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Abstract—Design of nonvolatile in-memory computing devices
has attracted high attention to resistive random access mem-
ories (RRAMs). We present a comprehensive approach for
the synthesis of resistive in-memory computing circuits using
binary decision diagrams, and-inverter graphs, and the recently
proposed majority-inverter graphs for logic representation and
manipulation. The proposed approach allows to perform paral-
lel computing on a multirow crossbar architecture for the logic
representations of the given Boolean functions throughout a level-
by-level implementation methodology. It also provides alternative
implementations utilizing two different logic operations for each
representation, and optimizes them with respect to the number
of RRAM devices and operations, addressing area, and delay,
respectively. Experiments show that upper bounds of the afore-
mentioned cost metrics for the implementations obtained by
our synthesis approach are considerably improved in compar-
ison with the corresponding existing methods in both area and
especially latency.

Index Terms—BDD, in-memory computing, logic synthesis,
RRAM.

I. INTRODUCTION

THE ABRUPT switching capability of an oxide insulator
sandwiched by two metal electrodes was known from

1960s, but it did not come into interest for several decades until
feasible device structures were proposed. Nowadays, a variety
of two-terminal devices based on resistance switching prop-
erty exist which use different materials. These devices possess
resistive switching characteristics between two high and low
resistance values and are known by various acronyms, such
as OxRAM, ReRAM, and resistive random access memory
(RRAM) [1]. RRAM devices have also attracted high attention
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to the theory of memristors proposed in 1971 [2] due to
possessing the same resistive characteristics [3].

High scalability of RRAMs [1] makes it possible to imple-
ment ultra dense resistive memory arrays [4]. Such architec-
tures using memristive devices are of high interest for their
possible applications in nonvolatile memory design [5], [6],
digital and analog programmable systems [7]–[9], and neuro-
morphic computing structures [10].

In [11], it was shown that material implication (IMP) can
be used for logic synthesis with resistive devices. In the same
work a memristive NAND gate was proposed which enables
to realize any Boolean function. This allows advanced com-
puter architectures different from classical von Neumannn
architectures by providing memories capable of comput-
ing [12], [13]. Although RRAM-based implication logic is
sufficient to express any Boolean function, the number of
required computational steps to synthesize a given function
is a real drawback [14], and only has been addressed by a few
works [13], [15].

So far, various memristive logic circuits based on IMP oper-
ators have been proposed. An RRAM-based 2-to-1 multiplexer
(MUX) containing six RRAM devices was proposed in [16]
that requires seven IMP operations. In [17], a similar structure
but more efficient in the number of RRAM devices and oper-
ations was used for synthesis of Boolean functions based on
binary decision diagrams (BDDs). Besides BDDs, and-inverter
graphs (AIGs) have been also used for logic synthesis with
resistive memories [18]. However, none of these works opti-
mize the utilized data structures with respect to the cost metrics
of in-memory computing circuit design.

A novel homogeneous logic representation structure,
majority-inverter graph (MIG) was proposed in [19] that uses
the majority function together with negation as the only logic
operations. MIGs allow higher speeds in design of logic cir-
cuits and field-programmable gate array implementations [20].
In comparison with the well-known data structures BDDs
and AIGs, MIGs have experimentally shown better results in
logic optimization, especially in propagating delay [19]. In
particular, MIGs are highly qualified for logic synthesis of
RRAM-based circuits since they can efficiently execute the
built-in resistive majority operation in RRAM devices [12].

In this paper, we present a comprehensive approach for
logic synthesis of RRAM-based in-memory computing cir-
cuits using the three mentioned data structures for efficient
representation, i.e., BDDs, AIGs, and MIGs. The presented
approach includes the following contributions.

1) We present two realizations for each data structure
primitives: a) a realization based on IMP and b) a
realization that exploits the built-in resistive majority
property of RRAM devices [12] denoted by built-in
majority operation (MAJ).
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2) For each logic representation, we present optimiza-
tion algorithms with respect to the number of RRAM
devices or operations. For BDDs and MIGs, we also
propose multiobjective optimization algorithms to lower
both cost metrics of in-memory computing addressing
the area and delay of the resulting implementations.
Experiments confirm the efficiency of the proposed
optimization algorithms in comparison with existing
approaches.

3) We present efficient design methodologies which enable
a certain amount of parallel computing on a multirow
multicolumn crossbar, according to the features of the
optimized logic representations. We show that the sug-
gested approach guarantees the validity of computa-
tions and avoids data distortion during parallel comput-
ing requiring only small crossbar dimensions for any
Boolean function.

4) We provide a range of design preferences regarding
area and latency for logic-in-memory computing, by sur-
veying the three data structures widely used for logic
synthesis over two basic operations, i.e., IMP and MAJ.

The remainder of this paper is organized as follows.
Section II introduces the employed logic representations,
the logic operations for in-memory computing design, and
discusses the related work. In Section III, we present our syn-
thesis method for RRAM-based in-memory computing design
and the experimental results separately for BDDs, AIGs, and
MIGs. Section IV makes a comparison between the exploited
logic representations based on their effect on the metrics
designating area and latency. Considerations for a crossbar
implementation are discussed in Section V, and this paper is
concluded in Section VI.

II. BACKGROUND

A. Logic Representations

1) Binary Decision Diagrams: A BDD (e.g., [21]) is a
graph-based representation of a function that is derived from
the Shannon decomposition f = xifxi ⊕ x̄ifx̄i . Applying this
decomposition recursively allows dividing the function into
many smaller subfunctions, which constitute the nodes of BDD
representation. By use of complement attribute, a subfunction
and its complement can be represented by the same node. An
example of a BDD representing a function with four variables
is shown in Fig. 1. The nodes corresponding to each input
variable xi represent a BDD level i which needs to be calcu-
lated in order, starting from the bottom of the graph to the root
node f . Each node at level i has two high and low successors
denoted by solid and dashed lines, referring to assignments
xi = 1, and xi = 0, respectively. The complemented edges are
shown by dots on the successors.

BDDs make use of the fact that for many functions of
practical interest, smaller subfunctions occur repeatedly and
need to be represented only once. Combined with an effi-
cient recursive algorithm that makes use of caching techniques
and hash tables to implement elementary operations, BDDs
are a powerful data structure for many applications. BDDs
are ordered in the sense that the Shannon decomposition is
applied with respect to some given variable ordering which
also has an effect on the BDD’s number of nodes. Improving
the variable ordering for BDDs is NP-complete [22] and many
heuristics have been presented that aim at finding a good
ordering. Throughout this paper, we consider initial BDD

Fig. 1. Initial BDD representation for the function f = (x1⊕x2)∨ (x3⊕x4),
using the ascending variable ordering and complemented edges.

representations before optimization with a fixed ascending
variable ordering x1 < x2 < · · · < xn, where n is the num-
ber of input variables, e.g., in Fig. 1 n = 4 and therefore the
ordering is x1 < x2 < x3 < x4.

2) Homogeneous Logic Representations for Circuits: In
this paper, we use AIGs [23] and MIGs [19] as homoge-
neous logic representation. Each node in the graphs represents
one logic operation, x · y (conjunction) in case of AIGs, and
M(x, y, z) = x·y+x·z+y·z (majority of three) in case of MIGs.
Inverters are represented in terms of complemented edges; reg-
ular edges represent noncomplemented inputs. Homogeneous
logic representations allow for efficient and simpler algorithms
due to their regular structure—no case distinction is required
for the logic operations. Consequently, such logic represen-
tations are the major data structure in state-of-the-art logic
synthesis tools.

