
A Compiler for Parallel and Resource-Constrained
Programmable in-Memory Computing

Giulia Meuli∗ Mathias Soeken∗ Pierre-Emmanuel Gaillardon† Giovanni De Micheli∗
∗Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

†Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA

Abstract—Solid-state resistive switches have recently enabled
low-power, scalable, non-volatile memories. Their proven intrin-
sic logic operation, allowing design of in-memory computing
systems, attracted the attention of the research community. A
Programmable Logic-in-Memory (PLiM) computer has been pro-
posed operating on an RRAM memory array and an instruction
set to access the in-memory capabilities of the RRAM cells. Since
the RRAM’s intrinsic logic operation is based on the majority-
of-three function, Majority Inverter Graphs (MIGs) can be used
to implement a compiler that translates Boolean functions into
PLiM instructions.

This work presents a fast MIG-based PLiM compiler aiming
at parallelizing RRAM instructions under resource constraints.
Considering valid the assumption that all RRAM cells in the
PLiM computer can be enabled in parallel, helps evaluating the
theoretical potential of the PLiM parallelization as part of a
larger architecture exploration effort. More complex scenarios
can easily be adapted by our approach. The code is optimized
to reduce number of accesses to the memory and its structure
enables a very low runtime compared to the state-of-the-art
approach. Resource constraints allow to fit the PLiM instructions
into a given maximum number of RRAM cells.

I. INTRODUCTION

Metal-oxide resistive switching technology is currently being
investigated for a wide range of applications, allowing high
performances and low power systems [1]. It is used with success
to develop Resistive Random Access Memories (RRAMs) [2],
[3], obtaining promising non-volatile characteristics. The
integration of these memories into FPGAs enables the reduction
of both the delay and the energy consumption [4]. Also the field
of the Internet-of-Things (IoTs) is investigating how to take
advantage of RRAMs’ peculiarities [5]. In addition to these
applications, cross-bar RRAM arrays are largely considered
for neuromorphic computing [6].

The possibility of performing in-memory computation by
means of the intrinsic logic operation of resistive switches [7]
led to the recent proposal of a Programmable Logic-in-Memory
(PLiM) computer [8]. The PLiM architecture has the ability to
compute functions on a standard resistive memory by means
of an additional low-overhead controller in the PLiM computer.
Instructions are read from the memory banks, decoded, and then
computed on the dedicated array section. The PLiM architecture
is fully programmable and is capable of computing any logic
functions, assuming that a sufficient number of cells is available.

The logic computation has to be performed on arrays of
RRAM-based switches. In particular, both Bipolar Resistive
Switches (BRS) [1] and Complementary Resistive Switches
(CRS) [9] can be used to implement logic operations. Indeed,

a single BRS or CRS cell can implement 14 Boolean functions
over the total of 16 [10]. The present work exploits the majority
intrinsic logic operation of the resistive switches.

A compiler has been proposed in [11] which derives the
PLiM program of a logic function. A PLiM program is a set of
instructions that can be run on the memory array. The compiler
makes use of the Majority Inverter Graphs (MIGs) [12], [13],
a logic representation in which all operations are majority-of-
three 〈xyz〉 = xy ∨ xz ∨ yz or inversions.

The original PLiM computer architecture, as discussed in [8],
considers one instruction per time; a choice made for the sake
of simplicity. The controller acts on the inputs of a single
array cell every time. This mode causes the function to be
processed slowly on the array. The compiler in [11] works
conforming to this operating mode. It is aiming at optimizing
the number of instructions, using quite involved algorithms and
data structures. Its performances are achieved at the expense
of the runtime of the compiler.

The present work extends the capabilities of the original
PLIM compiler proposing an automatic compiler based on the
MIG representation which exploits parallelism. The computer
architecture could be developed to enable concurrent accesses
to several cells in the array. In order to do so, the compiler must
create a program which takes into account the parallel control of
cells. Parallelizing the computation ensures a better exploitation
of the array computing capabilities and a faster computation. It
is important to underline that the algorithm has been designed
considering that all RRAM cells are accessible at the same time.
This assumption gives the opportunity to investigate the benefits
of parallel PLiM to trigger more architectural exploration. The
algorithm can be easily adapted, when applied to more restricted
applications.

