
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E J U N E 2 0 1 7 35

COVER FEATURE VLSI FOR THE INTERNET OF THINGS

A PLiM Computer
for the Internet
of Things
Mathias Soeken, EPFL

Pierre-Emmanuel Gaillardon, University of Utah

Saeideh Shirinzadeh, University of Bremen

Rolf Drechsler, University of Bremen and German Research Center for Artificial Intelligence

Giovanni De Micheli, EPFL

Emerging applications are dramatically changing computer

architecture requirements, with a shift toward big data that

is processed using simple computations. A programmable

logic-in-memory (PLiM) computer can allow memory cells

to perform primitive logic operations and therefore compute

without needing to communicate with a processing unit.

The work of Hungarian-American mathemati-
cian John von Neumann uniquely influenced
how we design computers. His “First Draft of
a Report on the EDVAC,” written in 1945 while

von Neumann was commuting by train to Los Alamos,
New Mexico, proposed a uniform memory that contains
both data and instructions. Known today as the von
Neumann architecture, this key concept has been con-
tinually improved over the past few decades, resulting

in today’s highly optimized and sophisticated memory
hierarchies. The driving assumption behind this innova-
tion has been that computation is complex and must be
fast, and therefore memory needs to be readily available.
Memory hierarchies allow fast access to small amounts
of data and require longer times to access the larger
memory located deeper in the hierarchy. Consequently,
the fundamental assumption underlying today’s com-
puting architectures is only valid as long as computation

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

is dominant and not too much data is
being processed.

Today, the requirements of emerg-
ing applications such as deep learn-
ing, data fusion, and the Internet of
Things (IoT) are a challenge for the von
Neumann architecture as the focus
shifts to large amounts of data that are
processed using comparably simple
computations. At this point, improve-
ments to the memory hierarchy can-
not solve the problem, so a revolution-
ary change is necessary. In-memory
computing is a promising candidate.1,2
With this approach, memory cells can
perform primitive logic operations
and can therefore compute without
needing to communicate with a pro-
cessing unit. In addition, independent
memory cells can perform their com-
putations in parallel.

In this article, we propose a pro-
grammable logic-in-memory (PLiM)
computer and demonstrate how it
can help implement IoT applications.
We show how to implement a Bool-
ean majority operation with a single
resistive RAM (RRAM) memory device
(which can be used in industrial- scale

applications),3,4 build the PLiM com-
puter from these devices, and program
the PLiM computer. The underlying
RRAM device switches its internal
state based on its two terminals via
inversion (complementation) and a
majority-of-three operation. Conse-
quently, for in-memory computing,
this approach offers an assembly-level
abstraction in terms of a natively imple-
mented majority and complement oper-
ator. Therefore, we can use innovations
in majority-based logic synthesis5–9 to
program the PLiM computer. Finally,
because programs are data that are
executed directly in memory, we can
link applications by providing parts of
the program’s instructions from dis-
tributed devices. This innovative and
new programming paradigm ideally
matches the capabilities of in-memory
computing in the IoT context.

INTRINSIC MAJORITY
OPERATIONS
Among other types of emerging non-
volatile memories, RRAMs are con-
sidered a leading candidate to imple-
ment memory arrays with higher

density, lower power, and higher per-
formance.10 In addition to their mem-
ory properties, RRAMs can perform
primitive Boolean logic operations.

To begin, let’s review the basic
Boolean switching primitive offered
by RRAMs (see Figure 1). A RRAM is
a two-terminal device with an inter-
nal resistive state that can be pro-
grammed depending on the voltage
difference between the top electrode
T and the bottom electrode B. Tran-
sition occurs whenever T and B are
assigned different voltage. If T = 0 and
B = 1 (that is, VTB < Vprog), the resulting
low- resistance state is Z = 0. If T = 1 and
B = 0 (that is, VTB > Vprog), then Z = 1.
Here, Vprog is the memory technology’s
programming voltage, which for sim-
plicity we assume is symmetric. The
truth table in Figure 1d summarizes
this behavior.

By denoting Z as the current resis-
tance value and Z′ as the resistance
value after assigning signals to T and
B, it is possible to express Z′ as

Z Z T B Z T B TBZ ,() ()′ = ∧ ∨ ∧ = (1)

where 〈xyz〉 = xy ∨ xz ∨ yz is the Bool-
ean three-input majority function
that evaluates to true, if and only if at
least two of its inputs are true. In the
special case of Equation 1, one oper-
and is negated, and for convenience,
we define RM3(T, B, Z) = TBZ for a
three-input resistive majority. RM3 is
universal and will be used as the PLiM’s
elementary computing operation.

