
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

SAT-Based Exact Synthesis:
Encodings, Topology Families, and Parallelism

Winston Haaswijk∗, Student Member, IEEE, Mathias Soeken∗, Member, IEEE,
Alan Mishchenko†, Senior Member, IEEE, Giovanni De Micheli∗, Fellow, IEEE

∗Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
†University of California, Berkeley, CA, USA

Abstract—Exact synthesis is a versatile logic synthesis tech-
nique with applications to logic optimization, technology map-
ping, synthesis for emerging technologies, and cryptography. In
recent years, advances in SAT solving have lead to a heightened
research effort into SAT-based exact synthesis. Advantages of ex-
act synthesis include the use of various constraints (e.g. synthesis
of emerging technology circuits). However, although progress has
been made, its runtime remains unpredictable. This paper iden-
tifies two key points as hurdles to further progress. First, there
are open questions regarding the design and implementation of
exact synthesis systems, due to the many degrees of freedom. For
example, there are different CNF encodings, different symmetry
breaks to choose from, and different encodings may be suitable
for different domains. Second, SAT-based exact synthesis is
difficult to parallelize. Indeed, this is a common drawback of
logic synthesis algorithms. This paper proposes four ways to
close some open questions and to reduce runtime: (i) quantifying
differences between CNF encoding schemes and their impacts
on runtime, (ii) demonstrating impact of symmetry breaking
constraints, (iii) showing how DAG topology information can be
used to decrease runtime, (iv) showing how topology information
can be used to leverage parallelism.

I. INTRODUCTION

Exact synthesis is a term used by the logic synthesis
community for any method that can be applied to yield
exact results for logic synthesis problems. In this context, the
term exact synthesis is not used in opposition to approximate
synthesis, which is a paradigm concerned with the synthesis of
systems that produce approximately correct results [1]. Rather,
exact synthesis refers to synthesizing logic representations that
exactly meets a specification. For example, given a Boolean
function f : Bn → Bm and an number r ∈ N we may ask
Q1: “Does there exist a logic network N such that
N implements f with exactly r gates?”

or
Q2: “Does there exist a sum-of-product (SOP) ex-
pression E with exactly r cubes that represents f?”

An exact synthesis algorithm can be used to answer such
questions. We we are interested in constructive algorithms such
that, if a question Qx can be answered in the affirmative, we
want to know a logic representation that meets the specifica-
tion. In the above examples, we want our algorithm to produce
a logic network N or an SOP expression E.

The notion of exactness is closely related to that of opti-
mality. Given an algorithm for the exact synthesis of some
representation form, we can often adapt it to synthesize
optimum representations. Suppose we have a constructive
algorithm for Q1. We could then use it to synthesize size-
optimum logic networks as follows. Initialize r to zero and

query the algorithm. Increment r until we find the first value
r′ for which the algorithm reports success. This r′ must then
be the size of the smallest, i.e. size-optimum, logic network
for f . Due to the close correspondence between exact- and
optimum synthesis, the terms are often used interchangeably.
In fact, the term exact synthesis is widely used to refer to the
synthesis of optimum representations.

Exact synthesis algorithms exist for both two- and multi-
level logic representations. The Quine-McCluskey algorithm
and Petrick’s method are well-known algorithms for the
minimization of SOPs [2], [3]. Similar methods have been
developed for so-called exclusive SOPs (ESOPs) as well [4].
In multi-level logic synthesis we encounter various exact
minimization algorithms such as the decomposition techniques
of Ashenhurst, Curtis, Davidson, and Roth and Karp [5]–
[8]. More recently, enumeration-based techniques have been
developed by Knuth and Amaru [9], [10]. In practice, heuristic
methods are often preferred for performance reasons [11].
The heuristic counterparts to two-level exact synthesis are the
Espresso and Exorcism algorithms [12], [13]. For multi-level
logic, algebraic and Boolean methods exist [14].

Exact synthesis has practical as well as theoretical appli-
cations. Practical applications range from logic optimization,
technology mapping, and synthesis for emerging technologies
to less obvious ones such as cryptography [15]–[20]. On the
theoretical side, it allows us to derive upper and lower bounds
on the complexity of functions [21]. It is known that all 4-
variable Boolean functions can be represented using SOPs with
at most 8 implicants [22]. Using exact synthesis, Knuth has
found that all 5-variable Boolean functions can be represented
using 2-input gate-level networks with at most 12 gates [9]. In
this paper, rather than concentrating on applications, we show
improvements to the core exact synthesis algorithm.

In recent years, significant strides have been made in
algorithms for Boolean satisfiability (SAT) [23]. These devel-
opments, coupled with increases in compute power, have led
to a resurgence of exact synthesis algorithms backed by SAT
solver backends [16]–[18]. Despite this progress, its adoption
has been limited, due to its unpredictable runtime. There have
been attempts to mitigate runtime with techniques such as the
development of alternative CNF encodings, the addition of
symmetry breaking clauses, and the use of counterexample-
guided abstraction refinement (CEGAR) [9], [24]. However,
these techniques are often applied in an ad-hoc matter. More-
over, it is not clear how the various encodings and constraints
interact with different SAT solvers. To date no comprehensive
quantitative comparison of the various methods exists. This

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

presents difficulties in the design of new systems, as there
is no data to use as a basis for any design choices. Another
hurdle is that, like many EDA algorithms, it is difficult to
parallelize. Some efforts have been made in parallelizing SAT
solvers using techniques such as cube-and-conquer, clause
sharing, and portfolio SAT solvers which apply different SAT
solvers in a parallel or distributed manner [25], [26]. This
has proven difficult, partially due to theoretical limitations
of the resolution procedure [27]. Moreover, solvers based on
these methods are typically domain agnostic, and do not take
advantage of specific domain structure.

Our contributions can be divided into three parts:
1) We present a series of experiments which demonstrate,

for the first time, quantitative differences between CNF
encodings. These results can be used as a basis for the
design and implementation of SAT-based exact synthesis
systems. The experiments are implemented with the
open source percy tool, which is available to the public
at https://github.com/whaaswijk/percy.

2) We introduce novel algorithms based on families of
DAG topologies. We show that they can be used to re-
duce synthesis runtime as well as the number of timeouts
(thus increasing the number of solved instances).

3) We show how topology information can be used to
transform the SAT-based exact synthesis problem into
an embarrassingly parallel one. This allows us to design
parallel algorithms that are up to 68x faster than the
state-of-the-art.

The rest of this paper is organized as follows. Section II
formalizes Boolean networks and provides background on
finding optimum Boolean networks using SAT-based exact
synthesis.

The first part of our contributions starts in Section III,
where we describe and measure in detail three different CNF
encodings and symmetry breaking constraints.

Next, in Section IV, we describe two different types of
DAG topology families. We discuss some of their theoretical
properties, algorithms for generating them, as well as how they
can be used to improve synthesis runtime.

Then, in Section V, we show how topology families can
be used to unlock parallel synthesis algorithms, and provide
some experimental results that show their performance.

Finally, we conclude the paper with a brief discussion in
Section VI.

II. BACKGROUND

In this section we describe the background of (generalized)
Boolean chains and SAT-based exact synthesis. Both of these
concepts will be used extensively throughout the text.

A. Boolean Chains
We present here an extension of Boolean chains, a concept

originally introduced by Knuth [9]. Knuth’s formalization
is limited to chains consisting of 2-input operators. Here,
we extend this definition to k-input operators, where k is
arbitrarily large, but fixed.

A Boolean chain is a directed acyclic graph (DAG) in
which every vertex corresponds to a k-input Boolean operator
φ : Bk → B. Following the convention of [8], we denote the

x3x2x1

∧ ⊕

∧ ⊕

∨

Carry Sum

x4 x5

x6 x7

x8

Fig. 1: Illustration of a normal 2-input operator Boolean chain
for a full adder. This chain also happens to be a size-optimum.
As it is not used, the constant zero input x0 is not shown here.

set of allowed operators by B. Boolean chains are compact
structures for the representation of multiple-output Boolean
functions, similar to the concept of unbound logic networks
used by the logic synthesis community [11], although they are
slightly more restricted. Their formal definition is as follows.
Let f = (f1, . . . fm) be a multiple-output Boolean function,
such that f : Bn → Bm and the functions f1, . . . fm are
defined over common support x1, . . . , xn. Then, for k ≥ 1
and a set B, a k-input operator Boolean chain is a sequence
(xn+1, . . . , xn+r), where

xi = φi(xj(i,1), . . . , xj(i,k)) for n+ 1 ≤ i ≤ n+ r

such that φi ∈ B, 1 ≤ j(i, ·) < i, and for all 1 ≤ k ≤
m, either fk(x1, . . . , xn) = xl(k) or fk(x1, . . . , xn) = x̄l(k),
where 0 ≤ l(k) ≤ n+ r, and x0 = 0 the constant zero input.
For example, in Knuth’s definition of Boolean chains, B is
the set of all binary operators. The objects xn+1, . . . , xn+r

are called the steps of the chain.
For example, when n = 3, then the 2-input operator 5-step

chain

x4 = x1 ∧ x2
x5 = x1 ⊕ x2
x6 = x3 ∧ x5
x7 = x3 ⊕ x5
x8 = x4 ∨ x6
l(1) = 7

l(2) = 8

can be used to represent the 3-input 2-output function
f(x1, x2, x3) = (x1 ⊕ x2 ⊕ x3, 〈x1, x2, x3〉), which is com-
monly known as a full adder.1 Fig. 1 illustrates this example.

