
A Novel Basis for Logic Rewriting
Winston Haaswijk∗, Mathias Soeken∗, Luca Amarù†, Pierre-Emmanuel Gaillardon‡, Giovanni De Micheli∗

∗Integrated Systems Laboratory, EPFL, Lausanne, VD, Switzerland
†Design Group, Synopsys Inc., Mountain View, CA, USA

‡Laboratory for NanoIntegrated Systems, The University of Utah, Salt Lake City, UT, USA

Abstract—Given a set of logic primitives and a Boolean
function, exact synthesis finds the optimum representation (e.g.,
depth or size) of the function in terms of the primitives. Due to
its high computational complexity, the use of exact synthesis is
limited to small networks. Some logic rewriting algorithms use
exact synthesis to replace small subnetworks by their optimum
representations. However, conventional approaches have two
major drawbacks. First, their scalability is limited, as Boolean
functions are enumerated to precompute their optimum repre-
sentations. Second, the strategies used to replace subnetworks
are not satisfactory. We show how the use of exact synthesis for
logic rewriting can be improved. To this end, we propose a novel
method that includes various improvements over conventional
approaches: (i) we improve the subnetwork selection strategy,
(ii) we show how enumeration can be avoided, allowing our
method to scale to larger subnetworks, and (iii) we introduce
XOR Majority Graphs (XMGs) as compact logic representations
that make exact synthesis more efficient. We show a 45.8%
geometric mean reduction (taken over size, depth, and switching
activity), a 6.5% size reduction, and depth · size reductions of
8.6%, compared to the academic state-of-the-art. Finally, we
outperform 3 over 9 of the best known size results for the EPFL
benchmark suite, reducing size by up to 11.5% and depth up to
46.7%.

I. INTRODUCTION

Boolean and algebraic methods have been the driving force
in multi-level logic optimization [1]. Compared to two-level
logic, exact optimization for multi-level logic networks has
turned out to be more difficult due to the high computational
complexity [2]–[4]. Despite this, the combination of Boolean
and algebraic methods has enabled sufficient optimizations to
increasingly complex logic networks.

In recent years, we have seen a shift from complex heteroge-
neous logic representations to simpler homogeneous networks
such as And-Inverter Graphs (AIGs) [5], [6] and Majority-
Inverter Graphs (MIGs) [7]–[9]. These simpler representations
enable more efficient logic representation and optimization,
requiring less memory and allowing better run times [10].
They also permit logic rewriting algorithms, which work by
locally replacing subnetworks by their precomputed optimized
representations [5], [11]. One drawback of conventional rewrit-
ing algorithms is that they require enumeration of the space
of Boolean functions in order to precompute the optimum
networks. However, this space is so large that enumeration
quickly becomes intractable. Therefore, in practice this rewrit-
ing approach is limited to functions on 4 variables, or has to
give up exactness for heuristic results.

Exact synthesis is the problem of finding an optimum
network for a given function. The cost criteria are typically

(although not limited to) size or depth of the network. Due to
its high computational complexity, exact synthesis has not been
the main driver behind many logic optimization algorithms.
However, the combination of logic rewriting and exact synthesis
has recently led to improvements in both AIG and MIG size
optimization [5], [12]–[14]. By precomputing size-optimum
AIGs for a subclass of NPN classes of 5-variable functions,
the area of highly optimized large networks may be reduced
by 5.57% on average [12]. A similar method has recently been
introduced for MIG size optimization [13].

Our goal is to improve the use of exact synthesis in
logic rewriting, with a focus on size optimization. The major
problems of state-of-the-art approaches are: (i) the enumeration
of Boolean functions to precompute optimum networks, thus
limiting the approach to small subnetworks, and (ii) the non-
satisfactory strategies to select subnetworks for rewriting.