The proposed algorithm takes a standard MIG as input
and, proceeding level by level, returns the parallelized PLiM
program of the function. It aims to get a small number of
occupied RRAMs, an highly parallelized code and a very
small runtime. It has been implemented in C++, tested on
EPFL and ISCAS benchmarks and compared to the previous
compiler [11]. As results, it shows a maximum speed-up of
2000× with a contained increase of the number of RRAMs.

The Section II introduces the MIG data structure, the
intrinsic majority operation of resistive switches and the PLiM
architecture. Section III explains what is a PLiM program and
how it looks when parallelization is introduced. In Section IV
the proposed PLiM compiler algorithm is thoroughly explained.
Finally Section V shows and discusses the obtained results.



∧ ∧

∨

∧ ∧

∨

z z

y yx

AOIG

1

z 1 z1

1

y 1 y1x

MIG

(a)

x

z x y z x y

f = x⊕ y ⊕ z

(b)

Fig. 1. Example of MIG (a) Equivalence between an AOIG and MIG
rapresentations (b) Equivalent optimized MIG

II. PRELIMINARIES

A. Majority Inverter Graph

An MIG is a logic network with 3-input nodes performing a
majority operation and with complemented edges performing
the inversion. An example of a MIG, directly translated from
an And Or Inverter Graph (AOIG) is shown in Fig. 1(a). In
Fig. 1(b), the same function is optimized by means of the
complete algebra associated to this data structure. More details
can be found in [12], [13].

The input function of the compiler is given as an already
optimized MIG. The algorithm does not introduce any mod-
ification to the graph. The applied pre-optimization method
makes use of the inverter propagation axiom [14]:

Ω.I: 〈xyz〉 = 〈x̄ȳz̄〉 (1)

As a result, all nodes require at most one complemented edge
without increasing the size and the depth of the MIG.

B. Intrinsic Majority Operation

A resistive switch is a two terminal device (schematic shown
in Fig. 2(a)) which is able to switch between a High Resistance
State (HRS) and a Low Resistance State (LRS), according to
the voltage applied to its terminals. The switch itself is able
to implement a three input logic function. The first two inputs
are the voltages applied to its two terminals P and Q and the
third one is the resistive state of the cell Z. When the cell is
in the LRS then Z = 0, otherwise Z = 1.

The intrinsic logic function is described in Fig. 2(b). The top
table shows the logic function implemented by the cell when
in LRS, and the bottom one when it is in HRS. By combining
the tables, it is possible to obtain the global function that is
used as basic instruction for the PLiM program:

Zn = (PQ)Z ∨ (P ∨Q)Z

= PZ ∨QZ ∨ PQZ

= PZ ∨QZ ∨ PQ

= 〈P,Q,Z〉 = RM3(P,Q,Z)

(2)

This function is referred to as 3-input Resistive Majority
(RM3) [8]. The operation that a resistive switch intrinsically
performs is based on the majority operation. The peculiarity
is in the complemented second input.

The result of the function Zn is stored as the next resistive
state of the memory cell that performed the computation. This
means that the same cell is used as destination for the computed
result overwriting its previously stored value.

Z

Q

P

(a)

Zn = P ∨Q

P Q Z Zn

0 0 1 1
0 1 1 0
1 0 1 1
1 1 1 1

Zn = PQ

P Q Z Zn

0 0 0 0
0 1 0 0
1 0 0 1
1 1 0 0

(b)

Fig. 2. Resistive switch logic operation.

C. PLiM Computer Architecture

Exploiting the intrinsic majority operation of resistive
switches, an architecture capable of performing computation
directly on a memory array has been proposed in [8]. The PLiM
computer architecture can enable both memory and computing
operations to be performed on a standard array. It is composed
by a traditional multi-bank memory with the addition of a
PLiM controller. The controller is a simple finite state machine
that reads instructions from the memory and, when required,
performs the computing operation within the memory. More
detailed information about the PLiM architecture can be found
in [8].

III. PLIM PROGRAM

A PLiM program is a set of instructions to be run on the
memory array in order to compute a Boolean function. This
section is explaining the elements that build the program and
how they are grouped together.