Logic represents in MIGs are at least as compact as in AIGs,
since each AND node can be mapped to exactly one major-
ity node; we have x · y = M(x, y, 0). However, even smaller
MIGs can be obtained if their capability of compactness is
fully exploited such that no node in the graph has constant
inputs [24].

A Boolean algebra was proposed in [19] in order to optimize
MIGs. The following set (�) includes the primitive transfor-
mations that can be applied to an existing MIG to get a more
efficient representation

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Commutativity−�.C
M(x, y, z) = M(y, x, z) = M(z, y, x)
Majority−�.M
M(x, x, z) = x M(x, x̄, z) = z
Associativity−�.A
M(x, u, , M(y, u, z)) = M(z, u, M(y, u, x))
Distributivity−�.D
M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
InverterPropagation−�.I
M(x, y, z) = M(x̄, ȳ, z̄).

It was proven in [24] that any MIG can be transformed
to another logically equivalent MIG using only � axioms. It
means that reaching a desired MIG optimized with respect to
the considered cost metric is possible by applying �, however,
the length of transformation sequence might be impractical. To
solve this problem, a more advanced set of transformations
derived from the basic rules in � was proposed in [19] which
was denoted by �. We only refer to complementary associa-
tivity (�.C) from the set � that is used in this paper, and is
formally expressed by

�.C : M(x, u, M(y, ū, z)) = M(x, u, M(y, x, z)).
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(b)(a)

Fig. 2. IMP operation. (a) Implementation of IMP using RRAM devices.
(b) Truth table for IMP (q′ ← p IMP q = p+ q) [11].

B. Logic Operations for RRAM-Based Design

1) Material Implication: IMP and FALSE operation, i.e.,
assigning the output to logic 0, are sufficient to express any
Boolean function [11]. Fig. 2 shows the implementation of
an IMP gate which was proposed in [11]. P and Q designate
two resistive devices connected to a load resistor RG. Three
voltage levels VSET, VCOND, and VCLEAR are applied to the
devices to execute IMP and FALSE operations by switching
between low-resistance (logic 1) or high-resistance (logic 0)
states.

The FALSE operation can be performed by applying
VCLEAR to an RRAM device. An RRAM device can be also
switched to logic 1 by applying a voltage larger than a thresh-
old VSET to its voltage driver. To execute IMP, two voltage
levels VSET and VCOND are applied to the switches P and Q
simultaneously. The magnitude of VCOND is smaller than the
required threshold to change the state of the switch. However,
the interaction of VSET and VCOND can execute IMP according
to the current states of the switches, such that switch Q is set
to 1 if p = 0 and it retains its current state if p = 1 [11].

2) Built-in Majority Operation: RRAM devices have two
terminals and their internal resistance R can be switched
between two logic states 0 and 1 designating high and low
resistance states, respectively. Denoting the top and bottom
terminals by P and Q, the memory can be switched with a
negative or positive voltage VPQ based on the device polar-
ity. Here, we assume that the logic statements (P = 1, Q = 0)
switches the RRAM device to logic 1, (P = 0, Q = 1) switches
the device to logic 0, and (P = Q) does not change the current
state of the device. Accordingly, we can make the truth tables
shown in Fig. 3 for the next sate of the switch (R′) when the
current state (R) is either 0 or 1. In the following, the Boolean
relations represented by tables in Fig. 3 are extended which
formally express the MAJ of RRAM devices [12]:

R′ = (P · Q) · R+ (P+ Q) · R
= P · R+ Q · R+ P · Q · R
= P · R+ Q · R+ P · Q · R+ P · Q · R
= P · R+ Q · R+ P · Q
= M(P, Q, R).

The operation above is referred to 3-input resistive major-
ity RM3(x, y, z), such as RM3(x, y, z) = M(x, ȳ, z) [12].
According to RM3, the next state of a resistive switch is equal
to a result of a built-in majority gate when one of the three
variables x, y, and z is already preloaded and the variable corre-
sponding to the logic state of the bottom electrode is inverted.
We denote this intrinsic property of RRAM devices by MAJ
which provides an alternative for IMP and enables shorter
computational length for synthesis of Boolean functions using
resistive switches.

Fig. 3. Intrinsic majority operation within an RRAM device.

C. Related Work

So far, few synthesis approaches using logic representations
have been proposed for in-memory computing. All the existing
approaches in this area exploit IMP for realization of the nodes
of their employed graph-based data structures. The unfavorable
nature of sequential operations for RRAM-based in-memory
computing has been mostly exploited to reduce the number of
required RRAM devices. Some approaches evaluate the graph-
based representation completely in sequence such that only a
single node can be computed each time [18], [25]. These evalu-
ation methods increase the length of computational sequences
in comparison with the parallel evaluation proposed in [17]
in which nodes of equal latency are computed at the same
time at a higher cost in area. However, the approach presented
in [18] tries to avoid higher increase in the number of oper-
ations by providing a tradeoff between the additional number
of operations and RRAM devices required for maintaining the
intermediate results.

In [25], IMP was used to synthesize combinational logic cir-
cuits with resistive memories using or-inverter graphs (OIGs).
The approach applies an extension of the delay minimization
algorithm proposed in [26] to the OIGs and also uses an
area minimization to lower the costs of the equivalent circuits
constructed with resistive memories. Synthesis of in-memory
computing circuits using OIGs can be also possible with NOR
gates based on memristor-aided loGIC (MAGIC) proposed
in [27]. MAGIC provides a memristive stateful logic, which
has experimentally shown lower latency in comparison with
IMP [15].

Another approach using AIGs was proposed in [18] for syn-
thesis of in-memory computing logic circuits. The approach
uses the state-of-the-art synthesis tool ABC [28] to map an
arbitrary Boolean function to an AIG and optimize it. An AIG
representing a given function is then mapped to an equivalent
network of IMP gates (Fig. 2) according to the IMP-based real-
ization of NAND gate proposed in [11]. The approach executes
a given Boolean function using N + 2 RRAM devices, where
N is the number of input RRAM devices, which keep their
initial values until the target function is executed and 2 is the
number of work RRAM devices, which states are changed dur-
ing the operations by intermediate results or the final output.
Nevertheless, some extra RRAM devices are also considered
to maintain values of the IMP gates which have more than
one fanout.

BDD-based synthesis of Boolean functions using resis-
tive memories has been proposed in [17]. Two IMP-based
realizations are proposed for a 2-to-1 MUX one for a min-
imum number of resistive switches and the other for a
minimum number of operations when lower latency is of
higher importance than area. It has not been referred to any
BDD optimization method in [17] to lower either the number
of RRAM devices or operations. For a given Boolean function,
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Fig. 4. Realization of an IMP-based MUX using RRAM devices [17].

the approach maps the corresponding BDD representation to a
netlist of RRAM devices using any of the MUX realizations.
This is carried out using two mapping approaches, one fully
sequential which is slow but needs a small number of RRAM
devices, and the other partially parallel which performs much
faster but needs some considerations for the complemented
edges and fanouts.

III. RRAM-BASED IN-MEMORY COMPUTING DESIGN

In this section, we present our proposed synthesis approach
for RRAM-based logic-in-memory computing using the three
representations explained before. For each representation, two
realizations for a graph node are presented using IMP and MAJ
as well as the methodology to map the graph to its equivalent
circuit constructed by RRAM devices.