We propose a number of solutions to overcome these
problems. We show how enumeration of the Boolean space
can be avoided by computing optimum representations only
for functions that occur in practice. We find these functions
by using LUT mapping and NPN canonization as filters. This
also allows us to construct a database of (classes of) Boolean
functions that occur in practice. We refer to this process as
mining for Boolean functions. Additionally, LUT covers turn
out to contain better selections of subnetworks than those
used by previous approaches, thus improving the subnetwork
selection strategy. Finally, we introduce XOR Majority Graphs
(XMGs) and use them as underlying logic representation for
exact synthesis. XMGs enable compact logic representation.
This decreases the runtime of exact synthesis, especially when
combined with improvements to the exact synthesis algorithm
introduced in [13].

Our experiments on the EPFL benchmark suite1 demonstrate
the improvements enabled by our method:

• We show a 45.8% reduction in geometric mean (taken
over size, depth, and switching activity), a 6.5% aver-
age reduction in size, and a 8.6% improvement in the
depth · size measure for area-oriented k-LUT technology
mapping, as compared to the academic state-of-the-art
ABC package.

• We improve the currently best known results for area opti-
mized networks in 3 out of 9 cases, showing improvements
in size and depth up to 11.5% and 46.7%, respectively.

1http://lsi.epfl.ch/benchmarks



The remainder of paper is organized as follows. In Section II
we introduce relevant concepts and notation. In Section III
we give a high-level technology independent overview of our
general optimization method. Section IV introduces XMGs. In
Section V we describe our proof-of-concept implementation: a
size optimization algorithm based on XMGs. We then evaluate
our implementation through several experiments in Section
VI. Finally, our proposed approach opens up a new field of
research in which parallel and distributed computing power
is invested to re-synthesize networks using exact synthesis
methods. Distributed systems and compute clusters can be
used to search and mine for optimum network representations.
We discuss and outline the possibilities of such a framework
in Section VII.

II. BACKGROUND

In this section, we introduce some useful notation, as well
as the concepts behind NPN classification and LUT mapping.

A. Boolean Functions

We consider Boolean functions f(x1, . . . , xn) over n vari-
ables. In an expression for f a variable xi can either appear
as positive literal xi or as a negative literal x̄i. The central
Boolean operations in this paper are the exclusive OR (XOR):

x⊕ y = xȳ ∨ x̄y = (x ∨ y)(x̄ ∨ ȳ) (1)

and the majority of three (MAJ):

〈xyz〉 = xy ∨ xz ∨ yz = (x ∨ y)(x ∨ z)(y ∨ z). (2)

The Boolean operations AND and OR can be obtained from
MAJ by setting one of its arguments to 0 or 1, respectively:

〈0xy〉 = x ∧ y and 〈1xy〉 = x ∨ y (3)

The MAJ operation is self-dual [15] since 〈x̄ȳz̄〉 = 〈xyz〉. We
refer to this property as inverter propagation. Several other
interesting properties for the MAJ operation exist [16]–[18],
but are not important in the course of this paper.

The MAJ and XOR operators interact in a natural way. XOR
operators propagate through MAJ operators, much like inverters
do:

a⊕ 〈xyz〉 = 〈(x⊕ a)(y ⊕ a)(z ⊕ a)〉 (4)

The XOR operation inverts one of its operands if the other
one is set to 1, i.e., x⊕ 1 = x̄. The operation is not self-dual
but also allows to propagate inverters, since:

x⊕ y = x̄⊕ ȳ = x̄⊕ y = x⊕ ȳ (5)

and:

x̄⊕ y = x⊕ ȳ = x⊕ y = x̄⊕ ȳ. (6)

B. NPN Classification

Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN-
equivalent, if there exists a permutation σ ∈ Sn and polarities
p1, p2, . . . , pn ∈ B such that

f(x1, . . . , xn) = gp(xp1σ(1), . . . , x
pn
σ(n)), (7)

i.e., g can be made equivalent to f by negating inputs,
permuting inputs, or negating the output. NPN-equivalence
is an equivalence relation that partitions the set of all Boolean
functions over n variables into a smaller set of NPN classes.
As an example, all 22

n

Boolean functions over n variables
can be partitioned into 2, 4, 14, 222, 616 126 NPN classes
for n = 1, 2, 3, 4, 5. For a detailed introduction into NPN
classification, the reader is referred to [19], [20].

