-n logic synthesis for emerging technology,” IEEE Trans. on CAD
of Integrated Circuits and Systems, 2019.

E. Testa, M. Soeken, L. Amaru, W. Haaswijk, and G. De Micheli,
“Mapping monotone boolean functions into majority,” IEEE Trans. on
Computers, 2018.

T. Hofmeister, “The power of negative thinking in constructing threshold
circuits for addition,” in Proceedings of the Seventh Annual Structure in
Complexity Theory Conference, 1992, pp. 20-26.

E. L. Post, The Two-Valued Iterative Systems of Mathematical Logic.
Princeton University Press, 2016, vol. 5.

E. Goto and H. Takahasi, “Some theorems useful in threshold logic for
enumerating Boolean functions,” in IFIP Congress, 1962, pp. 747-752.
A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532-535.

M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. G. Amaru, R. K.
Brayton, and G. De Micheli, “Practical exact synthesis,” in Design,
Automation and Test in Europe, 2018, pp. 309-314.

L. Amard, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E. Gail-
lardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay
synthesis,” in Int’l Conf. on Computer-Aided Design, 2017, pp. 352-359.
M. Soeken, G. De Micheli, and A. Mishchenko, “Busy man’s synthesis:
Combinational delay optimization with SAT,” in Design, Automation
and Test in Europe, 2017, pp. 830-835.

N. Een, “Practical SAT - a tutorial on applied satisfiability solving,”
2007, slides of invited talk at FMCAD.

A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in Int’l Conf. on Theory and Applications
of Satisfiability Testing, 2009, pp. 32-44.

D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Addison-Wesley, 2015.

W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. on CAD of Integrated Circuits and Systems, 2019.

E. Testa, M. Soeken, O. Zografos, F. Catthoor, and G. De Micheli, “Ex-
act synthesis for logic synthesis applications with complex constraints,”
Int’l Workshop on Logic and Synthesis, 2017.

M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli, “The EPFL
logic synthesis libraries,” may 2018, arXiv:1805.05121.

G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st International Jont Conference
on Artifical Intelligence, ser. ICAI’09, 2009, pp. 399-404.

G. Audemard and L. Simon, “Glucose and Syrup in the SAT Race 2015,”
in Reports on the SAT 2015 Competition, 2015.

L. G. Amaru, P-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic opti-
mization,” in Design Automation Conference, 2014, pp. 194:1-194:6.