We present optimization algorithms for each logic repre-
sentation to lower the cost metrics of the resulting in-memory
computing circuits dissimilar to the conventional optimization
algorithms that are mainly designed to reduce the size, i.e.,
the number of nodes of the graph also called area, or depth,
i.e., the number of levels of the graph.

In the rest of this section, we present the node realiza-
tions, design methodology, optimization, and the experimental
results for each graph-based representations introduced in
Section II-A in order.

A. BDD-Based Synthesis for In-Memory Computing Design

1) Realization of Multiplexer Using RRAM Devices: Fig. 4
shows the IMP-based realization for 2-to-1 MUX proposed
in [17]. The implementation requires six operations and five
RRAM devices of which three, named S, X, and Y , store the
inputs, and the two others, A and B, are required for operations.
The corresponding implication steps of the MUX realization
shown in Fig. 4 are as follows.

1) S = s, X = x, Y = y, A = 0, B = 0.
2) a← s IMP a = s̄.
3) a← y IMP a = ȳ+ s̄.
4) b← a IMP b = y · s.
5) s← x IMP s = x̄+ s.
6) b← s IMP b = x · s̄+ y · s.
In the first step, devices keeping the input variables and the

two extra work switches are initialized. The remaining steps
are performed by sequential IMP operations that are executed
by applying simultaneous voltage pulses VCOND and VSET.

To find the MAJ-based realization of MUX, we first express
the Boolean function of an MUX with majority gates and then
simply convert it to RM3 by adding a complement attribute
to each gate. For this purpose, the AND and OR operations
are represented by majority gates using a constant as the third
input variable, i.e., 0 for AND and 1 for OR [19]. Accordingly,
an MUX with input variables x, y and a select input s can be

expressed as

x · s̄+ y · s = M(M(x, s̄, 0), M(y, s, 0), 1)

= M(M(x, s̄, 0), M(y, 0, s), 1)

= RM3
(
RM3(x, s, 0), RM3(y, 1, s), 1

)
.

The equations above can be executed by three RM3 oper-
ations as well as a negation. Therefore, the MAJ-based
realization of the MUX can be obtained by the following
operations after a data loading step.

1) S = s, X = x, Y = y, A = 0, B = 0, C = 1.
2) PA = x, QA = s, RA = 0⇒ R′A = x · s̄.
3) PS = y, QS = 1, RS = s⇒ R′S = y · s.
4) PB = 1, QB = s, RB = 0⇒ R′B = y · s.
5) PC = a, QC = b, RC = 1⇒ R′C = x · s̄+ y · s.
The proposed MAJ-based MUX can be realized quite sim-

ilarly to the IMP-based circuit shown in Fig. 4 such that the
bottom electrodes of the switches are electrically connected via
a horizontal nanowire and the switching can be done by apply-
ing the three discussed voltage levels to the top electrodes.
As can be seen, the MAJ-based realization of MUX needs
one more RRAM devices and one less operation. Considering
area and delay two equally important cost metrics, using IMP
or MAJ does not make a difference in the circuits synthesized
by the proposed BDD-based approach. Indeed, the MAJ-based
realization of BDD nodes allows faster circuits, while the
IMP-based realization leads to circuits with smaller area con-
sumption. Such property in both realizations can be exploited
when higher efficiency in delay or area is intended.

2) Design Methodology for BDD-Based Synthesis: In order
to escape heavy delay penalties, we assume parallelization per
level for BDD-based synthesis [17], [29]. As explained before,
in the parallel implementation, each time one BDD level is
evaluated entirely starting from the level designating the last
ordered variable to the first ordered variable the so-called root
node. This is performed through transferring the computation
results between successive levels, i.e., using the outputs of
each computed level as the inputs of the next level. Using IMP,
the results of previous levels are read and copied, wherever
required within the first loading step of the next level, while
for executing MAJ the results are read and then applied as
voltages to the rows and columns.

Regardless of the possible fanouts and complemented edges
in the BDD, the number of RRAM devices required for com-
puting by this approach is equal to five or six times the
maximum number of nodes in any BDD level. In a simi-
lar way, the number of operations is six or five times the
number of BDD levels, for the IMP-based and MAJ-based
realizations, respectively. A multiple row crossbar architec-
ture entirely based on resistive switches was proposed in [30],
which can be used to realize the presented parallel evaluation.

The cost metrics of the proposed BDD-based synthesis
approach are given in Table I. However, the larger part of the
costs representing area and delay of the resulting circuits are
explained above, some additional RRAM devices addressing
complemented edges and fanouts are still required.

Every complemented edge in the BDD requires an NOT
gate to invert its logic value. As shown in the computational
steps for both IMP-based and MAJ-based realizations, invert-
ing a variable can be executed after an operation with a zero
loaded RRAM device (see step 2 in the IMP-based MUX and
step 4 in the MAJ-based MUX descriptions). Accordingly, for
each MUX with a complemented input an extra RRAM device
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TABLE I
COST METRICS OF LOGIC REPRESENTATIONS FOR

RRAM-BASED IN-MEMORY COMPUTING

should be considered and set to FALSE (Z = 0) that can be
performed in parallel with the first loading step without any
increase in the number of steps. Then, an IMP or MAJ opera-
tion should be executed to complete the logic NOT operation.
It is obvious that the required operations for all complemented
edges in a level can be carried out simultaneously that means
for any level with ingoing complemented edges only one extra
step is required. This implies that the number of additional
steps required for inverting all of the complemented edges can-
not exceed the number of BDD levels. Therefore, the number
of steps to evaluate a BDD possessing complemented edges
is equal to the number of BDD levels with ingoing comple-
mented edges besides the basic value required for the level
counts [29].

It is obvious that the RRAM devices keeping the outputs of
each BDD level can be reused and assigned to the inputs of the
next successive level. Nevertheless, the results of nodes target-
ing levels which are not right after their origin level might be
lost during computations if their corresponding RRAM devices
are rewritten by the next operations. Thus, we consider extra
RRAM devices for such nonconsecutive fanouts to retain the
result of their origin nodes to be used as an input signal of
their target nodes. The required number of RRAM devices for
this is equal to the maximum number of such fanouts over all
BDD levels. This will not increase the number of steps because
copying the results of nodes with nonconsecutive fanouts in
additional RRAM devices and using the stored value in the
fanouts’ targets can be performed simultaneously in the first
data loading step of nodes on the both sides of the fanouts.

3) BDD Optimization for RRAM-Based Circuit Design:
Optimization of BDDs in this paper is carried out as a bi-
objective problem aiming at minimizing the number of RRAM
devices and computational steps simultaneously, i.e., finding a
tradeoff between the number of RRAM devices and operations
of the resulting circuits. For this purpose, we have exploited
a multi-objective genetic algorithm (MOGA). The general

(a) (b)

Fig. 5. Cost metrics of RRAM-based in-memory computing for an arbitrary
BDD, (a) before (initial), and (b) after optimization (optimized).

framework of MOGA employed BDD optimization algorithm
is based on nondominated sorting genetic algorithm [31]
that has been experimentally proven useful for solving NP-
complete problems, such as BDD optimization [29], [32].
MOGA is also capable of handling higher priority to any of
the cost metrics, which allows to design smaller in-memory
computing circuits at a fair cost of latency or vice versa. We
refer to [32] for the details of MOGA.