C. LUT Mapping

LUT mapping is the special case of technology mapping in
which we cover a logic network with k-LUTs (k-input lookup
tables). The state-of-the-art in LUT mapping is based on k-
feasible cut enumeration [21]. Depth-optimal LUT mapping
was first made tractable with the introduction of the FlowMap
algorithm [22]. FlowMap was the first algorithm to show how
k-feasible cuts can be used to obtain a minimum-depth k-LUT
cover. Several improvements of FlowMap have since been
made. Some of these improvements include generalizing the
algorithm to a more general cut enumeration basis, improving
the runtime and memory requirements, as well as improving
different aspects of the final cover such as area reduction
[23]–[26]. Although depth-optimal LUT mapping is a solved
problem, area-optimal LUT mapping is NP-hard and remains an
open problem [27]. However, different effective area-recovery
heuristics have been proposed [25], [28].

III. OPTIMIZATION METHOD OVERVIEW

Fig. 1 gives an overview of our proposed method. It is
applicable to any k-bounded network, i.e., a network in which
each gate has at most k inputs. Note that, if a network is not
k-bounded, it may be decomposed to obtain a functionally
equivalent k-bounded network [22]. Therefore, in the sequel,
we will assume, without loss of generality, that input networks
are k-bounded. In Section V, we describe in detail our
specialization of this method for XMG size optimization.

The input to our method is a parameter k and a k-bounded
logic network N . We first perform LUT mapping on N in
order to find a suitable k-LUT cover. As our goal is size
optimization, a suitable cover is one that minimizes the number
of LUTs, and we use the appropriate heuristics to obtain it.
After finding a cover, we compute the NPN classes for the
functions of the LUTs in the cover. We then invoke exact
synthesis for these NPN classes, producing locally optimum
subnetworks. The results of exact synthesis are saved in a
database that stores the optimum representations of the NPN
classes we have encountered. These results may be reused in
subsequent iterations. Finally, the locally optimum networks are
merged together to create an optimized, functionally equivalent,
network N ′. This optimization process may be iterated on



N ′ to improve results. Applying this method with larger k
increases the size of the subnetworks that we optimize. Larger
k enable better optimization results, on average. To see why,
note that in the extreme case k is equal to the number of
primary inputs of the network. The result would then be the
optimum representation of that network. Hence, we would like
to apply this method to the largest possible values for k.

In order to save both storage space and computation time
we exploit NPN canonization (see, e.g., [29]). The number of
NPN classes is orders of magnitude smaller than the number
of functions. Thus, by invoking exact synthesis only for NPN
classes, and by storing those results, we compute and store
only a small fraction of the total number of functions.

Our optimization method has some similarities to earlier
AIG rewriting optimizations [5], [11], [12]. These methods also
find k-feasible cuts to obtain replacement subnetworks. One
difference is that our method does not rely on the enumeration
of Boolean functions and their optimum subnetworks. This
is one of the key differences which allows our method
to scale. Enumeration of functions becomes unpractical for
k > 4. For example, there are 22

6

6-variable functions, with
200,253,952,527,185 corresponding NPN classes. Suppose that
the average computation time required to find the optimum
representation for these functions is 0.002 seconds2. Even if we
were to obtain, through some oracle, a list of the NPN classes,
it would still take over 12,700 years to synthesize all their
optimum representations. Therefore, avoiding enumeration is
crucial to obtain tractable run times We avoid it by computing
optima only for those NPN classes that occur in a cover.
Thus, we only examine a small portion of the total number
of Boolean functions. In other words, we mine the space of
“useful” Boolean functions that occur in practice. This greatly
reduces the computation time required by our approach, and
makes exact synthesis tractable for k > 4. For example, when
mining the EPFL benchmarks for 6-variable functions we only
find 286 unique NPN classes.