The extension of Boolean chains to arbitrary k-input oper-
ators has several motivations. First, synthesis of chains with
larger operator sizes may be significantly faster. For example,
using 3-input operator Boolean chains, one can efficiently

1We use angular brackets to denote the majority function.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

classify the set of all 5-input functions using SAT-based exact
synthesis [28], whereas this has not been achieved for 2-input
operator chains. Second, one application of exact synthesis is
in technology mapping, where we are often required to use a
diverse set of logic primitives. Generally, we cannot assume
that a given cell library contains only 2-input operators.
Finally, recently there has been a resurgence of bounded logic
network representations such as MIGs and XMGs [17]. These
require operators ranging from 3 to at least 5 inputs, although
this depends on the specific representation (i.e. we typically
understand MIGs to require 3-input operators).

We say that a Boolean chain is normalized or normal if
all it steps correspond to normal functions, i.e. functions that
output zero when all of their k inputs are zero. For example,
a chain consisting of AND and OR functions is normal, but a
chain of NANDs is not.

B. SAT-based Exact Synthesis

The first example of SAT-based exact synthesis that we
are aware of is the tutorial on “Practical SAT” given by Eén
at the FMCAD conference [29]. Later, Kojevnikov, Kulikov,
and Yaroslavtsev used an extended CNF encoding to find
circuit-size upper bounds [30]. Later, Knuth implemented
his own formulation which uses a somewhat different CNF
encoding and was limited to 2-input operator chains [31].
These algorithms all aim to find size-optimum Boolean chains.
Soeken et al. extended them to synthesize depth-optimum
chains [18] instead. In this paper, our focus is on methods
for size-optimum synthesis but, due to the large overlap in
methodology, the results should carry over to the depth-
optimum case as well.

The principle idea behind these methods is the same. Given
a function f : Bn → Bm, they do the following:

1) Initialize r ← 0.
2) Encode Q1 as a CNF formula Fr.
3) Feed Fr to a SAT solver and wait for its result.
4) If the result is SAT then we are done. An optimum-size

chain can be extracted from the satisfying solution.
5) Otherwise, the result is UNSAT. In this case we set r ←

r + 1 and go to step 2.
Hence, the size-optimum problem can be solved by a sequence
of SAT formulas. This process is captured by Fig. 2.

We are free to choose between distinct (but equivalent) CNF
encodings Fr. However, it may not be clear which one is best
in a given context.

C. A Note on Optimality

It seems prudent here to address a point of confusion which
sometimes arises when discussing optimum synthesis. We al-
ways refer to optimality within the context of a specific model
of computation. The model of computation used throughout
this paper is that of Boolean chains. Suppose we synthesize
a function f and obtain the chain C. When we say that C is
size-optimum, this means that there exists no chain C ′ that
computes f with fewer steps than C. That is not to say that
there may not exist different models of computation, such
as cyclic combinational circuits [32], in which f could be
implemented with fewer computational primitives.

Given f1, . . . , fm

Initialize r ← 0

Generate CNF encoding Fr

Solve Fr Set r ← r + 1

Continue

Found optimum chain

SAT

UNSAT

Fig. 2: Illustration of a size-optimum SAT-based exact synthe-
sis algorithm.

III. ANALYSIS OF CNF ENCODINGS

In this section, specifically Sections III-A to III-C, we
describe three different CNF encodings. This is not meant
to be an exhaustive list. Other encodings exist, including the
one proposed by Kojevnikov et al [30]. Rather, we present
these encodings as they are heavily used in practice, and yet
we are unaware of any detailed descriptions or comparisons
in existing literature. Section III-D describes a number of
symmetry breaking constraints which can be used to speed
up synthesis. In Section III-E we show, for the first time, a
comprehensive comparison between the encodings, including
their behavior under various symmetry breaking constraints.

In the following, we assume the generic synthesis problem
in which we are given the multiple-output Boolean function
f = (f1, . . . , fm) : Bn → Bm, and we wish to synthesize a 2-
input operator Boolean chain. While all encodings we describe
can be used for the synthesis of k-input operator chains, for
clarity we describe only the 2-input case. The extension to
arbitrary k is then straightforward.

A. Single Selection Variable (SSV) Encoding
The SSV encoding is typically used for the synthesis of

normal 2-input operator chains. The normalization require-
ment does not limit the optimality of synthesized chains:
any function computed by a non-normalized chain can be
computed by a normalized chain with the same number of
steps. One can simply complement the desired non-normal
function, synthesize a normal chain, and invert it. The use of
normal chains has the advantage that they can be built out of
normal steps. This reduces the number of variables needed by
the encoding.

In this encoding, Fr consists of the following variables, for
1 ≤ h ≤ m, n < i ≤ n+ r, and 0 < t < 2n:

xit : tth bit of xi’s truth table
ghi : fh(x1, . . . , xn) = xi

sijk : xi = xj ◦i xk for 1 ≤ j < k < i

fipq : p ◦i q for 0 ≤ p, q ≤ 1, p+ q > 0

Here, the ghi variables determine which outputs point to which
step. The sijk variables determine the inputs j and k, for each

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

step i. These are also known as selection variables. The fipq
encode for all steps i what the corresponding Boolean operator
is. Note that we do not encode fi00, since fi(0, 0) = 0 by
definition of normal chains.

These variables are then constrained by a set of clauses
which ensures that the chain computes the correct functions.
For 0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i, the main clauses are:

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā))

Intuitively, these clauses encode the following constraint: if
step i has inputs j and k and the tth bit of xi is a and the tth

bit of xj is b and the tth bit of xk is c, then it must be the
case that b ◦i c = a. This can be understood by rewriting the
formula as follows:

((sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄))→ (fibc ⊕ ā))

Note that a, b, and c are constants which are used to set the
proper variable polarities.

Let (b1, . . . , bn)2 be the binary encoding of truth table index
t. In order to fix the proper output values, we add the clauses
(ḡhi∨x̄it) or (ḡhi∨xit) depending on the value fh(b1, . . . , bn).
Next, for each output, we add

∨n+r
i=n+1 ghi. This ensures that

one of its corresponding output variables must be true. In other
words, it ensures that every output points to a step in the chain.
Finally, for each step, we add

∨i−1
k=1

∨k−1
j=1 sijk. This ensures

that one of its selection variables must be true. Particularly, it
ensures that every step in the chain has two valid fanins.

Let us consider the full-adder chain in Fig. 1 as an example.
Since, in this case n = 3 and r = 5, we have to encode the
following truth table bits:

t = 7 6 5 4 3 2 1
x4t = 1 0 0 0 1 0 0
x5t = 0 1 1 0 0 1 1
x6t = 0 1 1 0 0 0 0
x7t = 1 0 0 1 0 1 1
x8t = 1 1 1 0 1 0 0

There are two outputs and each of them may be connected
to exactly one step. Since there are five steps, we have a total
of ten ghi variables to encode all possible output connections.
Two of these are set to one to indicate which steps correspond
to outputs: g17 = g28 = 1. All other ghi are zero.

Similarly, from the DAG structure of the network, we can
see that s412 = 1, s512 = 1, s635 = 1, s735 = 1, and s846 = 1.
All other sijk are zero.

Finally, the variables encoding the Boolean operators are
assigned to the following values:

(p, q) = (1, 1) (0, 1) (1, 0)

f4pq = 1 0 0

f5pq = 0 1 1

f6pq = 1 0 0

f7pq = 0 1 1

f8pq = 1 1 1

This variable assignment satisfies all clauses and the chain
that computes the full adder can be extracted from the CNF
formula simply by inspecting the selection and operator vari-
ables.

A key difference between the encodings in this section is
in the number of si variables, also known as the selection
variables, that they use. Let us therefore compute the number
of selection variables in the SSV encoding. All possible
operand pairs for step i are explicitly encoded by separate
variables sijk(j < k < i). For a given i there are

(
i−1
2

)
possible operand pairs to choose from. Thus, the total number
of selection variables in the SSV encoding is

n+r∑
i=n+1

(
i− 1

2

)
=

1

6
(3n2 + 3n(r − 2) + r2 − 3r + 2).

In other words, it is quadratic in the number of inputs n and
gates r.

B. Multiple Selection Variables (MSV) Encoding
In the MSV encoding, we define the following variables

1 ≤ h ≤ m, n < i ≤ n+ r, and 0 < t < 2n:

xit : tth bit of xi’s truth table
ghi : fh(x1, . . . , xn) = xi

sij : xi has operand j where 1 ≤ j < i

fipq : p ◦i q for 0 ≤ p, q ≤ 1, p+ q > 0

The MSV encoding uses the variable sij to indicate that
step i has operand j. Thus, it requires only i − 1 selection
variables per step. The total number is

n+r∑
i=n+1

(i− 1) =
1

2
(2n+ r − 1).