Fig. 5 shows an example with two BDDs both represent-
ing a 4-variable 2-output Boolean function. The left BDD has
the initial ordering, whereas the second BDD has the ordering
obtained by MOGA. The number of required RRAM devices
for computing BDD levels (N + CE) (see Table I) is equal
before and after optimization since both BDDs have a max-
imum number of two nodes and one ingoing complemented
edge. However, there is a nonconsecutive fanout of node x3 tar-
geting x1 before optimization requiring an extra RRAM device
to maintain the intermediate result. In the optimized BDD the
inputs of all of the nodes come from the consecutive levels
or the constant 1 which has reduced the number of required
RRAM devices by 1. The number of operations has been also
reduced after optimization since one level has been released
from complemented edges.

As can be seen, the numbers of RRAM devices and opera-
tions decrease although the number of BDD nodes increases.
The effect of BDD optimization sounds to be too small for
the example function by reducing each one of the cost met-
rics only by one. Nevertheless, this reduction can be much
more visible for larger functions due to the higher possibil-
ity of finding BDDs with smaller number of nonconsecutive
fanouts, complemented edges, and level sizes caused by larger
search space.

4) Results of BDD-Based Synthesis: We have evaluated our
proposed synthesis approaches using a set of 25 benchmark
functions selected from LGsynth91 [33]. The results of the
BDD-based and AIG-based synthesis approaches have been
also compared with the similar existing approaches introduced
in Section II-C, which use the same data structures for RRAM-
based in-memory computing. For each benchmark function,
MOGA has been run ten times with a termination criterion of
500 generations. The population is three times as large as the
number of inputs of each function with a maximum allowed
size of 120. The rest of the experimental setup including the
genetic operators and their probabilities are the same as used
in [32].



SHIRINZADEH et al.: LOGIC SYNTHESIS FOR RRAM-BASED IN-MEMORY COMPUTING 1427

TABLE II
COMPARISON OF RESULTS BY GENERAL AND PRIORITIZED MOGA WITH CHAKRABORTI et al. [17]

178
138

180

201
208

Table II presents the results of the three versions of MOGA
and compares them with results of the BDD-based synthesis
approach proposed in [17]. For MOGA with priority to the
number of RRAM devices and operations, we chose results
with the smallest number of RRAM devices and operations
among all runs and populations. The results shown in the table
for the general MOGA have been also selected such that they
represent a good tradeoff between the minimum and maximum
values found by the prioritized algorithms. It is worth men-
tioning that the runtime varies between 0.56 to 187.22 s for
the benchmark functions 5xp1_90 and seq_201, respectively.

According to Table II, the number of RRAM devices
obtained by MOGA with priority to R for the IMP-based
realization is reduced by 5.74% on average compared to the
corresponding value by the general MOGA. MOGA with
priority to the number of operations also achieves smaller
latency by reducing the average operation count up to 0.74% in
comparison to the general MOGA. It should be noted that opti-
mization cannot noticeably lower the number of operations.
As shown in Table I, the main contribution to the operation
count is the number of BDD levels, i.e., the number of input
variables and hence is not changeable.

In comparison with results of [17] our BDD-based synthesis
approach has achieved better performance in both cost metrics.
The average values of results over the whole benchmark set
by the general MOGA for the IMP-based realization, which
is also used by [17], shows reduction of 21.11% and 31.74%
in the number of RRAM devices and operations, respectively.
The reduction in the number of operations reaches 42.64%
for the MAJ-based realization which also has 12.22% smaller
number of RRAM devices.

B. AIG-Based Synthesis for In-Memory Computing Design

1) Realization of NAND/AND Gate Using RRAM Devices:
Realization of NAND gate using resistive switches based on

IMP has been proposed in [11]. The proposed NAND gate
in [11] corresponds to a node with complemented fanout in
an AIG and therefore can be utilized as the IMP-based imple-
mentation realizing AIGs with RRAM devices. In this case, a
FALSE operation is required for any regular edge in the graph.
The implementation proposed in [11] requires three resistive
memories connected by a common horizontal nanowire to a
load resistor, i.e., structurally similar to the circuit shown in
Fig. 4 with a different number of switches. The interaction
of the tri-state voltage drivers on the RRAM devices execute
the NAND operation within three computational steps listed
below.

1) X = x, Y = y, A = 0.
2) a← x IMP a = x̄.
3) a← y IMP a = x̄+ ȳ.
Using MAJ, AIG can be also implemented with equal num-

ber of RRAM devices and operations. A majority operation of
two variables x and y together with a constant logic value of
0 (M(x, 0, y)) [19] executes the AND operation. This corre-
sponds to MAJ(x, 1, y) which only needs one extra operation
to preload operand y in a resistive switch. The required steps
are as follows.

1) X = x, Y = y, A = 0.
2) PA = y, QA = 1, RA = 0⇒ R′A = y.
3) PA = x, QA = 1, RA = y⇒ R′A = x · y.
2) Design Methodology for AIG-Based Synthesis: Although

both of the realizations using IMP and MAJ for the AIG-based
synthesis approach impose sequential circuit implementations,
they allow a reduction in area by reusing RRAM devices
released from previous computations. According to the parallel
evaluation method, we only consider one AIG level each time,
such that the employed RRAM devices to evaluate the level
can be reused for the next levels. Starting from the inputs of the
graph, the RRAM devices in a level are released when all the
required operations are executed. Then, the RRAM devices are
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reused for the upper level and this procedure is continued until
the target function is evaluated. Depending on the use of IMP
or MAJ in the realization, such an implementation requires as
many NAND or AND gates as the maximum number of nodes
in any level of the AIG. Hence, the corresponding number of
RRAM devices and operations for synthesizing the AIG is
three times the number of required majority gates and three
times the number of levels, respectively.

However, still some additional RRAM devices should be
allocated for the required NOT operations, i.e., the regular
edges in the IMP-based realization, where the outputs of AIG
nodes are already negated due to being implemented by NAND
gates, and the complemented edges in the MAJ-based real-
ization. Table I shows the number of RRAM devices and
computational steps of the resulting RRAM-based circuits.
Since the implementation starts from the input of AIG, the
ingoing regular edges for the IMP-based realization, and the
ingoing complemented edges for the MAJ-based realization
of any level should be first inverted similarly to the procedure
explained for BDDs. Therefore, the total number of RRAM
devices required for the synthesis of the whole graph for both
IMP-based and MAJ-realizations is equal to the maximum of
three times the number of nodes in the level plus the number
of ingoing edges to be inverted over all AIG levels.

3) AIG Optimization for RRAM-Based Circuit Design: For
AIG optimization we have used ABC [28] commands. To
address the area of the resulting circuits using RRAM devices
we use the command dc2 which minimizes the number of
nodes in the graph. Latency of the circuits has been also
reduced before mapping them to their corresponding netlist
of RRAM devices by another ABC command if -x -g. The
command minimizes the depth of AIG which is actually the
most significant term in the required number of operations
given in Table I due to the factor of three for both IMP-
based and MAJ-based realizations. Both of the area and depth
AIG rewriting commands by ABC do not target the extra
number of RRAM devices and computational steps caused
by the NOT operations for synthesis. Nevertheless, applying
any of the aforementioned commands iteratively can notice-
ably reduce the cost metrics of RRAM-based in-memory
computing.