A. PLiM Instructions

The above-described intrinsic logic operation RM3 is used
to build the PLiM program together with a set of RM3-
derived instructions introduced for the sake of convenience. It
is possible to derive them in a very intuitive way, by simply
setting one or more inputs to a constant value. Setting the input
Z to a constant value means initializing the cell in one of its
encoded states.

The RM3-deduced operations are here described:

ZERO(X1) : RM3(0, 1, X1) | X ′
1 ← 0

ONE(X1) : RM3(1, 0, X1) | X ′
1 ← 1

NOT (v,X1) : RM3(0, 1, X1) | X ′
1 ← 0

RM3(1, v,X1) | X ′
1 ← v

BUF (v,X1) : RM3(0, 1, X1) | X ′
1 ← 0

RM3(v, 0, X1) | X ′
1 ← v

The inputs applied to the terminals of the cell are in lowercase
letters (z) and the resistive state of the cell is in uppercase letters



(X1). It is shown how the next resistive state X ′
1 corresponds

to the result of the RM3 operation.
The first two instructions are used as initialization: the

ZERO(X1) instruction sets the resistive state @X1 to 0 while
the ONE(X1) sets it to 1. The next two operations copy the
value of an input (BUF) or its complemented value (NOT)
into the cell resistive state. In both cases, a ZERO step on the
destination cell is required. Note that these last two operations
consist of two RM3 instructions to be performed on the same
cell: initialization and loading of the desired value. This means
that the two instructions cannot be performed at the same time.

B. Layers

The compiler described in this work will return a code
which is built taking into account that some operations can
be performed on different cells at the same time, without
compromising the final result. All the operations that can be
executed in parallel are grouped together in containers that
are referred to as “layers”. Layers are a way to represent
data dependencies between operations. Instructions to compute
values on one layer can only access operands that were
computed on preceding layers. At the moment, only the
data dependencies given by the MIG logic representation are
considered, thus being independent from the actual architecture.
However, architecture constraints may be more restrictive,
which can be captured in additional data dependencies.

The example in Fig. 3 is used to explain the concept of layer.
It is shown how the compiler translates a complete graph into
a code. The input graph is an MIG on which Ω.I has been
applied. It represents a 4-inputs, single output function. The
inputs are named pi0, pi1, pi2 and pi3, while the output is
po0. The graph has 4 nodes: n1, performing a MAJ operation;
n2, performing an OR; n3 performing an AND and the last
n4, performing a MAJ. The corresponding code shows the
set of instructions, grouped in layers. For each of them, the
generating node is indicated.

Considering the node n1, it performs the operation
〈pi1, pi0, pi3〉 = RM3(pi1, pi0, pi3) and the result is saved in
the resistive cell named Xdest_1. This location is first initialized
with the pi3 value, then the RM3 operation is computed. All
the instructions associated with this node need to be placed in
different layers, because they are all performed on the same
resistive cell Xdest_1. Nevertheless, the analogue operations of
node n2 and n3 can be parallelized. As it can be seen, all the
BUF operations are performed on the cells Xdest_1, Xdest_2
and Xdest_3 at the same time, being grouped together in the
first two layers. At this point is important to notice that BUF
and NOT require two layers each, because of the initialization
step they both include. The output value of the function, po0
is stored into Xdest3 . The shown program needs a total of
4 RRAMs for the computation and has a total of 12 RM3

instructions, grouped in 6 layers.

IV. PLIM COMPILER

The proposed compiler translates a standard MIG graph into
a PLiM program. It proceeds level by level, from the inputs
to the outputs, associating graph’s nodes to instructions. In

n1 n2 n3

n4

0
pi3 pi2pi1

pi0
pi3 pi0

pi3
0

po0

Layers 1 - 2 n1 BUF(pi1, Xdest_1)
n3 BUF(pi2, Xdest_2)
n2 BUF(pi3, Xdest_3)

Layer 3 n1 RM3(pi3, pi0, Xdest_1)
n3 RM3(0, pi3, Xdest_2)
n2 RM3(pi0, 0, Xdest_3)

Layers 4 - 5 n4 NOT(Xdest_2, Xneg_1)

Layer 6 n4 RM3(Xdest_1, Xneg_1, Xdest_3)

Fig. 3. An MIG graph and its PLiM program

contrast to [11], it allows the parallel execution of instruction
on different memory cells. Instructions that can be performed
in parallel are grouped in layers.