Another difference between our method and previous ap-
proaches is in the subnetwork selection heuristic. We select
those subnetworks that appear in the LUT cover. This turns
out to be a selection heuristic that compares favorably to the
heuristics used by [5], [12]. Those approaches rely on purely
local information, whereas LUT mapping may use heuristics
with a global view. Thus, LUT mapping improves subnetwork
selection.

The approach in [11] also mines for useful circuit structures.
However, it is aimed at depth optimization, whereas we focus
on size. Additionally, the results in [11] are not exact, but are
rather based on heuristic optimization.

Finally, our approach is distinct from remapping methods
[30], [31]. For example, the method in [30] iteratively improves
mapped circuits, by symbolically optimizing Boolean relations
with a specified cell library. In contrast, ours is a technology
independent logic optimization method that uses SAT or SMT

2This number is based on experiments determining the runtime of our
algorithm on 4-variable functions. On 6-variable functions the average runtime
would likely be higher.

Input network

LUT mapping

NPN canonization

Exact synthesis

Exact optimized network

Improvement?

Output network

Optimum
NPN DB

yes

no

Fig. 1. An overview of the optimization flow.

cout s

⊕

⊕ 〈〉

x1 x2 x3

Fig. 2. XMG for a full adder, consisting of 1 majority node and 2 XOR
nodes. The XOR node have an ⊕ label and the majority node has a 〈〉 label.

for optimization. Additionally, the runtime of our method may
be improved by mining circuits for useful functions in advance.

IV. XOR MAJORITY GRAPHS

We will present an instance of the optimization flow
presented in the previous section based on XOR Majority
Graphs (XMGs) in the remainder of this paper. An XMG is
a logic network in which each gate corresponds to either a
MAJ or a XOR operator. The connections between gates can
be inverted. XMGs are an extension of the Majority Inverter
Graphs (MIGs) introduced in [7]. They are more expressive,
and therefore more compact, than AIGs or MIGs. This makes
them well suited for use in an optimization flow based on exact
synthesis, as small representations can be found more quickly.
Thus, the use of XMGs reduces the overall runtime.

Fig. 2 shows an XMG representation for a full adder. MAJ
and XOR nodes are represented by nodes with 3 and 2 outgoing
edges, respectively. Note that the arrows of the edges are inverse
to the direction of computation.

V. METHOD IMPLEMENTATION

A. Size Optimization

In our implementation, we have adapted our general opti-
mization method to focus specifically on size optimization for



XMGs. Broadly speaking, given an input XMG N , our size
optimization algorithm consists of the following stages:

1) Area-oriented k-LUT mapping of N
2) NPN canonization of the functions in the k-LUT cover
3) Decomposing the k-LUTs into locally optimum XMGs
4) Merging the locally optimum XMGs into an optimized

XMG N ′

These steps are iterated until N ′ no longer improves.
In the first step of our algorithm, we use our LUT mapper to

generate an area-oriented cover. We use the area-flow and
exact-area heuristics [28]. The reason for creating a LUT
cover is that it turns out to be a superior subnetwork selection
strategy as compared to previous approaches. Area-oriented
selection using area-flow and exact-area selects a minimal
number of LUTs to cover the entire network, using both a
global and local view of the network. Thus, LUT mapping
is a subnetwork selection strategy that takes both local and
global information into account. It is also a good starting point
for size minimization. The fewer LUTs (cuts) we need to
decompose, the fewer nodes the resulting optimized XMG will
have. Finally, by mapping into a minimal number of LUTs,
we minimize the number of functions on which we have to
invoke our exact synthesis algorithm.