Thus, the MSV encoding reduces the number of variables
from a quadratic to a linear number, as compared to the SSV
encoding. However, it achieves this reduction in variables at
the cost of additional clauses. It must maintain the cardinality
constraint that

∑i−1
j=1 sij = 2. In this case that constraint can

no longer be enforced by a single clause. One solution is to
add the clauses ∧

j<k<l<i

(s̄ij ∨ s̄ik ∨ s̄il)

and
i−1∧
k=1

(si1 ∨ . . . si(k−1) ∨ si(k+1) ∨ · · · ∨ si(i−1)).

Intuitively, such clauses work as follows. They state that in
any triplet of potential operands for step i at least one must
be false. Moreover, consider a set of operands which consists
of all potential operands of i with one removed. In such a set
at least one operand must be used by i. Thus, by adding this
second set of clauses we ensure that at least 2 operands are
used. Combined, these constraints therefore ensure that exactly
2 operands are selected. The drawback of these constraints is
that they require

n+r∑
i=n+1

(
i− 1

3

)
+

(
i− 1

i− 2

)
additional clauses, which is quadratic in n and r.

Fortunately there exist more efficient encoding schemes.
One example is to add a unary binary counter (UBC) circuit

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

to the CNF. Essentially such a circuit acts as a (partial) ripply-
carry adder which allows us to ensure that the total number
of selected operands is equal to 2. Moreover, it uses only a
linear number of clauses. Finally, it has the advantage that as
soon as 2 operands are selected, the entire circuit is computed
by unit propagation, exploiting the SAT solver’s efficiency. A
complete description of this circuit is outside the scope of this
paper, but we refer the interested reader to [33]. We use the
UBC encoding in all our experiments.

After putting the appropriate cardinality constraints in place,
for 0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i, the main clauses are
now:

(s̄ij ∨ s̄ik ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā))

Similar to the SSV encoding, we add the clauses (ḡhi∨ x̄it)
or (ḡhi ∨ xit) depending on the value fh(t1, . . . , tn). We also
add

∨n+r
i=n+1 ghi.

Example. Let us consider again the previous example of
encoding the full-adder. It is similar to the SSV encoding,
with the only difference being in the selection variables. We
now have

s41 = s42 = 1

s51 = s52 = 1

s63 = s65 = 1

s73 = s75 = 1

s84 = s86 = 1

and all other sij zero.

C. Distinct Input Truth Tables (DITT) Encoding

The DITT encoding possesses some interesting structural
differences from the previous two. In the SSV and MSV
encodings there is a tight coupling between the selection
variables and the propagation of truth table bits through the
operator variables. The DITT encoding removes that direct
coupling at the cost of introducing additional variables and
clauses. However, while it creates more variables, it simulta-
neously reduces the complexity of the clauses.

Let us begin by defining the variables:

xit : tth bit of xi’s truth table

x
(k)
it : tth bit of xi’s kth input truth table, k ∈ {1, 2}
ghi : fh(x1, . . . , xn) = xi

s
(k)
ij : Input k of xi has operand j for 1 ≤ j < i, k ∈ {1, 2}
fipq : p ◦i q for 0 ≤ p, q ≤ 1, p+ q > 0

The output and operator variables are equivalent to those
in the previous encodings. The difference lies in the selection
variables and propagation of truth table bits. Previously, we
defined t truth table bit variables for each step. In this case
we define the additional variables x(k)it which correspond to the
truth tables of the inputs to step i. The actual values of those
bits depend on which inputs i has selected. In this encoding,
we define selection variables for each fanin of a step. Variables
for the different fanins are indexed by k, whose range depends
on the operator size (2 in this case). Obviously this encoding

requires more variables. For example, it encodes three times
as many truth table bits. However, it recovers this complexity
by reducing the complexity of constraints.

The main clauses are now:

((xit ⊕ a) ∨ (x
(1)
it ⊕ b) ∨ (x

(2)
it ⊕ c) ∨ (fibc ⊕ ā))

Note the structural difference with the above encodings here.
In those, the main clauses combine the selection variables
and the truth table bits to propagate truth table and operator
bits. The DITT essentially removes this coupling. Instead, the
structure-based propagation of truth table bits is determined
by adding the clauses s(k)ij → (x

(k)
it = xjt). In other words,

the input truth table bits (used in the main clause) are now
determined directly by the selection variables.

Finally, we ensure that all step fanins point to some input
by adding

∧2
k=1

∨i−1
j=1 s

(k)
ij .

Let us count the number of selection variables used in this
encoding. Consider a step xi. Each of its k fanins may select
any of the previous i − 1 steps. Therefore, the number of
selection variables per step is k(i − 1). The total number of
selection variables for all steps is then

n+r∑
n+1

k(i− 1) = k
n+r∑
n+1

(i− 1) =
k

2
(2n+ r − 1).

Thus, we require k times as many selection variables as in the
MSV encoding. However, the number is still linear in n and
r.

There is another subtle difference between this encoding and
the previous two. In fact, the DITT encoding is more general.
It allows step fanins to be ordered arbitrarily: the k-th fanin
of step i may point to step i′ +m (m > 0), even when fanin
k + 1 points to step i′. This flexibility allows it to synthesize
a larger class of logic networks as compared to the previous
encodings. Those only synthesize Boolean chains which can
be viewed as a logic network in which gate fanins are are
ordered tuples. Although this flexibility may be desirable in
some cases, it also increases the search space. Therefore, in the
context of synthesis for Boolean chains we add the additional
clauses

∧i−2
j=1

∧j
j′=1(s̄

(1)
ij ∨ s̄

(2)
ij′) to ensure that all step fanins

are ordered.

D. Symmetry Breaking

The encodings as we have described them so far are
sufficient to synthesize any Boolean chain. Here, we briefly
describe several optional symmetry breaking clauses. These
clauses are not required to produce correct results, but may be
used to constrain the SAT solver’s search space while still
providing exact results. As such, the aim of adding these
clauses is to reduce runtime at the cost of additional clauses
and CNF encoding complexity. Due to this additional cost,
it is a priori not clear how they affect synthesis runtime.
In Section III-E we present a number of experiments to
elucidate their impact. These constraints are due to Kojevnikov
et al. and Knuth [30], [31]. We describe them here using the
SSV encoding for 2-input chains, but it is straightforward to
generalize this descriptions to other encodings and input sizes.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

1) Only non-trivial operands (N): Any optimum Boolean
chain will not contain any trivial Boolean operands such as
variable projections or the constant 1 and 0 functions. We
may exclude these by adding the additional clauses (fi01 ∨
fi10 ∨ fi11), (fi01 ∨ f̄i10 ∨ f̄i11), and (f̄i01 ∨ fi10 ∨ f̄i11).

2) Use all steps (A): An optimum chain must use all its
steps to compute its output value (otherwise we could remove
the unused steps). To enforce this constraint, we can add the
clauses m∨

k=1

gki ∨
n+r∨

i′=i+1

i−1∨
j=1

si′ji ∨
n+r∨

i′=i+1

i′−1∨
j=i+1

si′ij


for all i.

3) No re-application of operands (R): Adding the clauses
(s̄ijk ∨ s̄i′ji) and (s̄ijk ∨ s̄i′ki) for i < i′ ≤ n+ r ensures that
the chain never re-applies an operator. Intuitively, suppose that
step i has inputs j and k. If i′ > i has inputs j and i (or k
and i) then step i is redundant: i′ may as well act on inputs
j and k directly (since steps can implement arbitrary 2-input
operators).

4) Co-lexicographically ordered steps (C): Without loss of
generality, we may impose a co-lexicographical order on the
step fanins. In other words, a step like x7 = ◦7(x3, x4) need
never follow a step x6 = ◦6(x2, x5). We can do this by adding
(s̄ijk ∨ s(i+1)j′k′) if j′ < j < k = k′ or if k′ < k.

5) (Co-)Lexicographically ordered operands (O): Similarly
to the previous point, we may enforce an order on step
operators as well. We can do this by adding the clauses
((sijk ∧ s(i+1)jk)→ fi ≺ f(i+1)). In this case, we are free to
choose a lexicographic or co-lexicographic order, depending
on the relation ≺.

6) Ordered symmetric variables (S): If two function inputs
p and q are symmetric (p < q), we may ensure that input p is
used before q. To do so, we can add the clausess̄ijq ∨ ∨

n<i′<i

∨
1≤j′<k′<i′

[j′ = p or k′ = p] si′j′k′


whenever j 6= p.

E. Quantitative Comparison of CNF Encodings

Now that the various encodings and symmetry breaks are
defined, we are in a position to perform the experiments in
which we compare them. We would like to be able to answer
the following questions about encodings:

1) Which is fastest on representative benchmarks?
2) What is the impact of various symmetry breaks?
3) Does (1) change when we increase operator size?
The answer to question (3) tells us if some encodings are

better suited for different step operator sizes. This is related to
domain suitability, as different domains may require different
operator sizes. For example, when synthesizing or mapping
into arbitrary-input MIGs we may wish to use a synthesis
engine that is well suited for the synthesis of large operators,
whereas this is not the case for AIG synthesis [17], [34].