It should be noted that we cannot optimize AIG for both
cost metrics since area minimization leads to worsening the
latency and on the other hand depth minimization increases the
number of nodes in the graph. Thus, according to the applica-
tion one can choose the optimization command regarding the
area or delay of the resulting circuits.

4) Results of AIG-Based Synthesis: Results of the proposed
AIG-based synthesis approach for in-memory computing are
presented in Table III for both area and depth rewriting meth-
ods by ABC [28]. A quick look at Table III reveals that the
number of RRAM devices is smaller for the MAJ-based real-
ization, while the operation counts are almost equal. According
to Table III, area and depth rewriting reduce the total number
of RRAM devices and operations, respectively, by 24.31% and
10.04% on average compared to each other.

Table IV makes a comparison with the AIG-based approach
proposed in [18] for a different benchmark set with single
output functions, i.e., PO = 1. Since the number of required
RRAM devices for the benchmark set are not given in [18], we
can only compare with respect to the number of operations.
The number of operations obtained by our proposed method
using the IMP-based realization, which is also used by [18], is

TABLE III
RESULTS OF AIG-BASED SYNTHESIS USING SIZE AND

DEPTH REWRITING BY ABC [28]

178
180

201
208

138

seven times smaller than the that of [18] for both rewritings.
Furthermore, the method proposed in [18] fails to keep the
number of computational steps at a reasonable value when
the number of inputs increases. For example, the number of
operations by [18] for functions sym10_d and t481_d is equal
to 1172 and 1564, respectively. While using our method, both
functions can be synthesized with less than 80 operations.

It is worth mentioning that the runtime for each bench-
mark function in both Tables III and IV is in the range of
milliseconds.

C. MIG-Based Synthesis for In-Memory Computing Design

1) Realization of Majority Gate Using RRAM Devices: We
propose two realizations for majority gate based on IMP and
MAJ [34]. The proposed IMP-based realization of majority
gate is similar to the circuit shown in Fig. 4 with six of RRAM
devices. It also requires ten sequential steps to execute the
majority function. The corresponding steps for executing the
majority function are as follows.

1) X = x, Y = y, Z = z, A = 0, B = 0, C = 0.
2) a← x IMP a = x̄.
3) b← y IMP b = ȳ.
4) y← a IMP y = x+ y.
5) b← x IMP b = x̄+ ȳ.
6) c← y IMP c = x+ y.
7) c← z IMP c = x · z+ y · z.
8) a = 0.
9) a← b IMP a = x · y.

10) a← c IMP a = x · y+ y · z+ x · z.
Three RRAM devices denoted by X, Y , and Z keep input

variables and the remaining three other RRAM devices A, B,
and C are required for retaining the intermediate results and
the final output. In the first step, the input variables are loaded
and the other RRAM devices are assigned to FALSE to be
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TABLE IV
COMPARISON OF RESULTS BY THE PROPOSED AIG-BASED

SYNTHESIS WITH BÜRGER et al. [18]

d
d

used later for the next operations. Another FALSE operation
is also performed in step 8, to clear an RRAM device which
is not required anymore for inverting an intermediate result
which is not required anymore. Finally, the Boolean function
representing a majority gate is executed by implying results
from the seventh and ninth step.

It is obvious that the MAJ-based majority gate can be
realized with smaller number of RRAM devices and com-
putational steps due to benefiting from the discussed built-in
majority property. Using MAJ, the majority gate will require
only four RRAM devices that can be placed in the same struc-
ture shown in Fig. 4. Furthermore, the majority function can
be executed within only three steps carrying out simple oper-
ations. The MAJ-based computational steps for the proposed
RRAM-based realization are as follows.

1) X = x, Y = y, Z = z, A = 0.
2) PA = 1, QA = y, RA = 0⇒ R′A = ȳ.
3) PZ = x, QZ = ȳ, RZ = z⇒ R′Z = M(x, y, z).
In the first step, the initial values of input variables as well

as an additional RRAM device are loaded by applying VSET or
VCLEAR to their voltage divers. Step 2 executes the required
NOT operation in RRAM device A. This can be done with
applying appropriate voltage levels VSET or VCOND to switch
A, for cases y = 0 and y = 1, respectively. In the last step, the
majority function is executed by use of MAJ at RRAM device
Z by applying any of the three voltage levels corresponding
the difference between logic states of x and ȳ.

2) Design Methodology for MIG-Based Synthesis: The
number of RRAM devices and operations for the proposed
MIG-based synthesis approach are given in Table I. The
method of mapping MIGs to equivalent RRAM-based in-
memory computing circuits is exactly similar to the design
methodology for AIGs with MAJ-based realization. Since both
IMP-based and MAJ-based realizations proposed for MIGs

represent majority gate without an extra negation, the same
formula can be used for them with different constant fac-
tors addressing the number of RRAM devices and operations
required by each realization [34].

3) MIG Optimization for RRAM-Based Circuit Design: In
general, MIG optimization is performed by applying a set of
valid transformations to an existing MIG to find an equivalent
MIG that is more efficient with respect to the considered cost
metrics. In this section, we present the three MIG optimiza-
tion algorithms tackling the cost metrics of logic synthesis
with RRAM devices. The first proposed algorithm considers
both cost metrics simultaneously [34], while the others aim at
reducing the number of operations [34] or RRAM devices [35].

In [19], two algorithms for conventional MIG optimiza-
tion in terms of delay and area have been proposed, which
aim at reducing the depth, i.e., the number of levels, or the
size of graph, i.e., the number of nodes, respectively. For
area rewriting, [19] suggests a set of axioms called eliminate
including �.M; �.DR→L. eliminate can remove some of the
MIG nodes by repeatedly applying majority rule (�.M) and
distributivity from right to left (�.DR→L) to the entire MIG.
Assuming x, y, z, u, and v as input variables �.DR→L trans-
forms M(M(x, y, u), M(x, y, v), z) to M(x, y, M(u, v, z)) which
means the total number of nodes has decreased from three
to two.

In general, the depth of the graph is of high importance in
MIG optimization to lower the latency of the resulting circuits.
The depth of the MIG can be reduced by pushing the critical
variable with the longest arrival time to upper levels. For this
purpose, a set of axioms called push-up has been proposed
in [19]. Push-up includes majority, distributivity, and associa-
tivity axioms applied in a sequence, i.e., �.M; �.DL→R; �.A;
and �.C. It is obvious that the majority rule may reduce depth
by removing unnecessary nodes. Applying distributivity from
left to right (�.DL→R) such that M(x, y, M(u, v, z)) is trans-
formed to M(M(x, y, u), M(x, y, v), z) may also result in an
MIG with smaller depth at a cost of one extra node. If either
x or y is the critical variable with the latest arrival, distribu-
tivity cannot reduce the depth of M(x, y, M(u, v, z)). However,
if z is the critical variable, applying �.DL→R will reduce the
depth of MIG by pushing z one level up. In the cases that the
associativity rules (�.A, �.C) are applicable, the depth can
be reduced by one if the axioms move the critical variable
to the upper level. After performing push-up, the relevance
axiom (�.R) is applied to replace the reconvergent variables
that might provide further possibility of depth reduction for
another push-up.