After generating a cover, we extract an optimized XMG.
We do so through a topological traversal of the nodes selected
in the cover. We compute the NPN canonization of the cut
functions, and obtain its optimum XMG. If the optimum XMG
is not already present in the database, we compute it and store
the results in the NPN class database. Computation of optimum
XMGs is done through a generalization of the exact synthesis
algorithm proposed in [13]. The pseudocode for this procedure
can be found in Algorithm 1.

VI. EXPERIMENTAL EVALUATION

We have integrated the proposed algorithm into our C++
logic synthesis frameworks. The experiments have been carried
out Intel E5-2680 CPU with 2.50 GHz with 64 GB of main
memory running Linux 3.13.

A. XMG Size Optimization

In this experiment, we compare XMG size optimization
to AIG size optimization. Our implementation reads the
description of a combinational circuit, reduces the size of
the circuit by using the techniques described in Section
V-A, and writes back an optimized circuit. We compare our
results to those obtained by the state-of-the-art academic logic
synthesis package ABC 1.01 [10]. Using ABC, we iteratively
apply its resyn2 script until results no longer improve. We
measure the size, depth, and switching activity of the resulting
optimized networks. The benchmarks are taken from the EPFL
benchmark suite, which contains combinational circuits in
AIGER format. All results have been formally verified with
ABC’s cec command. Table I shows the results.

We show the results for our procedure with k = 4, k = 5,
and k = 6. On average, the {size, depth, activity} of XMGs
is smaller by {21.7%, 32.1%, 6.1%}, {22.6%, 33.9%, 3.8%},

Algorithm 1: An XMG size optimization procedure using
LUT mapping and exact synthesis.

function optimize(N, k) :=
Input : XMG N
Output : Optimized XMG N ′

N ′ ← N ;
do

N ← N ′;
N ′ ← new xmg();
Perform area-oriented mapping of N into k-LUTs;
foreach primary input i in N do

create input(N ′, i);
end
foreach LUT l in the cover in topological order do

f ← function computed by l;
npn← NPN canonization(f);
opt xmg ← function store get(npn);
if opt xmg = nil then

opt xmg ← exact xmg(npn);
function store save(npn, opt xmg);

end
create node(N ′, n, opt xmg);

end
while size(N ′) < size(N);
return N ′;

and {39.4%, 42.2%, 27.7%} for k = 4, k = 5, and k = 6,
respectively. Using a size ·depth · activity figure of merit,
XMG optimization performs 50.1%, 50.8%, and 75.3% better
than AIGs for k = 4, k = 5, and k = 6, respectively. We
also compute the geometric mean, taken over the sizes, depths,
and switching activity of the networks. Both our method and
ABC start with the same input networks, containing only
AND gates. However, by doing exact synthesis, our method
is able to more effectively compress subnetworks, due to the
expressive logic primitives in the XMG representation. In other
words, our algorithm effectively takes advantage of XMG
expressivity. Furthermore, these results confirm our intuition
that synthesizing larger subnetworks leads to a better result
overall. Higher k lead to better results in logic optimization.
Finally, one might suppose that the more expressive XMG
primitives are bound to result in smaller representations.
However, as the following experiments show, the XMG size
optimization advantage also carries over into LUT mapping
improvements.

B. LUT Mapping

Our previous experiment compares XMGs to AIGs in a
logic optimization context. In order to further investigate the
potential of our size optimization method, we evaluate the
results after k-LUT technology mapping. We compare the
results of 6-LUT mapping of the optimized networks from
Table I. As the networks are optimized for size, we focus on
area-oriented technology mapping. All networks were mapped
with ABC, using the command if -a -K 6.