In our first experiment we synthesize size-optimum 2-input
operator Boolean chains for all 222 4-input NPN classes. We
do so using all three encodings and all 26 possible symmetry

TABLE I: Impact of symmetry breaking on the space of 4-
input functions for 2-input operator chains. Sorted by average
synthesis time. All times reported in ms.

Enc Symmetries Avg. time Stdev Worst time #V/C
N A R C O S

SSV 1 1 1 1 0 1 97.43 261.08 2,150.39 0.2/6
SSV 1 1 1 1 1 1 106.90 266.19 1,880.79 0.2/7
MSV 1 1 1 1 0 1 139.50 376.34 2,704.15 0.3/6
MSV 1 1 1 1 1 1 155.48 407.59 2,472.43 0.3/7
DITT 1 1 1 1 0 1 182.19 493.07 3,570.65 0.3/6
DITT 1 0 1 1 0 1 188.73 515.51 3,522.34 0.3/6
DITT 0 0 0 0 1 0 967.22 3,014.48 18,452.16 0.3/4
DITT 0 1 0 0 1 0 1,019.73 3,164.27 19,694.84 0.3/4
MSV 0 0 0 0 1 0 1,262.76 4,106.57 24,730.40 0.3/6
SSV 0 0 0 0 0 0 1,280.86 4,172.96 28,247.10 0.2/5
MSV 1 0 0 0 1 0 1,281.85 4,062.07 22,593.47 0.3/6
SSV 0 0 0 0 1 0 1,414.26 4,738.83 30,136.69 0.2/6

breaking settings. In other words, for each encoding, we try
all possible combination of symmetry breaks, on all 4-input
functions. The results of this experiment are summarized in
Table I, where we have selected, for each encoding, the
two best and the two worst settings with respect to average
synthesis runtime. In the symmetries column, a 1 (0) means
that a symmetry break was enabled (disabled).

Table I shows average synthesis runtime, standard deviation,
worst case runtime, as well as the average number of variables
and clauses (in thousands) in satisfiable CNF formulas. Note
that, in this experiment, it is important to control for the time
spent generating the encoded CNF formulas. Some encoders
may be faster than others up to some constant factor which
depends on implementation details. However, we are interested
in the merits of the encodings themselves. In other words, we
want to compare the difficulty of solving the different CNF for-
mulas and not the time taken by some specific implementation
to generate them. In practice, good encoder implementations
are fast and time spent encoding is negligible: the asymptotic
behavior of the synthesis algorithm is determined heavily
by the CNF. Therefore, we consider encoding time as noise
and measure only time spent by the SAT solver. Moreover,
we synthesize each function twice and measure the average
runtime, so as to further reduce noise-induced variance. This
experiment, and all the following ones, was executed on a
machine with a 2x Intel Xeon E5-2680 v3 processor with a
30MB cache and 256 GB DDR4-2133 RAM.

First, let us consider the impacts of symmetry breaking.
The results show that symmetry breaks have a very significant
impact on runtime. For example, the best SSV encoding
enables most symmetry breaks and is 14.5x faster than the
worst, which disables almost all of them. We see similar
behavior for the MSV and DITT encodings as well. Their
best settings are more than 9x and 5.5x faster than their
worst settings, respectively. Next, let us look at the differences
between encodings. The best SSV encoding is 30% and 47%
faster than the best MSV and DITT encodings, respectively.
Thus, we see that the choice of encoding and symmetry breaks
has a notable impact on synthesis runtime.

In our next experiment, we investigate question (3) by
measuring runtime while increasing the number of inputs as
well as Boolean chain operator size. Therefore, we now to
synthesize 5-input functions using Boolean chains with 3-input
operator steps. The space of 5-input functions is too large to

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

TABLE II: Impact of encoding and symmetry breaking for
5-input functions with 3-input operator chains. Times in ms.

Enc Symmetries Avg. time Stdev Worst time #V/C
N A R C O S

MSV 1 1 1 1 0 0 2,422.89 1,650.90 14,356.44 .4/24
MSV 1 1 1 1 0 1 2,429.79 1,682.05 14,357.73 .4/24
SSV 0 1 1 1 0 1 3,153.26 2,742.46 29,278.75 .4/27
SSV 0 1 1 1 0 0 3,218.43 2,817.81 29,310.33 .4/27
MSV 0 1 0 0 1 1 3,756.41 2,059.06 17,370.34 .4/24
MSV 0 1 0 0 1 0 3,877.60 2,334.24 17,382.18 .4/24
SSV 1 0 0 0 1 1 6,729.75 3,117.73 23,056.81 .4/27
SSV 1 0 0 0 1 0 6,748.37 3,054.30 23,063.86 .4/27
DITT 1 0 1 0 0 1 8,354.00 8,998.35 66,569.10 .7/13
DITT 1 0 1 0 0 0 8,711.28 10,723.85 99,439.82 .7/13
DITT 1 0 0 1 1 1 18,265.28 23,652.56 16,5613.63 .7/224
DITT 1 0 0 1 1 0 20,234.97 33,959.06 35,1973.54 .7/224

TABLE III: Impact of encoding and symmetry breaking for
6-input functions with 4-input operator chains. Times in ms.

Enc Symmetries Avg. time Stdev Worst time #V/C
N A R C O S

MSV 1 1 1 0 0 1 74.87 225.65 2,272.33 0.4/25
MSV 1 1 1 0 0 0 77.23 235.32 2,292.44 0.4/25
DITT 1 0 0 0 0 1 78.37 297.98 3,102.35 1.0/16
DITT 0 0 0 0 0 1 79.81 314.68 3,096.09 1.0/16
SSV 0 1 1 0 0 1 87.29 336.08 3,494.17 0.4/27
SSV 0 1 1 0 0 0 89.79 353.71 3,490.85 0.4/27
SSV 1 1 1 1 1 0 118.23 431.94 4,584.01 0.4/31
SSV 0 0 0 1 1 0 120.74 418.12 3,422.77 0.4/30
MSV 1 1 0 1 1 0 128.16 340.11 2,635.04 0.4/28
MSV 1 1 0 1 1 1 126.27 346.01 2,633.60 0.4/28
DITT 0 0 0 1 1 0 5,588.13 18,06.48 124,664.75 1.0/4968
DITT 1 0 0 1 1 0 5,629.10 18,247.72 126,259.26 1.0/4968

run this experiment on all of them. Instead, we synthesize
222 randomly sampled 5-input functions. Table II contains
the summary of results.

We now find the MSV encoding to be the fastest. It is
23% and 3.4x faster than the best SSV and DITT encodings,
respectively. Furthermore, symmetry breaking settings again
make a significant difference, with difference of 2.1x, 1.6x,
and 2.4x between the best and worst SSV, MSV, and DITT
encodings, respectively.

To further investigate the impact of different encodings on
input and operator scaling, we test on a set of 500 non-
DSD decomposable 6-input functions. These functions were
harvested from the MCNC/ISCAS/ITC benchmark suites and
should therefore be representative of functions which appear in
concrete circuits. We now perform synthesis for chains with 4-
input operators. Such large operators are used in (re-)synthesis
and mapping of k-LUTs. Results are reported in Table III.

We see that the MSV and DITT encodings are now both
starting to outperform the SSV one. They are 14% and 10%
faster, respectively. This is likely caused by the selection
variable scaling described above. As the chain operator size
increases, so do the number of possible fanin combinations.
Since the number of selection variables in the MSV and DITT
encodings scales linearly, we expect these encodings to be
more efficient than the SSV one, which scales quadratically.
Again, there are significant differences between the best and
worst symmetry breaking settings of encodings. The runtime
difference is 1.7x, 72x, and 28% for the MSV, DITT, and SSV
encodings, respectively.

The experiments clearly show that the choice of encoding

TABLE IV: Number of functions with given number of steps.

Nr. of steps 4-input functions 5-input functions 6-inputs functions

0 2 0 0
1 2 0 0
2 5 0 110
3 20 2 384
4 34 122 6
5 75 98 0
6 72 0 0
7 12 0 0

and symmetry breaks has a great impact on the expected
runtime. The best choice depends heavily on both the function
domain and operator size. Runtime differences between differ-
ent encodings can be significant (up to 3.5x), but the largest
impact is due to symmetry breaking within encodings (up to
72x). Interestingly, enabling more symmetry breaks does not
guarantee improved runtimes.

Table IV shows the size distributions of the functions
synthesized in Tables I to III. We can see, for example, that the
maximum number of 2-input operator steps required for a 4-
input function is 7. The size distribution for 5-input functions
with 3-input operators follows the one found in [28], with the
maximum number of steps now being 5. This is as expected
when randomly sampling functions. Finally, as one would
expect, when operator size increases, the number required
steps decreases accordingly.