Using RRAM devices for implementation, considerable
parts of the metrics determining area and delay depend on the
number and distribution of complemented edges which are not
intended in conventional area and depth optimization. We pro-
pose a multiobjective MIG optimization algorithm to obtain
efficient RRAM-based logic circuits with a good tradeoff
between both objectives. Algorithm 1 includes a combination
of conventional area and depth optimization algorithms besides
techniques tackling complemented edges from both aspects of
area and delay and iterates them for a maximum number of
cycles called effort. The algorithm starts with applying push-up
to obtain a smaller depth. Then, the complemented edges are
aimed by applying an extension of axiom inverter propagation
from right to left (�.IR→L) for the condition that the con-
sidered node has at least two outgoing complemented edges.
The three cases satisfying this condition and their equivalent
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Fig. 6. Applying an extension of �.IR→L to reduce the extra RRAM devices
and steps caused by complemented edges.

majority gates are shown below and discussed in the following
considering their effect on both cost metrics:

M(x̄, ȳ, z̄) = M(x, y, z) (1)

M(x̄, ȳ, z) = M(x, y, z̄) (2)

M(x̄, ȳ, z) = M(x, y, z̄). (3)

In the first case, the ingoing complemented edges of the
gate are decreased from three to zero, while one complement
attribute is moved to the upper level, i.e., the level including
the output of the gate. Assuming that the current level, i.e., the
level including the ingoing edges, is the critical level with the
maximum number of required RRAM devices, this case is
favorable for area optimization. However, if the upper level is
the critical level, the number of required RRAM devices will
increase by only one. Similar scenarios exist for the two other
cases, although the last case might be less interesting because
the number of complemented edges in both levels is changed
equally by one. That means a penalty of one is possible as the
cost for a reduction of one, while transformations (1) and (2)
may reduce the number of RRAM devices by three and two,
respectively.

To reduce the number of operations, the number of
levels possessing complemented edges should be reduced.
Depending on the presence of complemented edges by other
gates in both levels, the two first transformations given above
might reduce or increase the number of operations or even
leave it unchanged. Case (1) is beneficial if the upper level
already has complemented edges and also the transforma-
tion removes all the complemented edges from the current
level. It might be also neutral if none of the levels are going
to be improved to a complement-free level. The worst case
occurs when moving the complement attribute to the upper
level increments the number of levels with complemented
edges. Similar arguments can be made for the remaining
cases. However, case (2) is more favorable because it never
adds a level with complemented edges and case (3) cannot
be advantageous because it can never release a level from
complemented edges.

Fig. 6 shows a simple MIG that is applicable to transfor-
mation (2) (�.IR→L(2)). The transformation has released one
level of the MIG from the complement attribute (black dot),
which results in a smaller number of computational steps.
Furthermore, as a result of removing one complemented edge
from the critical level, the required number of RRAM devices
is decreased by one.

After applying inverter propagation for the aforementioned
conditions (�.IR→L(1−3)), the MIG is also reshaped and more
chances for reducing the depth might be created. Thus, push-
up is applied to the entire MIG again to reduce the number of
operations as much as possible. In the last step, the number
of RRAM devices are reduced to make a tradeoff between
both objectives. Applying �.A, some of changes by push-up
that have increased the maximum level size can be undone.

Algorithm 1 MIG Rewriting for RRAM Cost Optimization
for (cycles = 0; cycles < effort; cycles++) do

�.ML→R;�.DL→R;�.A;�.C;
�.IR→L(1−3);
�.ML→R;�.DL→R;�.A;�.C;
�.A;�.DR→L;

⎫
⎪⎬

⎪⎭
push-up

end for

Algorithm 2 MIG Rewriting for Operation Count
Minimization

for (cycles = 0; cycles < effort; cycles++) do

�.ML→R;�.DL→R;�.A;�.C;
�.IR→L;
�.IR→L(1−3);
�.ML→R;�.DL→R;�.A;�.C;

⎫
⎪⎬

⎪⎭
push-up

end for

Finally, distributivity from right to left (�.DR→L) is applied
to the graph to reduce the number of nodes in levels.

Due to the importance of latency in logic synthesis, and
the issue of sequential implementation in RRAM-based cir-
cuits, we propose Algorithm 2 for reducing the number of
operations. In the proposed operation minimization algorithm,
two axioms of inverter propagation are applied to the MIG
after push-up. First, only the axiom presented by case (1),
i.e., the base rule of inverter propagation from right to left
(�.IR→L), is applied to the entire MIG to lower the number
of levels with complemented edges. Since the transformation
moves one complement attribute to the upper level, it might
create new inverter propagation candidates for the all three
discussed cases if the upper level already has one or two
ingoing complemented edges. Hence, we apply �.IR→L(1−3)

again to ensure maximum coverage of complemented edges.
Although case (3) cannot reduce the number of operations, it
is not excluded from �.IR→L(1−3) due to its effect on balanc-
ing the levels’ sizes. Finally, push-up is applied to the MIG to
reduce the depth more if new opportunities are generated. It
should be noted that the number of operations is mainly deter-
mined by the MIG depth. In fact, in the worst case caused by
complemented edges, the total number of operations would
be equal to seven times the number of levels, i.e., the MIG
depth. Nevertheless, we show the efficiency of our proposed
step optimization algorithm in the following section.

Algorithm 3 is proposed to reduce the number of required
RRAM devices [35]. The algorithm starts with eliminate to
reduce the number of nodes. Then, it applies �.A, �.C to
reshape the MIG to enable further reduction of area and applies
eliminate for the second time as suggested in [19]. After elim-
inating the unnecessary nodes, we use �.IR→L(1−3) to reduce
the number of additional RRAM devices required for com-
plemented edges. At the end, since the MIG might have been
changed after the three inverter propagation transformations,
�.IR→L is applied again to ensure the most costly case with
respect to the complemented edges is removed. In general,
applying the last two lines of Algorithm 3 over the entire
MIG repetitively can lead to much fewer RRAM cost.

4) Results of MIG-Based Synthesis: Table V shows the
results of experiments performed to evaluate the three
proposed MIG rewriting algorithms. The number of iterations



SHIRINZADEH et al.: LOGIC SYNTHESIS FOR RRAM-BASED IN-MEMORY COMPUTING 1431

TABLE V
RESULTS OF MIG-BASED SYNTHESIS FOR RRAM-BASED IN-MEMORY COMPUTING USING THE THREE PROPOSED MIG OPTIMIZATION ALGORITHMS

Algorithm 3 MIG Rewriting for RRAM Device Minimization
for (cycles = 0; cycles < effort; cycles++) do

�.M;�.DR→L;
�.A;�.C;
�.M;�.DR→L;

}

eliminate

�.IR→L(1−3);
�.IR→L;

end for

(effort) was set to 40. We observed that the MIGs are well
optimized after 40 cycles and the cost metrics do not change
noticeably with more iterations. The total runtime for the entire
benchmark set under this setting has been about 3 s.

As expected the cost metrics are much lower for MIGs
using the MAJ-based realization. The results confirm that the
proposed operation count and RRAM device minimization
algorithms have achieved the smallest value for the corre-
sponding optimization objective which has worsened the other
cost metric. The number of RRAM devices and operations
given by the proposed multiobjective algorithm are between
the minimum and maximum boundaries found by the operation
count and RRAM device minimization algorithms. This con-
firms the capability of the proposed MIG rewriting technique
to find a good tradeoff between both objectives.