Table II summarizes the results of k-LUT technology
mapping. Compared to the AIG flow, XMG flow reduces



TABLE I
COMPARING XMG AND AIG SIZE OPTIMIZATION

Size Optimization XMG (k = 4) XMG (k = 5) XMG (k = 6) AIG
Benchmark I/O Size Depth Activity Size Depth Activity Size Depth Activity Size Depth Activity
Adder 256/129 639 130 888.5 575 131 794.8 383 129 508.9 1019 255 981.7
Barrel shifter 135/128 3281 16 3269.5 2932 18 3294.2 2858 17 3625.4 3141 12 2546.4
Divisor 128/128 29607 4371 21649.5 29607 4371 21649.5 39768 4310 31997.9 40698 4361 31431.1
Hypotenuse 256/128 155349 12507 157711.6 143282 12845 153816.8 99927 9017 100709.1 211262 24670 169609.8
Log2 32/32 27936 275 21862.4 30574 267 26228.5 23006 219 17626.5 29238 375 19046.5
Max 512/130 2296 296 2593.9 2183 258 2569.9 1982 254 2442.3 2831 151 2630.3
Multiplier 128/128 17508 154 17300.7 18771 150 19702.0 16575 136 16675.0 24554 262 20169.1
Sine 24/25 5100 176 3956.0 5419 225 3521.6 3825 121 2620.5 5010 160 3127.6
Square-root 128/64 20130 6031 19456.0 24570 5058 21184.1 17369 6149 17441.92 19437 4968 16977.8
Square 64/128 15070 130 13632.3 15724 132 16021.9 8527 155 8335.0 16568 247 12779.5

Average: 27691.6 2408.6 26232.0 27363.7 2345.5 26878.3 21422 2050.7 20198.3 35375.8 3546.1 27929.9
Geom. Mean: 3555.5 3610.5 3009.0 3736.8

TABLE II
COMPARING 6-LUT MAPPING FOR XMGS AND AIGS

XMG (k = 4) XMG (k = 5) XMG (k = 6) AIG
Bench Size Depth Size Depth Size Depth Size Depth
Adder 251 131 192 64 250 122 249 121
Bar 888 6 532 5 512 4 512 4
Div 12094 2123 12094 2123 12640 2087 8190 2058
Hyp 50835 7964 52376 8506 48772 8401 47508 8339
Log2 8438 162 8965 152 7961 157 7721 152
Max 745 118 741 121 710 122 771 66
Mult 5700 127 5498 127 5685 126 5689 126
Sine 1655 78 1450 71 1487 76 5615 73
Sqrt 6595 2144 8084 3957 6366 2237 5130 2211
Square 3969 122 3839 121 3930 120 16057 122
Average: 9117.0 1296.7 9377.1 1524.7 8831.3 1345.2 9744.2 1327.2
Geomean: 904 1055 851 1669
Size · depth: 11822013.9 14297264.4 11879864.8 12932502.2

mapped network size by 6.5%, 3.8%, and 9.4% for k = 4,
k = 5, and k = 6, respectively.

Table II also shows two other figures of merit. First, the
geometric mean, taken over the sizes and depths of the mapped
networks. The geometric means of the XMG mapped networks
are lower by 45.8% for k = 4, 36.8% lower for k = 5, and
48.9% lower for k = 6, as compared to the mapped AIGs.
Second, it shows the size ·depth measure. With this measure,
XMGs optimized with k = 4 show an 8.6% improvement as
compared to AIGs, while k = 6 gives a 8.1% improvement.
This is caused by the fact that the mapping heuristics work out
such that k = 4 leads to smaller depth. As depth is not our
main objective here, we do not consider this to be an issue.

C. Comparison To Best Known Results

The previous experiments show that XMGs compare favor-
ably to AIGs in an optimization and synthesis flow for k-LUTs.
We now turn to a comparison with the best known results for
these benchmarks 3. Published alongside the benchmarks of
the EPFL benchmark suite, are two sets of best known results.
These are the best known 6-LUT covers (for both size and
depth) for the benchmarks in the suite. These results may
be obtained by any method. As such, the techniques used to

3As of July 15th 2016

obtain these results were not limited one method, but consist
of a combination of advanced ABC scripts. In fact, we do not
know for each benchmark exactly which method was used to
obtain its best known 6-LUT cover. However, all covers have
been formally verified. Hence, they serve as a good point of
reference.