IV. DAG TOPOLOGY FAMILIES

SAT-based synthesis always has to contend with unpre-
dictable, and potentially slow runtimes. This is perhaps un-
surprising if we consider that, in finding optimum Boolean
chains, the SAT solver has to simultaneously perform at least
two distinct tasks:

1) finding valid DAG structures for the Boolean chain
2) assigning Boolean operators to the vertices in these

DAGs, such that the entire sequence of the chain corre-
sponds to the specified Boolean function

It has been known for some time that when a solver is supplied
with a valid DAG structure the synthesis problem is greatly
simplified. Suppose we are given a DAG G = (V,E), and
a Boolean function f : Bn → Bm. We may be able to
transform the DAG into a Boolean chain for f by assigning the
appropriate operators φi ∈ B to every vertex vi ∈ V . We call
such a transformation a labeling of the graph. Finding such
a labeling may not be possible, but if it exists, a SAT solver
can find it efficiently. For example, consider the single-output
6-input function with truth table 0x9ef7a8d9c7193a0f .2 The
smallest known implementation of this function uses 19 2-
input gates. When a solution topology is given, a SAT solver
can find a labeling in 0.12s on a laptop computer. Without this
topology, finding a solution is intractable. The above solution
was obtained using a combination of Boolean decomposition
and circuit enumeration.

The efficiency of labeling may inspire one to think of a
(naive) synthesis algorithm which, given f , simply enumerates
DAG structures until it finds one that can be labeled. Such

2For conciseness, we represent the binary truth table as a hexadecimal string
where the right-most characters represent the least significant bits.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

an algorithm reduces to efficiently finding a DAG with the
proper structure for f . However, in general, given f we do not
know a priori which DAG structures have a labeling. Given
an n-input function, finding a suitable DAG requires us to
search a very large space of DAG structures. Unfortunately,
the enumeration of potential DAGs in this space generally
outweighs the potential efficiency of graph labeling. To see
why, we can refer to the first column of Table VI, which
contains the numbers of DAGs up to 12 vertices.

Alternatively, we can specify a set of clauses which con-
strain the SAT solver’s search to a particular family of DAG
topologies. We then use the SAT solver’s efficient search
heuristics to find only those topologies within that family. This
approach avoids explicit enumeration of DAGs and provides
a middle ground between the unstructured exact synthesis
formulation of Sections II-B and III on the one hand, and
the fully structured labeling of graphs on the other hand.
In sections IV-A and IV-B we introduce two different types
of topology families. Both explore this middle ground in
different ways and can be used to achieve significant runtime
improvements over conventional unstructured encodings.

A. Fences
Given two integers k and l (1 ≤ l ≤ k), a Boolean fence is a

partition of k nodes over l levels, where every level contains at
least one node. We can denote a Boolean fence by an ordered
sequence F = (λ1, . . . , λl), where every λi corresponds to the
collection of nodes on level i. A Boolean fence (k, l) is not
unique: there may be multiple ways of distributing k nodes
over l levels. We call the set of all such partitions a Boolean
fence family and write F(k, l). We use Fk to denote the set
of all fence families of k nodes:

Fk = {F(k, l) | 1 ≤ l ≤ k}
To be concise, we also refer to Boolean fences and fence
families as fences and families, respectively. Boolean fences
can be visualized as graphs. Fig. 3 shows the fences in F4.

Every DAG of n nodes corresponds to a unique fence F ∈
Fn. To see why, note that we can assign levels to nodes in a
DAG based on their partial order. Such an assignment allows
us to find the level distribution corresponding to the fence F .

A fence induces a set of DAG topologies, in which each
topology corresponds to the same distribution of nodes over
levels, but with different arcs between nodes. In other words,
fences represent families of graph topologies. Consequently, a
fence induces a set of Boolean chains with those topologies.

B. Partial DAGs
Fences are one type of topology family which can be used

to add some additional structure to SAT-based exact synthesis.
However, they still leave a fair bit of structure unspecified. For
instance, they do not specify any connections between steps.
Moreover, they are even agnostic with respect to the number of
possible fanins of each node. In some scenarios this flexibility
may be desirable. However, in others we might benefit from
additional structure. For instance, we may know that we want
to synthesize Boolean chain with 2-input operators up to some
number r steps. Preferably, our synthesis method would be
able to take advantage of this information.

Level 1F(4, 1)

Level 1

Level 2
F(4, 2)

Level 1

Level 2

Level 3

F(4, 3)

Level 1

Level 2

Level 3

Level 4

F(4, 4)

Fig. 3: An illustration of the fences in F4. Every fence
corresponds to a family of DAGs with the same distribution
of nodes across levels.

A partial DAG is a topological structure which may be
viewed as a partial specification of the underlying DAG
structure for a Boolean chain. It specifies two things: (i) the
number of fanins for each step (ii) the connections between
internal nodes. All connections to primary inputs are left
unspecified. Note that one can recover a level distribution from
the internal connections of a partial DAG. Hence, partial DAGs
contain more structural information than fences.

More formally, a partial DAG of n nodes can viewed as a
sequence of k-steps:

(x11, x12, . . . , x1k), . . . , (xn1, xn2, . . . , xnk)

If xij = 0 (j < i), then the j-th fanin of step i points to some
unspecified primary input. Otherwise, if xij = m (m < i),
then the j-th fanin of step i points to the m-th step in the
chain. Fig. 4 shows an example of a partial DAG and the
corresponding sequence of steps. Note that, like fences, partial
DAGs are agnostic with respect to the number of primary
inputs they should be synthesized with.

We can efficiently generate (and filter) partial DAGs through
a recursive backtrack search algorithm, similar to a fence-
generating algorithm. Additionally, we can perform SAT-based
exact synthesis using partial DAGs in a similar way to fence-
based synthesis, reducing the size of CNF formulas through
the structural information encoded in the DAGs.

C. Counting Dags, Fences, and Partial DAGs

Let us consider the following question: how many fences
are there in family F(k, l)? Note that, in this family, l nodes
are fixed, since we need to have at least one node on l levels.
The remaining k−l nodes may be arbitrarily distributed across
the l levels. In other words, our question reduces to: how many
ways are there to distribute k−l indistinguishable nodes across

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

4

3

1 2

⊕

<

⊕ ⊕

x1x2x3

f

(0,0) (0, 0) (1, 2) (0, 3)

Fig. 4: On the left an example of partial DAG specified by
the sequence below. Unspecified fanins are signified by empty
circles. On the right a fully specified chain found by the SAT
solver for the function f = 〈x1x2x3〉. The < operator is
defined as < (x1, x2) = x̄1x2.

l bins? The answer is equal to the number of nonnegative
integer-valued solutions to the equation

x1 + x2 + · · ·+ xl = k − l
and hence

|F(k, l)| =
(
k − 1

l − 1

)
. (1)

We can now use Formula 1 to count the total number of fences
of k nodes, |Fk| as follows:

|Fk| =
k∑

i=1

(
k − 1

i− 1

)
= 2k−1

The reader may verify that these formulas correctly predicts
the numbers of fences in Fig. 3. This formula for the number of
fences confirms our intuition. Although the number of fences
grows exponentially, it is still many orders of magnitude less
than the number of DAGs (see Table VI). Moreover, there are
some other techniques we can use to reduce the number of
fences that are “relevant” to a given synthesis problem. For
instance, if we want to synthesize a single-output function,
we may disregard all fences that have more than one node
on the top level. Similarly, if we know that the operators in
chain we want to synthesize have fanin 2, we may disregard
fences that have more than two nodes directly below the top
level. Through this process, which we call filtering we can
further reduce the number of fences that we need to consider.
In Table VI we show the number of fences needed for the
common problems of synthesizing single-output functions for
chains with 2- and 3-input operators. We write Fences x/y
to signify the number of filtered fences relevant to x-output
functions and chains with y-input operators.

Counting the number of partial DAGs is slightly more
involved as it depends on the fanin size k. We show here
a derivation for the number of partial DAGs with fanin size
2. Obviously, there is only 1 partial DAG with 1 node. It
consists of the single step sequence (0, 0) since the node may
only point to primary inputs. In a partial DAG with 2 nodes,

the second node may either point to two primary inputs, or
select a primary input and the first node. Similarly, a third node
could either point to two primary inputs, or select a primary
input and the first node, a primary input and the second node,
or select both preceding steps. From the pattern that arises
we can see that generally the n-th node has 1 +

(
n
2

)
possible

fanin options: either it has two primary input fanins, or it may
select 2 distinct fanins from the n-element set of previous steps
and primary inputs. Therefore, the possible number of n step
partial DAGs Fn is given by the formula

Fn =
n∏

i=1

(1 +

(
i

2

)
)

where we follow the convention that
(
1
2

)
= 0.

Table VI shows the number of partial DAGs up to 12 nodes
(Unfiltered PD/2). We write PD/k for the number of partial
DAGs with k-fanin steps. While the number of partial DAGs
is orders of magnitude smaller than the total number of DAGS,
it is still quite large. Fortunately, we can perform a number
of filtering steps. For example, we may use some of the
symmetry breaks described in Section III to reduce the number
of DAG topologies. Furthermore, for any set of isomorphic
partial DAG topologies, we may select one representative and
remove the others. We use the Nauty package to efficiently find
isomorphic partial DAGs [35]. Here, we are helped by the fact
that all nodes in an n node partial DAG with k-steps have
bounded degree. We can find isomorphisms between DAGs
of bounded degree in polynomial time [36]. Table VI also
shows the number of filtered partial DAGs for 2-steps and 3-
steps. These numbers are again orders of magnitude smaller
than the total number of partial DAGs (of 2-steps, and 3-steps,
respectively). Indeed, the numbers are small enough that they
may be kept in memory, stored on disk, or in a database. When
compressed all the partial DAGs up to 12 nodes for 2-steps
take up less than 1GB of space.