Section IV-A explains how a single node is translated and
how the algorithm proceeds through the graph. The way the
algorithm reshapes itself when a constraint on the number of
cells is introduced is described in Section IV-B. Section IV-C
clarifies the processing of the outputs when the algorithm is
constrained. Section IV-D shows an optimization to reduce the
number of layers is shown.

A. Algorithm Structure

1) Single MIG-node Translation: The core of the algorithm
is the processing of a single MIG node. The function process_n
takes a node as input, checks its children-nodes’ characteristics
and extracts the corresponding instructions. Depending on its
configuration, each node requires one to three layers. The
pseudo code of the process_n function is shown in Alg. 1.
The main purpose is to assign to each child of the node the
corresponding operands for the RM3 operation: a, b, and Xdest.
Those inputs must satisfy specific characteristics:

1) the edge corresponding to input b must be complemented.
2) the cell used as destination must be overwritable.

To justify the first requirement, consider that a MIG node
performs the majority operation. This is slightly different from
RM3, because of the complemented second input. The reason
for the second requirement is that the result of the operation
is encoded in the resistive state of cell Xdest. Consequently
the previous state is overwritten by each operation and the
data is lost. If a child of the processed node has a fanout >
1, it cannot be overwritten without compromising the next
operation’s result. Referring to Alg. 1, the function free_ch
stores, in a container, all the MIG node’s children that can
be overwritten. The cell corresponding to a child node can be
used as destination of the computation Xdest only if:



Data: MIG-node n
Result: code-node

1 consider one node n of the MIG graph;
2 set free ← free_ch(n);
3 set order ← get_op_order(n);
4 set a← order[0];
5 given free_stack;
6 if order[1] is complemented then
7 set b← order[1];
8 else
9 if free_stack is empty then

10 set Xnot ← Xnew;
11 else
12 set Xnot ← Xstack;
13 end
14 NOT(order[1], Xnot);
15 set b← Xnot;
16 end
17 if order[2] ∈ free then
18 set Xdest ← order[2];
19 else
20 if free_stack is empty then
21 set Xdest ← Xnew;
22 else
23 set Xdest ← Xstack;
24 end
25 BUF(order[2], Xdest)
26 end
27 RM3(a, b,Xdest)

Algorithm 1: Function process_n to process a single MIG
node

1) is not an input of the function;
2) has a fanout equal to one.

The first case obviously is because the inputs are signals coming
from the outside. The second case ensures that, as explained
above, the data cannot be destroyed if it has to be used by
other nodes.

The next function applied is get_op_order(n) that checks
again the children and put them in order. If there is a
complemented child it is placed in the second position. The
third position is then occupied by a child that can be rewritten,
if there is one. If among the three children there is a node that
is complemented and also overwritable, priority is given to the
first property and it is located in the second position. Indeed
there is maximum one complemented child per node, while
many children might be overwritable.

The container free_stack is a reservoir of cells to be used
when needed. It is used to keep record of all the locations
whose value has been already used and can be overwritten
without damaging the result of the computation. How this stack
is filled is explained in the following section.

In the remaining part of Alg. 1 the container order is verified.
The member in position one can be assigned to a, i.e., the
first member of the RM3 operation. In the next step the
child in position two is analyzed. If get_op_order found a
complemented child, than it is directly assigned to b. Otherwise

X1 X2 X3

n

01: ZERO(Xdest)
02: BUFF(X3, Xdest)
03: RM3(X2, X1, Xdest)

(a)

X1 X2 X3

n

01: RM3(X3, X1, X2)

(b)

Fig. 4. (a) Example of MIG node n translated into three layers (b) Example
of MIG node n translated into one single layer

a new cell must be occupied and it must be initialized to the
value of this child. In order to proceed with the initialization
the new location Xnot is first initialized to 0 and then the
negated value of order[1] is copied to it by the NOT operation.
Finally Xnot is assigned to b. Successively the child given in
third position is analyzed: this is the one supposed to be used
as destination. If it is contained in free than Xdest is directly
assigned. Otherwise a new location needs to be occupied and
the value of the third child is copied by the BUF after the
initialization to 0. Every time there is the need of a new cell
location, the free_stack container is checked. If there is a
location saved into this container this is used instead than a
new one in order to reduce the number of RRAM cells. After
that a, b, and Xdest are assigned, the RM3 operation can be
performed.