In this experiment we again map our optimized XMGs to
6-LUTs using ABC. However, we are now comparing against
the best known results for area-oriented 6-LUT mapping. As
these have been obtained in various ways, we do not limit
ourselves to one type of mapping. We use ABC’s if command
to obtain both area-oriented and depth-optimal results. We then
collect the best mappings from these and compare them to the
best known results. The results can be seen in Table III.

We show significant improvements on three benchmarks,
reducing the {size, area} of the Adder, Multiplier, and Square
by {4.5%, 12.4%}, {7.7%, 46.7%}, and {11.5%, 26.8%},
respectively. For most other benchmarks, we are quite close in
size, while substantially reducing depth. The main outlier to
this trend is the Divisor benchmark. It is not obvious why this
benchmark performs so poorly. One interesting observation is
that our algorithm appears to work especially well on networks
that do addition and multiplication. Networks such as Divisor
and Square-root correspond to the inverse of these operations,
and our algorithm performs less well on these.

We again calculate the geometric means over the sizes and
depths. Our results improve on the mean by 9% as compared
to the best results. Using the size ·depth measure, we show a
10.1% improvement.

VII. DISCUSSION ON FUTURE RESEARCH

Rewriting for depth/delay: In this paper, we propose a novel
algorithm for logic rewriting. Our focus here was on rewriting
for size/area. However, with some small modifications, this
algorithm could be adapted for depth/delay rewriting as well.

Exact synthesis as a service: Exact synthesis results can
be shared and computed in the cloud. Although there exist
a lot of k-input Boolean functions, we expect that only a
small fraction of them occur in practice. Different users can
access the same database to query for optimum networks. If



TABLE III
COMPARING BEST XMGS TO BEST KNOWN 6-LUT MAPPING RESULTS

Best Known Results XMG Mappings
Benchmark Size Depth Size Depth
Adder 201 73 192 64
Barrel shifter 512 4 512 4
Divisor 3813 1542 10670 864
Log2 7344 142 7893 87
Max 532 192 846 72
Multiplier 5681 120 5245 64
Sine 1347 62 1488 48
Square-root 3286 1180 5014 1032
Square 3800 116 3364 85
Average: 2946.2 381.2 3914.8 257.8
Geomean: 480 437
Size · depth: 1123157.9 1009151.9

the network has already been computed it can be returned
immediately, otherwise, it is scheduled for computation.

Exact synthesis aware mapping: The LUT mapping step in
the optimization flow (Fig. 1) decides for which subnetworks
optimum representations need to be computed. If only a single
of the optimum networks for these functions requires a large
amount of runtime, exact synthesis becomes a bottleneck of the
optimization. In such cases we could stop the computation and
retry with another subnetwork selection strategy. For example,
ranking functions by synthesis difficulty could be used to skip
those functions that might be a bottleneck.

VIII. CONCLUSIONS

In this paper, we have extended the capabilities of exact
synthesis for use in size optimization. We have done so by
introducing Boolean function mining, a process which reveals
what Boolean functions occur in practice, thus eliminating the
need to (pre)compute and store all exact solutions. Additionally,
we introduced XOR Majority Graphs: a logic representation
that enables smaller networks, and hence faster exact synthesis.
These improvements allowed us to design a novel algorithm
that meets our goal of scaling up the use of exact synthesis
in size optimization. Our size optimization algorithm enables
a 48.9% reduction in the geometric mean, a 9.4% average
reduction in size, and a 8.6% reduction in LUT depth · size,
as compared to the state-of-the-art ABC academic tool. It also
outperforms 3 over 9 of the best known results for the EPFL
benchmark suite, showing reductions of up to 11.5% in size
and 46.7% in depth.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2, pp.
264–300, 1990.