D. Generating Fences
As we have seen, fences are simple combinatorial structures

which are easy to count. It is therefore perhaps unsurprising
that generating them is also simple and can be done efficiently.
There exist algorithms based on integer partitioning or back-
tracking which can be used to efficiently generate streams
of fence structures. For a detailed description of one such
algorithm, we refer the interested reader to [37].

E. Exact Synthesis Using Fences
We have seen how fences correspond to families of DAG

topologies, investigated some of their theoretical properties,
and presented a fence generating algorithm. In this section
we consider how to use fences to accelerate exact synthesis
by using them to provide additional constraints in the SAT
formulation. To do so, let us first look at some connections
between fences and Boolean chains.

Consider a fence F = (λ1, . . . , λl). Let G = (V,E) be a
DAG, and let τ(v) : V → N be the function that assigns each
vertex from G to its level. Let τi = |{v | τ(v) = i}|. We say
that G satisfies F if and only if |λi| = τi. In other words,
a DAG satisfies the topological constraints of a fence if its
distribution of nodes across levels is the same. We say that

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

a Boolean chain satisfies F if its underlying DAG structure
satisfies F . We consider the primary inputs of the chain to
have level 0, and do not consider them in satisfying F .

For example, consider the fence F = (λ1, λ2) ∈ F (4, 2)
highlighted in Fig. 5(a). We have numbered its nodes to make
them easier to distinguish. Intuitively, only DAGs with two
nodes on the first level and two nodes on the second level
satisfy F . For example, Fig. 5(b) is a 2-input operator Boolean
chain satisfying the constraints from F . Similarly Fig. 5(c) is
a 3-input Boolean chain that satisfies F . However, Fig. 5(d)
shows a chain that is invalid for F . It violates the constraint
that the step corresponding to fence node 4 be on level 2.

Observe that the topology constraints captured by fences
are independent of number of inputs, or operator fanin. This
is desirable, as it implies that the same fence generator can be
used as the basis for synthesis of generalized Boolean chains
and functions of arbitrary input size.

Now consider again the arbitrary fence F = (λ1, . . . , λl) ∈
F (k, l). Suppose we wish to synthesize a Boolean chain that
satisfies F . We know that it must be a k-step chain. We assign
step xi to level t by setting

τ(xi) = t⇔ t = min
t′
i ≤

t′∑
j=0

|λj |.

where |λ0| = n, the number of primary inputs.
Note that if τ(xi) = t, then step xi must, by definition, have

at least one fanin on level t−1. Thus, the fence constrains not
only the distribution of nodes across levels, but also the fanin
relations between nodes. Due to this level constraint, in the
SAT formulation the selection variable sijk may never be true
if τ(k) < t− 1, for any i < k. Let k′ and k′′ be the smallest
and largest indices such that τ(xk′) = t − 1 and τ(xk′′) =
t − 1, respectively. A simple way to express the constraints
imposed by the fence is by adding, for each step xi, the clause∨k′′

k=k′ sijk(j < k). In that way, we ensure that each step has
at least one fanin from a level directly below. This approach
is similar to the way that colexicographic or other symmetry-
breaking clauses are added in [31]. However, we can do better.
As none of the variables outside of {sijk | k′ ≤ k ≤ k′′} may
be true, we do not need to include them in our SAT formula at
all. Thus, with fence we can significantly reduce the number
of variables and clauses in our SAT instances.

To implement exact synthesis with topological constraints
we can then proceed as follows: (i) Generate a new fence using
some fence-generating algorithm. (ii) Using the constraints
implied by the fence, generate a reduced SAT formula. We use
a set of clauses analogous to the one described in Section II-B.
However, we exclude any variables or clauses that are rendered
unnecessary due to the fence constraints, obtaining a simpler
SAT formula. (iii) If the formula is satisfiable, we are done.
(iv) Otherwise, go to (i). If we incrementally increase the size
of the fences that are generated this procedure is guaranteed to
find a size-optimum chain. Thus, we extend the conventional
exact synthesis algorithm, while decomposing the search space
using families of graph topologies. Recall that in Section IV-C
we derived the total number of fences of k nodes. Given an
upper bound on the number of nodes to realize a function,
we therefore also have an upper bound on the number of
decomposed exact synthesis instances we have to solve.

F. Fence vs. Conventional Encodings
To evaluate the performance of our proposed approach, we

measure the runtimes of different exact synthesis encodings
on the following collections of Boolean functions:
• NPN4: All 222 4-input NPN classes [38].
• FDSD6: 1000 fully-DSD decomposable 6-input functions

that occur frequently in practical synthesis and technol-
ogy mapping applications [39].

• PDSD6: 1000 common 6-inputpartially-DSD functions.
• FDSD8: 100 fully-DSD decomposable 8-input functions.
• PDSD8: 100 partially-DSD decomposable 8-input.
We compare three different encodings to synthesize 2-input

operator chains for these sets of functions:
1) SSV: A baseline implementation of the SSV encoding

described in Section III. We enable all symmetry breaks
described there, as we experimentally found that this
works best for the synthesis of 2-input operator chains.

2) Fence: Our proposed algorithm based on fence enumer-
ation and the use of additional topological constraints.

3) Partial DAGs: Our algorithm based on partial DAGs.
Table V lists the results. For each approach three values

are listed: i) the mean solving time (mean) in milliseconds,
ii) the number of instances that could not be solved in under
three minutes (#t/o), and iii) the number of instances that were
successfully solved within the timeout limit (#ok). Note that
the number of solved instances is the most important metric
here, as it captures in essence how practical an algorithm is.
Given a bound on runtime, we obviously prefer the algorithm
that can solve the most problems within that bound. A similar
metric is commonly used in SAT solver competitions.

The results show that using topological structure enumer-
ation can significantly improve the solving time, as well
as the number of solved instances. For NPN4, our fence-
based algorithm is more than 19% faster than our baseline
implementation. All algorithms find the solutions for all
problem instances. For FDSD6, Fence is 2x faster than SSV.
Again, there are no timeouts. For PDSD6, Fence is also 2x
faster than SSV and we also have 2x fewer timeouts. The
same observation can be made for the 8-input function sets.
For FDSD8, Fence is again 2x faster than SSV. Finally, for
PDSD8, Fence is 63.43% faster than SSV. Again, fence-based
synthesis has fewer timeouts. In fact, the table shows that it
dominates SSV with respect to the number of solved instances.
In summary, we see that the gains from using topological
constraints can be substantial.

G. Synthesis With Partial DAGs
Here, we compare synthesis based on partial DAGs to fence-

based synthesis and conventional encodings. First, we apply
partial DAG synthesis on the benchmarks described in Section
IV-F. Table V contains the results. Partial DAGs allow us to
improve runtimes on the NPN4 and PDSD6 benchmarks. On
NPN4, partial DAGs obtain a runtime reduction of 3x over
both SSV and Fences. On PDSD6, the runtime reductions
are 12x and 5.5x, respectively. Moreover, on the PDSD6
benchmark, they reduce the number of timeouts by 251 and
123 as compared to SSV and Fences, synthesizing all but
5 of the functions in under three minutes. Partial DAGs
perform less well than SSV particularly on the FDSD8 and

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

f1 f2

3 4

1 2

x1 x2 x3 x4

(a)

f1 f2

x6 x7

x4 x5

x1 x2 x3 x4

(b)

f1 f2

x9 x10

x7 x8

x2x1 x3 x4 x5 x6

(c)

f1 f2

x6 x7

x4 x5

x1 x2 x3 x4

(d)

Fig. 5: The fence F in (a) corresponds to a set of possible DAG topologies and can thus be used to constrain the SAT solver’s
search. For instance, Fig. (b) and Fig. (c) satisfy the constraints from F . Fig. (d) does not. Each node on level λ must have
at least one fanin from level λ− 1; this follows by definition of levels.

TABLE V: Comparing fence- and partial DAG-based synthesis to conventional state-of-the-art encodings. All runtimes in ms.

Benchmark SSV Fence Partial DAG

mean #timeouts #ok mean #timeouts #ok mean #timeouts #ok
NPN4 225.46 0 222 216.69 0 222 75.40 0 222
FDSD6 69.00 0 1,000 29.61 0 1,000 82.41 0 1,000
PDSD6 43,453.33 256 744 20,707.11 128 872 3,613.25 5 995
FDSD8 5,583.13 0 100 2,688.51 0 100 31,379.47 0 100
PDSD8 150,533.31 42 58 100,871.79 11 89 131,625.42 84 16

TABLE VI: Comparing the numbers of DAGs, partial DAGs, and fences for increasing numbers of vertices.