Two examples are given in the Fig. 4. The node to be
processed is shown together with its children. Each children’s
value is stored into a cell location. So the names X1, X2, X3

indicated both graph node and the corresponding resistive cell
in which the value is stored. For the case of Fig. 4(a) the row
2 and 3 of Alg. 1 returns the following vectors: free = X1

and order = X2, X1, X3. While in the case of Fig. 4(b) the
vectors are: free = X1, X2 and order = X3, X1, X2. It is also
shown how the case (a) is translated into three layers, since
the second verification of the order vector is not satisfied (raw
12 of Alg. 1). On the contrary the second example verifies
both the verification and fits into a single layer.

2) Level by Level MIG Translation: This section describes
how the algorithm traverses the graph. As in Alg. 2, one level
per time is considered. All the nodes in the level are processed
by the process_n function. Then the function decr_fanout
is applied to all the children of the nodes in the level. To
understand this last function it is important to know that an
MIG node is characterized by the number of fanouts it has.
The value of a node with fanout = 2 is used twice. The value
of a node with fanout = 0 is no more used for any computation.
In the latter case the corresponding cell can be placed in
the free_stack. For this reason, at the end of the processing
of a level, all the nodes whose values have been used are
decremented. Once reached this point of the Alg. 2, all the
children with null fanout are placed in the free_stack. They
might be used by the function process_n during the processing
of the next level. The function process_out is responsible for



Data: MIG-graph
Result: code

1 foreach level l do
2 foreach node n do
3 process_n(n);
4 end
5 foreach node n do
6 foreach children ch do
7 decr_fanout(ch)
8 end
9 end

10 foreach node n do
11 foreach children ch | fanout = 0 and ch 6∈ inputs

do
12 put ch→ free_stack;
13 end
14 end
15 end
16 process_out

Algorithm 2: Algorithm to process the all the MIG levels

1 while free_stack is not empty and freezer is not empty do
2 take a node f ∈ freezer;
3 process_n(f);
4 end
Algorithm 3: Algorithm to process frozen node by mean of
freed cells

computing all the outputs pointing a node with complemented
edge (Xout), adding a simple NOT(Xout) function.

B. Resource Constraints

Some modifications allow the algorithm to work with a
resource constraint on the number of available RRAM cells.
This working mode of the algorithm can be both used to fit
the computation into an array of a given size and to look for
the minimal number of cells that can implement a function. It
can be also used to minimize the number of cells dedicated to
a computation in function of the computation itself, leaving
more space to store data in a PLiM computer.

The mode is implemented by changing the order in which
the nodes are processed. Both the functions process_n and
process_out need to be modified.
In order to implement this operating mode, a cell counter is
added to Alg. 2, together with the following features.

1) While processing a node, the RRAM-counter is checked
every time a new cell is needed. If there is no cell left
to compute the node, this is “frozen” and the process_n
function is interrupted.

2) Every node that points to a frozen node needs to be
frozen as well.

3) The only way to compute a frozen node is to use a cell
from the free_stack.

4) After that a layer has been processed, all the cells that
have been freed are used to defrost nodes of the previous
levels.

Data: outputs
Result: code

1 set out_to_process← outputs;
2 do
3 foreach output ∈ out_to_process do
4 if points to a frozen node then
5 put freezer ← output;
6 continue;
7 end
8 if must be complemented then
9 if free_stack is not empty then

10 set Xnot ← Xstack;
11 else
12 if cell-counter < constraint then
13 set Xnot ← Xnew;
14 else
15 put freezer ← output;
16 continue;
17 end
18 end
19 NOT(out_node,Xnot);
20 end
21 end
22 foreach complemented output computed do
23 decrement the fanout of each pointed node
24 end
25 foreach fanout(node)=0 do
26 put free_stack← node
27 end
28 set out_to_process← freezer
29 while free_stack is not empty and out_to_process is not

empty;
Algorithm 4: Function process_out with resource constraint

5) When all the node in a level are frozen the algorithm
stops: the number of cells is not sufficient to compile
the given Boolean function.