More precise comparisons for the results of the MAJ-based
realization show that the number of RRAM devices by the bi-
objective algorithm is on average 19.78% less than that of the
operation minimization algorithm at a cost of 21.09% increase
in the number of operations. A similar comparison with results
obtained by the RRAM device minimization algorithm shows
an average reduction of 44.11% in the number of operations
at a fair cost of 39.64% in the number of required RRAM
devices.

(a) (b)

Fig. 7. Comparison of synthesis results by logic representations for RRAM-
based in-memory computing. (a) Average number of RRAMs. (b) Average
number of operations.

IV. COMPARISON OF LOGIC REPRESENTATIONS

Fig. 7 compares the average values of synthesis results
over the whole benchmark set for the three discussed logic
representations. For a fair comparison and due to the high
importance of latency in logic-in-memory computing synthe-
sis, the values shown in Fig. 7 are chosen from optimization
results with respect to the number of operations, i.e., MOGA
with priority to the number of operations for BDDs, MIG
rewriting for operation count minimization, and AIG depth
rewriting.

According to Fig. 7, BDDs clearly achieve smaller num-
ber of RRAM devices and therefore can be a better choice
when area is considered a more critical cost metric. On the
other hand, the operation counts obtained by the BDD-based
synthesis are much higher than the same values resulted by
AIG-based and MIG-based methods. Comparison of synthesis
results by the AIGs and MIGs also shows that the aver-
age number of operations for the MIG-based method using
the MAJ-based realization is reduced by 19.37% compared
to the AIG-based synthesis using depth minimization. This
confirms the advantage of MIGs in providing higher speed
in-memory computing circuits in comparison with the two
other representations.
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Fig. 8. MIG representing a three bit XOR gate.

V. CROSSBAR IMPLEMENTATION FOR THE
PROPOSED SYNTHESIS APPROACH

We have already discussed the number of required RRAMs
and operations for the presented in-memory computing
approach using any of the three mentioned logic represen-
tations. In this section, we will show how an entire graph can
be computed on a crossbar and what determines its required
dimensions. We present step by step implementation of an
example MIG shown in Fig. 8 which represent a three input
XOR gate.

Both MAJ-based and IMP-based implementations for in-
memory computing logic circuits can be executed on a
standard crossbar architecture as shown in Fig. 9(a). In
such an architecture, an entire row should be allocated for
computing a single graph node which represents a data struc-
ture primitive, e.g., a majority gate if MIG is used for
synthesis. To compute an entire level of a data structure
simultaneously, all nodes of the level should be computed
in parallel in separate rows. This means that a number of
rows equal to the maximum level size in the entire graph
is required. For example, for a logic representation whose
largest level has four nodes, a crossbar architecture with at
least four rows is needed, independent of the type of the uti-
lized representation or the basic operation of MAJ or IMP.
Nevertheless, the number of RRAM devices at each row,
i.e, the number of columns, is determined by the RRAM-
based realization of the exploited data structure primitive and
therefore absolutely depends on both of the aforementioned
conditions.

In the following, we assume that all the primary inputs are
already written in the memory.

A. MAJ-Based Implementation

The values given for MAJ-based implementation in Table I
indeed present the upper bounds for the crossbar realization.
According to Table I, the MAJ-based synthesis of the MIG
shown in Fig. 8 can be realized using a maximum of nine
RRAM devices, since the critical level needs 2×4 for its nodes
and 1 more RRAM for the ingoing complemented edge. Also,
each level can require three operations (2×3), which results
in a total of eight operations for the whole MIG considering
the presence of complemented edges at both levels.

Here, we show that the resulting MAJ-based implementation
can be executed much more efficiently with respect to both
time and area.

The crossbar with the upper bound dimensions for the MAJ-
based implementation of 3-bit XOR gate is shown in Fig. 9(b).
The MIG has a maximum level size of two, and accordingly
the required crossbar needs two rows. Each row consists of
four RRAM devices to compute a node and one additional
device to be used in case of having a complemented edge. We
assume that a maximum of two ingoing edges for an MIG
node can be complemented after rewriting, from which one

(a)

(b) (c)

Fig. 9. Crossbar implementation for the presented synthesis approach for
logic-in-memory computing. (a) Standard crossbar architecture. (b) Upper-
bound crossbar for MAJ-based, and (c) IMP-based implementations for MIG
shown in Fig. 8.

can directly be used as the second inverted operand of MAJ
and thus, only one needs to be negated. The RRAM devices
allocated for the complemented edges are displayed in red
dashed surrounds at the end of the rows.

The implementation steps for the MAJ-based computation
of the MIG shown in Fig. 8 are listed below

Initialization: Rij = 0 : Qij = 1, Pij = 0;
1: Loading the third Q1 = Q2 = 0, P1 = P2 = z;

operands R11 : RM3(z, 0, 0) = M(z, 1, 0) = z;
R21 : RM3(z, 0, 0) = M(z, 1, 0) = z;

2: Negation for node 2 Q1 = Q2 = x, P1 = x, P2 = 1;
R25 : RM3(1, x, 0) = M(1, x̄, 0) = x̄;

3: Computing level 1 node 1: P1 = y, Q1 = x, R11 = z

R11 : RM3(y, x, z) = M(y, x̄, z);
node 2: P1 = y, Q2 = x̄(@R25), R21 = z;
R21 : RM3(y, x̄, z) = M(y, x, z);

4: Computing level 2 P1 = x, Q1 = @R21, R11 = M(x̄, y, z);
(root node) R11 : RM3(x, @R21, @R11) = M(x, @R21, @R11):

M(M(x̄, y, z), x, M(x, y, z)).

We assume that all RRAM devices are first loaded with zero.
For initialization, voltage levels 1 and 0 should be applied
to the bottom electrodes (Qij) and the top electrodes (Pij),
respectively. This step is not considered in the operation count.
Step 1 starts to compute the nodes 1 and 2 in level 1 (see
Fig. 8) by loading the variable z as the third operands of MAJ.
As said before, every node of the level should be computed
in a separate crossbar row. Accordingly, nodes 1 and 2 are,
respectively, computed in row 1 and 2 by selecting R11 and R21
as the corresponding third operands, i.e., the destinations of
the operations. Then, the primary inputs are read from memory
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and applied to the corresponding row and columns to execute
the operations.

It is worth noting that the MAJ-based realization of major-
ity gate in Section III-C1 also allocates RRAM devices for the
first and the second operands. This is not actually required by
the MAJ operation, dissimilar to IMP which needs all variables
to be accessible on the same row. Nevertheless, all of the input
RRAM devices are already considered in the crossbar with
the upper bound dimensions shown in Fig. 9(b). Furthermore,
in the MAJ-based realization of majority gate, we simply
assumed that the second operand needs to be inverted and
considered an RRAM device for it, while this is not always
required. An MIG node with a single ingoing complemented
edge can actually be implemented faster by skipping the nega-
tion and using the complemented edge directly as the second
operand. In the MIG shown in Fig. 8, nodes 1 and 3 (the root
node) are ideal for MAJ due to possessing a single comple-
mented edge but node 2 requires one negation which needs to
be performed first.