Nr. of vertices DAGs Unfiltered PDs/2 Filtered PDs/3 Filtered PDs/2 Fences Fences 1/3 Fence 1/2

1 1 1 1 1 1 1 1
2 3 2 1 1 2 1 1
3 25 8 3 3 4 2 2
4 543 56 15 9 8 4 3
5 29,281 616 45 41 16 7 6
6 3,781,503 9,856 383 235 32 14 12
7 1,138,779,265 216,832 3,512 1,660 64 28 23
8 783,702,329,343 6,288,128 33,696 13,961 128 56 45
9 1,213,442,454,842,881 232,660,736 344,691 136,875 256 112 90

10 4,175,098,976,430,598,143 10,702,393,856 3,701,536 1,536,631 512 224 180
11 31,603,459,396,418,917,607,425 599,334,055,936 41,204,800 19,484,561 1,024 448 360
12 521,939,651,343,829,405,020,504,063 40,155,381,747,712 472,131,247 275,949,886 2,048 895 719

PDSD8 benchmarks. We conjecture that this is caused by
the larger combinational complexity of the functions in those
benchmarks. This forces partial DAG synthesis to try more
topologies, thus slowing it down. However, we believe that
our filtering methods can likely still be improved to further
reduce the number of potential remedies.

In our next experiment, we compare SSV, fence-based, and
partial DAG-based synthesis on a hard benchmark set. We
sample 500 random 5-input functions, and try to synthesize
optimum 2-input operator chains. Note that the majority of
5-input functions are hard, in that they require a large number
of gates to implement [9]. In fact, it is true in general that
most functions are random, and that random functions require
exponentially many gates [40]. In this experiment, we see how
many functions these different methods can synthesize, setting
a timeout at one minute. Fig. 6 shows the results. We see that
synthesis based on partial DAGs is able to synthesize more
than 3x as many functions in under one minute of runtime.
We conclude that both fences and partial DAGs can unlock

significant runtime improvements and can both be used to
solve more problem instances, although the domains on which
they are best used may be different.

V. TOPOLOGY-BASED PARALLEL EXACT SYNTHESIS

In this section, we outline and evaluate a parallel exact
synthesis architecture based on topology families. We do not
assume anything about the type of topology family. They may
be fences, partial DAGs, or some other kind of topologies.

Suppose we are given a function f to synthesize. We can
then produce a stream of topologies that may be used as a
basis for f , as described in Section IV-A. In this scenario
it will be useful to consider the stream as a queue Q. We
do not know in advance which topology can implement f .
Therefore, the single-threaded algorithms above sequentially
pop topologies out of Q until they find one that applies. Now
suppose we have n threads, all of which have access to Q.
They can all pop topologies out of Q until one of them finds

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

SSV Fence Partial DAG

5

10

15

20

25

7 7

23

Synthesis method

N
u
m
b
er

o
f
so
lv
ed

in
st
a
n
ce
s

Fig. 6: Shows, for a set of 500 hard benchmarks, the number of
successfully synthesized chains within the 1 minute timeout.

a topology that works. As soon as a solution is found by
thread t it can signal the other threads to stop working. In
fact, the situation is slightly more nuanced. To guarantee a
minimum solution, threads t′ that are looking for solutions
with fewer gates than t should not be stopped. Alternatively,
we may stage the generation of topologies, first generating
all topologies with one gate, then those with two gates, and
so on. Generating stages in sequence, we can stop as soon
as the first thread in a stage finds a solution. This second
approach was used in our experiments here. This algorithm is
embarrassingly parallel, as there are no dependencies between
threads, and there is no communication required except for the
signal that a solution has been found.

1) Topology-Based vs. Generic Parallelism: The algorithm
we describe above is one of many possible approaches to
parallel SAT-based exact synthesis. Another is to use a generic
parallel SAT solver to solve the CNF formulas generated by
some encoding. However, we conjecture that such an approach
is suboptimal, as such a solver is domain independent. To
verify this hypothesis, we synthesize 2-input operator chains
for a set of 1000 5-input functions, using two different
parallel synthesis approaches. The first uses the SSV encoding,
with a parallel SAT solver backend. We use Glucose-Syrup
MultiSolvers, which won gold in the parallel track of the 2017
SAT competition [41], [42]. The second uses our proposed
parallel architecture, with partial DAGs as topology families.
Each thread is assigned its own single-threaded SAT solver.
We use the bsat solver, taken from ABC [43]. Fig. 7 contains
the results. It also shows, as a baseline, the single-threaded
performance of the bsat solver using the SSV encoding.

The results show that the MultiSolvers and partial DAG
implementations are up to 9.5 and 68x faster than the single-
thread baseline, respectively. The partial DAG implementation
is up to 7x faster than the best MultiSolvers configuration.
Moreover, we see better scaling properties. The performance
of partial DAG synthesis roughly doubles each time we double
the number of threads. We do not see the same behavior using

24 8 16 32 42

102

103

104

Number of threads

A
ve
ra
ge

ru
n
ti
m
e
(m

s)

Baseline
MultiSolvers
Partial DAGs

Fig. 7: A comparison between our domain-specific parallelism
and a generic parallel SAT backend.

1 thread

2 threads

t1 t2 t1 + t2

Time

F1 (UNSAT)

F2 (SAT)

Fig. 8: Consider two topologies, F1 and F2, where F2 can
be used to synthesize a function, but F1 cannot. Synthesizing
sequentially, we must solve an UNSAT formula before a SAT
one, which takes time t1+t2. In a 2-threaded scenario, we can
stop after t1 < t1+t2

2 time, leading to a super-linear speedup.

the MultiSolvers backend. In fact, its performance degrades
after adding more than 16 threads. This is likely caused by
increased thread contention as well a higher memory overhead
as compared to our partial DAG implementation.

Interestingly, our implementation achieves a speedup of 68x
as compared to the single-thread baseline, even though it uses
at most 42 threads. In other words, it obtains a super-linear
speedup. To see how this is possible, consider Fig. 8.

2) Majority-7 Decomposition: Two major applications of
exact synthesis are synthesis with novel logic primitives and
finding new upper bounds for classes of circuits. Our second
experiment in this section considers both of these objectives.
It concerns the decomposition of majority-n functions. Recall
that the majority-n function is defined as

〈x1 . . . xn〉 = [x1 + · · ·+ xn >
n− 1

2
] (n odd).

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

SSV F/1 F/2 F/4 F/8 F/16 F/32 F/42

0

0.5

1

1.5

2

·104

20,745

18,419

5,108

3,328
2,053 1,961 1,897 2,002

Synthesis method

R
u
n
ti
m
e
(m

s)

Fig. 9: Comparison of majority-7 decomposition between
the best SSV encoding and a fence-based encoding with an
increasing number of threads.

One often wants to find a decomposition of majority-n func-
tions into majority-3 operations, as this is an important task in
majority-based logic synthesis. This has applications in both
classical logic synthesis as well as synthesis for emerging
technologies [44]. Moreover, upper bounds for small circuits
can help us find better theoretical upper bounds for larger
ones [21]. Therefore, in this experiment we decompose the
majority-7 function into an optimum network of majority-3 op-
erators. We use the same parallel exact synthesis architecture
as before, but this time using fences as the topology families.
To show the impact of parallelism we attempt this decomposi-
tion with increasing numbers of threads. We compare against
a conventional synthesis method that is based on an extension
of the SSV encoding. The results can be found in Fig 9. In this
figure, F/x refers to fence-based synthesis with x threads. The
conventional approach requires 20,745ms. The single-threaded
fence-based approach is 11% faster, showing again the impact
that topology-based synthesis can have even in the single-
threaded case. With 2 threads, the fence-based synthesis is
about 4x faster. This is another example topology-based multi-
threading unlocking super-linear speedups. Moreover, as we
double the number of threads, synthesis time is cut approxi-
mately in half until we reach 16 gates. As we increase to 32
threads, runtime still decrease, but not as significantly. Finally,
when we reach 42 threads, we slightly degrade performance.
We conjecture that the added cost of creating more threads
outweighs the additional throughput they provide. The best
runtime, 1897ms, is achieved by 32 threads. Thus, we achieve
a runtime reduction of more than 10x.

VI. DISCUSSION

In this paper we take a new look at the difficult problem of
SAT-based exact synthesis. We find that there are significant
differences between encodings (and symmetry breaks) which

can affect runtime by up to 3.5x (between encodings) and 72x
(between symmetry breaking configurations). This is not yet
the final word on encodings comparisons. Techniques such as
lazy addition of constraints are known to improve runtimes
but are outside the scope of this paper.

We introduce a SAT-based exact synthesis method based
on topological structure enumeration. Since the number of
topological structures grows very quickly as the number of
gates increases, we collect sets of structures in topology
families. The paper introduces a theory of Boolean fences and
partial DAGs and shows how they are used to constrain the
CNF encodings. We find that the use of topology families can
reduce synthesis runtime by up to 2x and improves the number
of successfully synthesized problems by up to 51x. Moreover,
topology-based synthesis is flexible and can be adapted to
various encodings. Thus, we can create different topology-
based synthesis flows for different domains.

Finally, we show how topology families can be used to
transform the exact synthesis problem into a parallel one.
We show that topology-based parallelism is up to 7x and
68x faster than a generic parallel SAT solver and a single-
threaded algorithm, respectively. These improvements have
direct impact on a variety of logic optimization algorithms
that use exact synthesis, such as logic rewriting, technology
mapping, and synthesis for emerging technologies [15]–[18].
There may be other ways to exploit parallelism. For example,
one can imagine an approach which uses different encodings
in parallel, thus creating a virtual best encoding.