Points 1 and 2 are implemented by modifying the order
requirements checking (lines 8, 20 of Alg. 1). The placement
of freed cells in the free_stack (point 3) is done at line 12 of
Alg. 1. Point 4 is implemented by the Alg. 3 that is added
at line 14 of Alg. 2. The check of point 5 is performed after
every node in a level has been processed.

C. Outputs Processing

An MIG graph may have multiple outputs that point to their
corresponding node out_node. Some of this pointing edges
might be complemented. Of particular interest is the way the
outputs are processed by the function process_out when the
resource constraint is required.

When there is a complemented output the algorithm should
add a NOT(out_node, Xnot) operation. Consequently the
destination requires a new cell to store the result. For this reason
the function is strongly affected by the resource constraint.

The function, described in Alg. 4, computes recursively every
output into the container out_to_process which is initialized to
contain all the MIG’s outputs.



If the output is pointing to a frozen node, it is frozen,
because its value has not yet being computed. Then if the
output complements a node, the availability of an extra cell is
checked. If there is a cell Xstack in the free_stack, than this is
used to store the complemented value. Otherwise a new one
Xnew is taken from the array. If there is no space for another
cell than the output is frozen.

After this first loop through every output some nodes may
have been freed. This is the case for all the nodes pointed by
only one computed complemented output, which are placed
in the free_stack. Before verifying the exit condition, all the
outputs in the freezer are placed in the out_to_process container
for the next iteration. The loop is stopped when the free_stack
is empty or when all the outputs have been computed.

D. Layer Minimization

Because of the parallelization introduced by this compiler,
the runtime of the function on the resistive array is strongly
dependent on the number of layers of the code. For this reason
a function for the layer minimization has been implemented.
The function modifies the code after it has been created by the
compiler.

As already explained (Fig. 4), a single node may generate
from one to three layers, depending on whether it requires
pre-computation. Consequently, every level might correspond
to one or three layers. The minimization function takes all the
nodes that required pre-computing and moves the corresponding
instructions in order to reduce the number of layers of that level.
In fact, the ZERO initialization instruction can be performed
as soon as the destination cell of the operation is ready. For
cells taken from the free_stack, this is the level where they
have been released, for new cells this is the very first layer.

For every precomputed node p_node the initialization func-
tion is moved from the current level location to the location
at which it was ready. At the end of the code all the empty
layers are eliminated by a specific function.

V. RESULTS

The compiler has been implemented in C++ and evaluated
on the EPFL and the ISCAS benchmarks and the results are
shown in Table I. The main characteristics of the input MIG
graph are presented, together with the key parameters of the
PLiM compiler’s code. Those are: the number of RRAMs used
to compute the function, the total number of instructions, the
number of layers and the runtime in seconds. Some parameters
are then compared with the ones resulting from the compilation
of the state-of-the-art compiler [11].

The two algorithms are different in the choice of the
parameter to be optimized and the results underline this
difference. The previous algorithm chooses very carefully the
order in which the nodes are computed, every time checking
the state of all the not yet computed nodes, in order to select
the best one. The choice is made in order to minimize the
number of cells used and the number of instructions. The main
drawback of this approach is the slow runtime of the program.
Sometimes, as for hyp, the computation requires a very long
runtime (more than 4h).

The proposed compiler, proceeding level by level, does not
select every time the most convenient node. This leads to a
longer number of operations and of RRAMs used. On the
other hand it is significantly faster than the previous one. It is
possible to see that the compilation speed-up reaches 1000×
and 2000× when dealing with large MIGs in terms of their
sizes. The number of operations increases by a factor that goes
from 1.08× to 1.48× with respect to the previous compiler.
An upper bond for the number of layers is three times the
number of levels in the graph. The number of layers ranges
mainly in between twice and three times the number of levels.
The level of parallelism can be approximated comparing the
number of levels with the number of instructions.