PLiM COMPUTER
The general philosophy underpin-
ning the PLiM architecture addresses
how to add computing capabilities
(through bit-level RM3 instructions) to
a regular dense memory array. Extra
hardware is necessary to obtain a

(d)(c)(b)(a)

FIGURE 1. Intrinsic majority operations: (a) a schematic of a resistive RAM (RRAM) cell
with its internal state Z and electrodes B and T; (b) state machine illustrating how Z
changes based on values for B and T; (c) transition relation for the state machine, result-
ing in the RM3 operation; and (d) truth table for the transition relation.

 J U N E 2 0 1 7 37

computer’s abstraction without losing
the standard memory functionality.

Figure 2 shows the PLiM computer
architecture, which consists of a stan-
dard memory array with signals that
are wrapped with the PLiM controller.
This controller is a lightweight syn-
chronous block that controls the mem-
ory array’s access bus to allow a compu-
tation mode to run. The computation
mode runs a sequential execution of
a given set of instructions that repre-
sent a program. The program is stored
on the memory array, and its output
updates the memory array itself. The
logic-in-memory (LiM) input controls
the transition between the computa-
tion and memory modes.

PLiM revolves around one single
instruction: RM3(A, B, C). The instruc-
tion takes three operands (A, B, and Z),
applies the RM3 majority operation with
A as the top electrode and B as the bot-
tom electrode, and updates the value of
Z accordingly. The single- instruction
scheme simplifies the architecture as it
is directly associated with the memory’s
intrinsic logic operation.

The architecture’s source, destina-
tion, and processing unit is the memory
block itself. Performing the instruction
simply means loading the bit-level val-
ues of A and B from memory and apply-
ing them to Z. Also, the instruction itself
is stored on the same memory block.
Hence, to execute an instruction, the
instruction is first loaded from memory,
the operands are then loaded from mem-
ory, and the operands are finally applied
to the destination. (Additional details
about the RM3 instruction encoding are
available in earlier work.11)

PLiM COMPILER
We can now show how to compile
arbitrary Boolean functions into
RM3 instruction streams. (These

techniques were initially presented
in earlier work.12) For the sake of con-
venience, we introduce the following
commands, which are shorthand for
several useful RM3 instructions. Given
registers a, b, and z, we define

 › ZERO(𝑧): 𝑧 ← RM3(0, 1, 𝑧) = 〈00𝑧〉
= 0

 › ONE(𝑧): 𝑧 ← RM3(1, 0, 𝑧) = 〈11𝑧〉 = 1
 › BUF(𝑎, 𝑧): ZERO(𝑧); 𝑧 ← RM3(𝑎, 0, 𝑧)
= 〈𝑎10〉 = 𝑎

 › NOT(𝑎, 𝑧): ZERO(𝑧); 𝑧 ← RM3(1, 𝑎, 𝑧)
= 〈1a 0〉 = a

 › RM(𝑎, 𝑏, 𝑧): 𝑧 ← RM3(𝑎, 𝑏, 𝑧)

In these commands, z is the modified
register. Also, note that the commands
ZERO, ONE, and RM require exactly one
RM3 instruction, whereas the other
two require two instructions.

Next, we show how to use majority-
inverter graphs (MIGs)9 to translate
Boolean functions into a sequence of
RM3 instructions that compute the
functions. The left side of Figure 3a
illustrates the idea using a small MIG.
It consists of two nodes and four pri-
mary inputs x1, x2, x3, and x4. We want
to compute the function of the single
primary output y. We consider primary
inputs to be environment variables that
cannot be modified by PLiM instruc-
tions. Because none of the primary
inputs can be overridden, we need a
free RRAM to which we can write the
result in order to compute the output
of node 1. Also, we need to get rid of
one of the inverters, because the RM3
operation expects exactly one input
to be inverted. The two commands—
NOT(x3, z1); RM(x1, x2, z1)— compute the
value of node 1 and require three RM3
instructions and one RRAM cell z1,
which stores the node’s output. For the
remainder of this article, we will use z
variables to refer to RRAM cells.

PLiM Memory array

clock
reset
lim

enable
rw

enable
rw

data

address

data

address

FIGURE 2. Programmable logic-in-
memory (PLiM) computer. The architecture
consists of a standard memory array and
a lightweight controller for data access
and controlling whether the memory
behaves as a default memory or performs
in- memory computations.

(a)

(b)

y

y

y

x2

x2

x2

x1 x3 x2

x1 x3

x4 x4

2

6

1

2

1

1 2

0
1

1

4 5

3

x2x1

x1 x3x2x2 x3

x3

FIGURE 3. Using majority-inverter graphs
(MIGs) to translate Boolean functions into a
sequence of RM3 instructions. (a) Rewriting
an MIG involves using inverter propagation,
which can lead to better starting points for
PLiM program compilation. (b) The order
in which nodes are processed in the MIG
affects the PLiM program’s quality.