ACKNOWLEDGMENTS

The authors are indebted to Andrey Mokhov for his insights
regarding CNF cardinality constraints. We are also grateful for
the guidance provided by Luca Amarù, Jiong Luo, and Janet
Olson from Synopsys Inc. Finally, this work was supported
in part by SRC contract 2710.001 SAT-based methods for
scalable synthesis and verification at UC Berkeley, H2020-
ERC-2014-ADG 669354 CyberCare, and the Swiss National
Science Foundation (200021-169084 MAJesty).

REFERENCES

[1] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis
under general error magnitude and frequency constraints,” in IEEE/ACM
Int’l Conf. on Computer-Aided Design, ICCAD, 2013, pp. 779–786.

[2] W. V. Quine, “The Problem of Simplifying Truth Functions,” The
American Mathematical Monthly, vol. 59, no. 8, pp. 521–531, 1952.

[3] E. J. McCluskey, “Minimization of Boolean Functions,” Bell System
Technical Journal, vol. 35, no. 6, pp. 1417–1444, 1956.

[4] T. Sasao, “EXMIN2: A Simplification Algorithm for Exclusive-OR-
Sum-of Products Expressions for Multiple-Valued-Input Two-Valued-
Output Functions,” IEEE Transactions on CAD, vol. 12, no. 5, pp. 621–
632, 1993.

[5] R. Ashenhurst, “The Decomposition of Switching Functions,” 1957, pp.
74–116.

[6] A. Curtis, New Approach to the Design of Switching Circuits. Van
Nostrand, 1962.

[7] E. S. Davidson, “An Algorithm for NAND Decomposition Under
Network Constraints,” IEEE Trans. Computers, vol. 18, no. 12, pp.
1098–1109, 1969.

[8] J. P. Roth and R. M. Karp, “Minimization Over Boolean Graphs,” IBM
Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.

[9] D. E. Knuth, The Art of Computer Programming. Upper Saddle River,
New Jersey: Addison-Wesley, 2011, vol. 4A.

[10] L. Amaru, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P. E.
Gaillardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact
delay synthesis,” in IEEE/ACM Int’l Conf. on Computer-Aided Design,
ICCAD, 2017, pp. 352–359.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2897703, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

[11] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[12] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264–300, 1990.

[13] N. Song and M. A. Perkowski, “EXORCISM-MV-2 : Minimization
of Exclusive Sum of Products Expressions for Multiple-valued Input
incompletely Specified Functions,” in Proc. ISMVL, 1993, pp. 132–137.

[14] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264–300, 1990.

[15] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 240–253, 2007.

[16] W. Haaswijk, M. Soeken, L. Amarú, P.-E. Gaillardon, and
G. De Micheli, “A Novel Basis for Logic Rewriting,” in ASPDAC, 2017.

[17] M. Soeken, L. Amarù, P.-E. Gaillardon, and G. De Micheli, “Exact
synthesis of majority-inverter graphs and its applications,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2017.

[18] M. Soeken, G. De Micheli, and A. Mishchenko, “Busy Man’s Synthesis:
Combinational Delay Optimization With SAT,” in Design Automation
and Test in Europe, 2017.

[19] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. G. Amaru,
R. K. Brayton, and G. De Micheli, “Practical Exact Synthesis,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2018, pp. 309–314.

[20] K. Stoffelen, “Optimizing S-box Implementations for Several Criteria
using SAT Solvers,” Lecture Notes in Computer Science, vol. 9783, pp.
140–160, 2016.

[21] A. S. Kulikov, “Improving circuit size upper bounds using sat-solvers,”
in 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2018, pp. 305–308.

[22] T. Sasao, Switching Theory For Logic Synthesis. Springer, 1999.
[23] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of

Satisfability. IOS Press, 2009.
[24] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-

Guided Abstraction Refinement. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 154–169.

[25] Y. Hamadi, “ManySAT : a Parallel SAT Solver,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 6, no. 5, pp. 245–262, 2009.

[26] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, Cube
and Conquer: Guiding CDCL SAT Solvers by Lookaheads, K. Eder,
J. Lourenço, and O. Shehory, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012.

[27] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon, “Resolution
and Parallelizability: Barriers to the Efficient Parallelization of SAT
Solvers,” in Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, 2013, pp. 481–488.

[28] W. Haaswijk, E. Testa, M. Soeken, and G. De Micheli, “Classifying
Functions with Exact Synthesis,” in ISMVL, 2017.

[29] N. Eén, “Practical SAT - a tutorial on applied satisfiability solving,” in
FMCAD, 2007.

[30] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in Theory and Applications of Satisfiability
Testing, 2009, pp. 32–44.

[31] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Reading, Massachusetts: Addison-Wesley, 2015.

[32] M. D. Riedel, “Cyclic Combinational Circuits,” Ph.D. dissertation, 2004.
[33] C. Sinz, “Towards an Optimal CNF Encoding of Boolean Cardinality

Constraints,” in Principles and Practice of Constraint Programming -
CP 2005, 2005, pp. 827–831.

[34] L. Amarù, P.-E. Gaillardon, A. Chattopadhyay, and G. De Micheli, “A
Sound and Complete Axiomatization of Majority-n Logic,” IEEE Trans.
Computers, 2016.

[35] B. D. McKay and A. Piperno, “Practical graph isomorphism, {II},”
Journal of Symbolic Computation, vol. 60, no. 0, pp. 94 – 112, 2014.

[36] E. M. Luks, “Isomorphism of Graphs of Bounded Valence Can Be Tested
in Polynomial Time,” Journal of Computer and System Sciences, vol. 25,
no. 1, pp. 42–65, 1982.

[37] W. J. Haaswijk, A. Mishchenko, M. Soeken, and G. De Micheli, “SAT
Based Exact Synthesis using DAG Topology Families,” Proceedings of
the 2018 ACM/IEEE Design Automation Conference (DAC), 2018.

[38] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification,” in Int’l Conf. on Field-
Programmable Technology, 2013, pp. 310–313.

[39] A. Mishchenko, “An Approach to Disjoint-Support Decomposition of
Logic Functions,” Portland State University, Tech. Rep., 2001.

[40] J. Riordan and C. E. Shannon, “The Number of Two-Terminal Se-
ries–Parallel Networks,” Journal of Mathematics and Physics, vol. 1,
no. 4, pp. 83–93, 1942.

[41] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st International Jont Conference
on Artifical Intelligence, ser. IJCAI’09, 2009, pp. 399–404.

[42] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing. Springer Berlin Heidelberg, 2004,
pp. 502–518.

[43] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24–40.

[44] M. Soeken, E. Testa, A. Mishchenko, and G. De Micheli, “Pairs of
Majority-Decomposing Functions,” Information Processing Letters, vol.
139, pp. 35–38, 2018.

Winston Haaswijk (Student Member, IEEE) is a
PhD student in the Integrated Systems Laboratory
(LSI) at EPFL, Lausanne. He received his Bachelor
degree in Computer Science from the University of
Amsterdam, and his MPhil in Computer Science
from the University of Cambridge. His research
interests include Boolean satisfiability, exploring
novel logic primitives, SAT based synthesis methods,
machine learning in general, and applications of
machine learning to EDA in particular. He maintains
percy, which is a C++ header-only SAT-based exact

synthesis library, and one of the EPFL logic synthesis libraries.

Mathias Soeken (Member, IEEE) received the
Ph.D. degree in computer science and engineering
from the University of Bremen, Bremen, Germany,
in 2013. He is scientist at the École Polytechnique
Fédéderale de Lausanne (EPFL). His current re-
search interests include the many aspects of logic
synthesis and formal verification. He is investigating
constraint-based techniques in logic synthesis and
industrial-strength design automation for quantum
computing. He is actively maintaining the logic
synthesis frameworks CirKit and RevKit. Dr. Soeken

received a scholarship from the German Academic Scholarship Foundation.
He has been serving as TPC member for several conferences, including DAC,
DATE, and ICCAD and is reviewer for Mathematical Reviews as well as for
several journals.

Alan Mishchenko (Senior Member, IEEE) gradu-
ated with an M.S. from Moscow Institute of Physics
and Technology (Moscow, Russia) in 1993 and re-
ceived his Ph.D. from Glushkov Institute of Cyber-
netics (Kiev, Ukraine) in 1997. In 2002, Alan joined
the EECS Department at University of California,
Berkeley, where he is currently a full researcher.
His research is in computationally efficient logic
synthesis and formal verification.

Giovanni De Micheli (Fellow, IEEE) received the
Nuclear Engineering degree from the Politecnico di
Milano, Milan, Italy, in 1979 and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ence from the University of California at Berkeley,
Berkeley, CA, USA, in 1980 and 1983, respectively.
He was a Professor of Electrical Engineering with
Stanford University, Stanford, CA, USA. He is a
Professor and the Director of the Institute of Electri-
cal Engineering, École Polytechnique Fédéderale de
Lausanne, Lausanne, Switzerland. Prof. De Micheli

is a recipient of the 2016 IEEE/CS Harry Goode Award for seminal contri-
butions to design and design tools of Networks on Chips, the 2016 EDAA
Lifetime Achievement Award, and other awards. He is a fellow of ACM and
a member of the Academia Europaea.