[2] E. L. Lawler, “An approach to multilevel Boolean minimization,” J. ACM,
vol. 11, no. 3, pp. 283–295, 1964.

[3] E. S. Davidson, “An algorithm for NAND decomposition under network
constraints,” IEEE Trans. Computers, vol. 18, no. 12, pp. 1098–1109,
1969.

[4] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[5] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Dag-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532–535.

[6] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 21, no. 12,
pp. 1377–1394, 2002.

[7] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic optimiza-
tion,” in Design Automation Conference, 2014, pp. 194:1–194:6.

[8] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “Boolean logic opti-
mization in majority-inverter graphs,” in Design Automation Conference,
2015, pp. 1–6.

[9] L. Amarù, P.-E. Gaillardon, A. Chattopadhyay, and G. De Micheli, “A
sound and complete axiomatization of majority-n logic,” IEEE Trans.
Computers, 2016.

[10] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength
verification tool,” in Computer Aided Verification, 2010, pp. 24–40.

[11] W. Yang, L. Wang, and A. Mishchenko, “Lazy Man’s Logic Synthesis,”
in IWLS, 2012.

[12] N. Li and E. Dubrova, “AIG rewriting using 5-input cuts,” in Int’l Conf.
on Computer Design, 2011, pp. 429–430.

[13] M. Soeken, L. G. Amarù, P. Gaillardon, and G. De Micheli, “Optimizing
majority-inverter graphs with functional hashing,” in Design, Automation
and Test in Europe, 2016, pp. 1030–1035.

[14] W. Haaswijk, M. Soeken, L. Amarú, P.-E. Gaillardon, and G. D. Micheli,
“LUT Mapping and Optimization for Majority-Inverter Graphs,” in IWLS,
2016.

[15] S. B. Akers Jr., “Synthesis of combinational logic using three-input
majority gates,” in Foundations of Computer Science, 1962, pp. 149–157.

[16] G. Birkhoff and S. A. Kiss, “A ternary operation in distributed lattices,”
Bull. of the Amer. Math. Soc., pp. 749–752, 1947.

[17] M. Cohn and R. Lindaman, “Axiomatic majority-decision logic,” IRE
Trans. on Electronic Computers, vol. 10, pp. 17–21, 1961.

[18] J. R. Isbell, “Median algebra,” Trans. of the Amer. Math. Soc., vol. 260,
no. 2, 1980.

[19] S. Muroga, Logic design and switching theory. NY, New York: John
Wiley & Sons Inc., 1979.

[20] L. Benini and G. De Micheli, “A survey of boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., vol. 2,
no. 3, pp. 193–226, 1997.

[21] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 240–253, 2007.

[22] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 13, no. 1,
pp. 1–12, 1994.

[23] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. VLSI Syst., vol. 2, no. 2, pp. 137–148,
1994.

[24] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Int’l Symp. on Fied-
Programmable Gate Arrays, 1999, pp. 29–35.

[25] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in Int’l Conf. on Computer-Aided
Design, 2004, pp. 752–759.

[26] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, “Combinational
and sequential mapping with priority cuts,” in Int’l Conf. on Computer-
Aided Design, 2007, pp. 354–361.

[27] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 13, no. 11, pp. 1319–1332,
1994.

[28] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 25, no. 11, pp. 2331–2340,
2006.

[29] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast
Boolean matching based on NPN classification,” in Int’l Conf. on Field-
Programmable Technology, 2013, pp. 310–313.

[30] L. Benini, P. Vuillod, and G. De Micheli, “Iterative Remapping for Logic
Circuits,” TCAD, vol. 17, no. 10, pp. 948–964, 1998.

[31] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, “Efficient SAT-based
Boolean Matching for FPGA Technology Mapping,” in DAC, 2006, pp.
466–471.