The negation required for node 2 is performed in step 2
at R25 by setting its bottom electrode (Q2), to the value of x
and its top electrode (P2) to 1. It should be noted that R25
is not independently accessible and the entire second row and
column are exposed to these voltage levels. Therefore, we need
to ensure that the previously stored values are retained. By
setting Q2 to x, the bottom electrode of R21 is also changed to
x. To maintain the value stored in R21, its top electrode (P1)
should be also set to the same voltage level x as shown in step
2. By doing this, the top electrode of R11 changes to x, and
thus its bottom electrode (Q1) also needs to be set to x for
keeping the current state of the devise.

The entire level 1 is computed simultaneously in step 3.
One read is required to apply the value of x̄ to Q2. As shown
in the step 3, both nodes can be computed in the same column
since their first operands are equal, which is not necessarily
true in all the cases. Step 4 computes the root node of the
MIG. This can be done at one of the RRAM devices storing
the intermediate results from the previous step and does not
require any data loading. Since the value of node 2 is comple-
mented, it is more efficient to use the value stored in R21 as
the second operand to skip negation. This requires one read
from R21 and R11 can be set to the third operand which is also
the final destination of the computation.

B. IMP-Based Implementation

The required crossbar for the IMP-based implementation is
shown in Fig. 9(c) which has one extra RRAM at the end of
each row for the complemented edges. According to Table I,
the example MIG shown in Fig. 8 with a maximum level size
of 2 needs an upper bound of 12 (2×6) RRAM devices placed
in two rows in addition to one more for the ingoing comple-
mented edge. As Table I suggests, the computation needs 22
steps, 2×10 for the two levels plus two more steps for the
complemented edges, including the IMP operations and the
loads.

The required steps for the IMP-based implementation of the
MIG shown in Fig. 8 are listed below

Initialization: Rij = 0;
1: Loading variables for R11 = x, R12 = y, R13 = z;

level 1: R21 = x, R22 = y, R23 = z;

2: Negation for node 1: R17 ← x IMP R17: R17 = x̄;
3-11: Computing level 1: node1: R14 = M(x̄, y, z);

node2: R24: M(x, y, z);
12: Loading variables for R11=x, R12 = M(x, y, z), R13 = M(x̄, y, z)

level 2: R14 = R15 = R16 = R17 = 0;
13: Negation for node 3: R17 ← R12 IMP R17 :

R17 = R12 = M(x, y, z);
14-22: Computing level 2 R14 = M(M(x, y, z), x, M(x, y, z)).

(root node):

To explain the implementation step-by-step, we use names
R1 to R6 for the RRAM devices at each row to denote
X, Y, Z, A, B, and C, respectively, as used in Section III-C1.
For initialization, all of the RRAM devices in the entire cross-
bar are cleared. Dissimilar to MAJ, IMP needs all variables
used for computation to be stored in the same horizontal line.
This means that there may be a need to have several copies of
primary inputs or intermediate results at different rows simul-
taneously, as shown in step 1, where the variables of nodes
1 and 2 are loaded into RRAM devices in both rows. Step 2
computes the complemented edge of node 1 in the seventh
RRAM device considered for this case at the end of first row,
R17. Steps 3–11 compute both nodes at level one and store the
results in the forth RRAM device at the corresponding crossbar
row, similarly to the RRAM device A used in Section III-C1.

The same procedure continues to compute the second level,
which only consists of the MIG root node. Two out of the
three inputs of node 3 are intermediate results, which have to
be first read and then copied into the corresponding RRAM
devices at row 1 besides other input and work devices as shown
in step 12. In step 13, the complemented edge originating at
node 2 is negated, and then root node is computed in step 22.

C. Discussion

The MAJ-based implementation for the example MIG in
Fig. 8 was carried out using a small number of RRAM devices
and within only four operations far less than the upper bounds,
while no operation or RRAM devices could be saved during
the IMP-based implementation. Length of operations required
for data loading and negation of MAJ-based implementation
can be even shortened much more for larger Boolean func-
tions. Number of RRAM devices can also be much lower than
the MAJ-based upper bounds given in Table I by performing
operations successively in the devices carrying the results of
previous levels.

It is obvious that using MAJ provides higher efficiency
especially for MIG-based synthesis. Moreover, IMP requires
additional voltages, which is not the case for MAJ, and as
a result needs more complex control scheme and peripheral
circuitry. However, MAJ-based implementation needs active
read operations for each RM3 cycle, while IMP-based imple-
mentation can reduce this requirement and propagate data
natively within the memory array. MAJ-based implementation
also does not allow to independently set the values of the top
electrodes of the computing RRAM devices placed in the same
columns. Such computation correlations do not occur during
IMP-based operations since all IMP operations are executed
with the same voltage levels VSET and VCOND.

Nonetheless, dependency of the voltage levels of crossbar’s
rows and columns can be managed in many cases due to the
commutativity property of the majority operation. This allows
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(a) (b) (c)

Fig. 10. Selecting crossbar computing RRAM devices to avoid computa-
tion interferences for MAJ-based implementation. (a) Performing conflicting
computations at different columns. (b) Diagonal computation. (c) Retaining
previously stored devices.

to perform computations simultaneously at RRAM devices in
the same column if they share a single operand to be applied to
the entire column. Using an automated procedure, the RRAM
devices allocated for parallel computations can be placed
in different nonconflicting columns as shown in Fig. 10(a).
When none of the MAJ operations share any operand, the
computations should be performed diagonally [Fig. 10(b)].

The rows or columns with computing devices may also pos-
sess previously stored RRAM devices, which values have to
be maintained during computations by applying equal voltage
levels to their top and bottom electrodes, i.e., their row and
column drivers. For example, in Fig. 10(c), the second column
has a stored device in the second row from top and a com-
puting one in the third row. To keep the value of the stored
device unchanged, the same voltage level, which is applied to
its column for computing, has to be applied to its row. Setting
the voltage level of the third column from left also needs a
similar consideration as the column has a stored device located
in a computing row.

It is obvious that a computation can coexist with the stored
device in the same row or column if one of its operands
is equal to what applied to the coordinates of the stored
device. However, presence of several stored devices in a row
or column may make it complex to arrange safe computations
which can be handled by freeing such rows or columns from
computation. As Fig. 10 shows, considerations regarding the
conflicting computing or previously stored devices increase
the area of the crossbar architecture since a larger number of
columns or rows may be required, although the number of
required RRAM devices does not change. Nevertheless, the
number of steps can increase if the crossbar array does not
meet the required number of rows and columns, which needs
to move some computations into the successive steps.

VI. CONCLUSION

We presented an approach for logic synthesis of RRAM-
based in-memory computing circuits using the logic repre-
sentations BDDs, AIGs, and MIGs. We also showed that
the presented approach provides valid and efficient crossbar
implementations. The following remarks are concluded by
comparison of experimental results.

1) The proposed BDD-based synthesis approach using
multiobjective optimization reduces both cost met-
rics considerably compared to an existing BDD-based
method. Using BDDs for synthesis results in smaller
number of RRAM devices at a high cost in the number

of operations in comparison with the two other logic
representations.

2) The proposed AIG-based synthesis approach reduces the
number of operations by an order of magnitude in com-
parison with an existing approach, as well as providing
a fair tradeoff between both cost metrics among the
experimented representations.

3) In comparison with BDDs and AIGs, MIGs show a high
capability in reduction of the length of operations which
is mostly considered as the main drawback of RRAM-
based in-memory computing.

4) MAJ combined with the use of MIGs, provides a plat-
form for logic-in-memory computing synthesis, which
is highly efficient with respect to latency and crossbar
dimensions.
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