To overcome this expected result the possibility of perform-
ing some instructions in parallel has been introduced. Even
with a larger number of instructions, the number of accesses
to the array is reduced. With the assumption that all the cells
can be simultaneously enabled and that each instruction needs
a fixed amount of time, the number of layers of the new code
can be compared with the number of operations of the previous
one. Resulting in a relevant speed-up of the computation.

Table II is showing the result of running the compiler with
a constraint on the number of available cells. The bar circuit
from the EPFL benchmark is reported as example. Without
any constraints, it is compiled to occupy 709 RRAMs. A strict
constraint is gradually applied. At the end, for 640 available
RRAMs, the capabilities of the compiler reach their limits.
Looking at the results it is possible to notice how the number of
layers increases while the maximum number of cells decreases.
This is due to the fact that every time a node is computed from
the freezer, three layers are added to the code. On the other
hand, the runtime is kept very low and almost constant.

VI. CONCLUSION

In this paper a compiler for the PLiM computer has been
presented, allowing to translate an MIG graph into a set of
RM3 instructions. Compared with the original compiler [11],
it is significantly faster, so that heavy circuits in terms of size,
can be compiled, while the previous implementation fails. The
output code of the compiler contains instructions that can be
run in parallel. This allows a better exploitation of the hardware
resources and a faster computation. A key factor to speed up
the computation, by means of a lower number of memory
accesses, is to reduce the number of levels in the input graph.
It would be of interest for successive works to add a low-depth
optimization before the compilation. Rewriting the MIG with
low-depth optimization would allow a consistent reduction of
the number of layers and, therefore decrease the running time
of the PLiM program. An MIG rewriting could also take into
account the possibility of a parallel computation in addition to
the reduction of the number of levels.

Acknowledgments: This research was supported by H2020-
ERC-2014-ADG 669354 CyberCare and the Swiss National
Science Foundation (200021-169084 MAJesty and and 200021-
146600).



TABLE I
EPFL AND ISCAS BENCHMARK RESULTS

Benchmark Previous PLiM Compiler [11] PLiM Compiler Comparisons
Circuit #Levels #I #O Size #RRAMs #Op 1Time #RRAMs #Op #Layers Time Speed-up #Op
adder 129 256 129 386 258 899 0.27 259 1158 385 0.01 27.00 1.29
bar 14 135 128 3110 341 5730 12.49 709 7304 39 0.03 416.33 1.27
div 4401 128 128 57272 665 99208 5304.13 308 129868 13104 5.02 1056.60 1.31
hyp 9320 256 128 153311 3- - - 34643 405001 26763 33.47 - -
log2 230 32 32 25040 1380 49991 989.32 950 57772 688 0.49 2019.02 1.16
max 290 512 130 2491 560 4006 9.36 571 5289 531 0.03 312.00 1.32
sin 167 24 25 4496 408 8698 26.66 153 10400 478 0.04 666.50 1.20
sqrt 5989 128 64 21066 261 40100 694.56 394 47008 14300 5.96 116.54 1.17
square 156 64 128 13671 487 29177 275.39 4326 36175 420 0.18 1529.94 1.24
arbiter 63 256 129 8957 885 10815 117.39 798 11699 79 0.12 978.25 1.08
cavlc 19 10 11 757 71 1266 0.72 245 1545 55 0.01 72.00 1.22
ctrl 10 7 26 139 36 258 0.02 64 323 27 0.00 2NR 1.25
dec 4 8 256 328 260 839 0.08 290 1010 14 0.00 NR 1.20
i2c 23 147 142 1329 228 2309 2.37 396 2891 60 0.01 237.00 1.25
int2float 18 11 7 263 34 478 0.09 99 569 42 0.00 NR 1.19
mem_ctrl 144 1204 1231 45034 2155 79172 3294.10 5319 100436 432 1.23 2678.13 1.27
priority 245 128 8 993 133 1463 1.42 132 2163 545 0.01 142.00 1.48
router 54 60 30 220 86 411 0.08 100 576 149 0.00 NR 1.40
voter 67 1001 1 7767 1147 16036 103.39 1773 21067 191 0.08 1292.38 1.31
c17 3 5 2 7 7 12 0.00 5 17 6 0.00 NR 1.42
c432 32 36 7 176 66 328 0.04 89 492 61 0.00 NR 1.50
c499 18 41 32 316 53 598 0.14 107 790 37 0.00 NR 1.32
c880 26 60 26 301 72 557 0.28 111 821 76 0.00 NR 1.47
c1355 18 41 32 316 56 598 0.13 107 854 39 0.00 NR 1.43
c1908 28 33 25 291 75 583 0.12 63 777 82 0.01 12.00 1.33
c2670 23 157 64 503 157 833 0.40 173 1269 57 0.00 NR 1.52
c3540 42 50 22 898 131 1576 1.07 186 2112 124 0.01 107.00 1.34
c5315 34 178 123 1283 247 2383 2.30 308 3243 96 0.01 230.00 1.36
c6288 62 32 32 1019 113 2430 1.32 342 2653 176 0.01 132.00 1.09
c7552 39 207 108 1293 295 2470 2.42 401 3357 109 0.01 242.00 1.36

1 Runtime in seconds. 2 Not Relevant improvement in low-size graphs. 3 Graph too large to compile.

REFERENCES

[1] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee,
F. T. Chen, and M. J. Tsai, “Metal-oxide RRAM,” Proceedings of the
IEEE, vol. 100, no. 6, 2012.

[2] Y. Ho, G. M. Huang, S. Member, P. Li, and S. Member, “Dynamical
Properties and Design Analysis for Nonvolatile memristor memories,”
IEEE T-CS, vol. 58, no. 4, 2011.

[3] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, C. C. Kuo, and
C. W. Cheng, “The resistive switching characteristics of a Ti/Gd2O3/Pt
RRAM device,” Microelectronics Reliability, vol. 50, no. 5, 2010.

[4] X. Tang, P.-E. Gaillardon, and G. De Micheli, “A high-performance
low-power near-vt rram-based fpga,” in 2014 International Conference
on Field-Programmable Technology (FPT), Dec 2014.

[5] F. Clermidy, N. Jovanovic, S. Onkaraiah, H. Oucheikh, O. Thomas,
O. Turkyilmaz, E. Vianello, J.-M. Portal, and M. Bocquet, “Resistive

TABLE II
CONSTANT GRAPH’S SIZE - SWEEP ON THE NUMBER OF RRAMS

Circuit max #RRAMs #RRAMs #Op #Layers Time
bar 709 709 7304 40 0.03
bar 700 700 7302 65 0.02
bar 690 690 7302 95 0.02
bar 680 680 7302 125 0.02
bar 670 670 7304 158 0.02
bar 660 660 7304 188 0.03
bar 650 650 7304 218 0.02
bar 640 640 7108 468 0.03

memories: Which applications?” in Proceedings of the Conference on
Design, Automation & Test in Europe, ser. DATE ’14, 2014.

[6] D. B. Strukov, “Nanotechnology: Smart connections,” Nature, vol. 476,
no. 7361, 2011.

[7] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic operations
via material implication.” Nature, vol. 464, no. 7290, 2010.

[8] P.-E. Gaillardon, L. Amaru, A. Siemon, E. Linn, R. Waser, A. Chat-
topadhyay, and G. De Micheli, “The Programmable Logic-in-Memory
(PLiM) computer,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016.

[9] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive
switches for passive nanocrossbar memories.” Nature Materials, vol. 9,
no. 5, 2010.

[10] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, “Beyond
von Neumann—logic operations in passive crossbar arrays alongside
memory operations,” Nanotechnology, vol. 23, no. 30, 2012.

[11] M. Soeken, S. Shirinzadeh, P.-E. Gaillardon, L. G. Amarù, R. Drechsler,
and G. De Micheli, “An MIG-based compiler for programmable logic-in-
memory architectures,” in Design Automation Conference (DAC), 2016.

[12] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic optimiza-
tion,” in Design Automation Conference (DAC), 2014.

[13] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Boolean logic opti-
mization in majority-inverter graphs,” in Design Automation Conference
(DAC), June 2015.

[14] E. Testa, M. Soeken, O. Zografos, L. Amaru, P. Raghavan, R. Lauwereins,
P.-E. Gaillardon, and G. De Micheli, “Inversion optimization in majority-
inverter graphs,” in 2016 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), July 2016.