38 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

In the next step, we can compute
node 2 with a similar sequence: NOT(z1,
z2); RM(x2, x4, z2). Again, this requires
three RM3 instructions and one addi-
tional RRAM cell z2.

In total, the PLiM program requires
six instructions and two RRAMs. Sev-
eral MIGs exist that realize the same
function, and we can obtain one from
the other by applying rewriting rules.9
We can illustrate the effect by applying
the inverter propagation

x x x x x x, , , ,1 2 3 1 2 3= (2)

to node 1.
The right side of Figure 3a illus-

trates the resulting MIG. This MIG can
be translated into the PLiM program
BUF(x3, z1); RM(x2, x1, z1); RM(x2, x4, z1).
This program only requires four RM3
instructions and one RRAM cell. In
addition to inverter propagation, the
other rewriting rules from the axi-
omatic set of MIG manipulation rules
can lead to MIGs for which we can find
better PLiM programs. Furthermore,
the MIG rewriting algorithms to opti-
mize for PLiM compilation differ from
rewriting algorithms that target area
or delay optimization in conventional
logic synthesis.

Even without rewriting the
MIG, we can obtain different PLiM

programs by simply changing the
order in which the nodes are traversed
and by changing the children of each
node to be used as the operand in the
RM3 instruction. Nodes can be tra-
versed as long as they follow a topo-
logical order from the primary inputs
to the primary outputs. Operands can
be selected arbitrarily because the
majority operation is fully symmet-
ric. However, the choice of a traversal
order and operand mapping can have
a significant impact, so we are inter-
ested in finding a good one. Figure 3b
illustrates this effect.

Based on the MIG in Figure 3b, sev-
eral different PLiM programs can be
constructed using the technique we
just discussed. Figure 4 shows two
example PLiM programs. For the lon-
ger program (Figure 4a), which con-
sists of 19 RM3 instructions and 7
RRAM cells, we used the traversal
order 1, 2, 3, 4, 5, 6. The shorter pro-
gram (Figure 4b) was created using the
traversal order 1, 2, 3, 5, 4, 6. The latter
program consists of 15 RM3 instruc-
tions and only 4 RRAM cells. However,
the traversal order is not the only cause
of this improvement. When selecting
which child to map to which operand
in the RM3 instruction, constants in
particular allow some freedom. We
can always invert a constant to match

the polarity requirement of operand B
or the RM3 instruction—for example,
as we did for node 1. In the program
in Figure 4a, we chose to invert input
x1, requiring a NOT command and
one additional RRAM. Those can be
avoided when using the constant 0 as
an inverted constant 1, as we did in the
Figure 4b program.

Figure 5 shows our experimen-
tal results for the PLiM compiler. We
applied the PLiM compiler to MIGs for
instances in the EPFL (École Polytech-
nique Fédéderale de Lausanne) bench-
mark suite (lsi.epfl.ch/benchmarks).
Figure 5a gives the number of RM3
instructions, and Figure 5b gives the
number of instructions. The blue bars
correspond to an approach in which we
directly translated the MIGs to PLiM
programs following a node-traversal
order on node indexes and selecting
operands from left to right. The red
bars show the effect after MIG rewriting
but still using the naive node- traversal
order and operand selection. Finally,
the brown bars show the effect after MIG
rewriting and taking into consideration
heuristics for better node traversal and
operand selection. These results show
that MIG rewriting strongly affects the
number of instructions, but not neces-
sarily the number of RRAMs. However,
when taking the node-traversal heuris-
tics into account, the number of RRAMs
decreases, but there is little gain in the
number of instructions.

The PLiM computer we describe
here is a low-power platform
that is capable of implement-

ing the IoT applications of tomorrow.
In- memory computing is a better fit
for IoT applications than conventional
von Neumann architectures because
it can deal with large amounts of data

NOT(x1, z1)
BUF(x2, z2)
RM(0, z1, z2)
BUF(x3, z3)
RM(1, x2, z3)
NOT(x2, z4)
BUF(x3, z5)

3

4
5
6

1

2

1

2

3
5

4
6

RM(x1, z4, z5)
NOT(x3, z6)
ONE(z7)
RM(z2, z6, z7)
RM(z2, z3, z5)
RM(z7, z5, z2)

BUF(x2, z1)
RM(x1, 1, z1)
ONE(z2)
RM(x3, x2, z2)
NOT(x2, z3)
BUF(x3, z4)

BUF(x2, z1)
RM(x1, 1, z1)
ONE(z2)
RM(x3, x2, z2)
NOT(x2, z3)
BUF(x3, z4)

RM(x1, z3, z4)
RM(z1, z2, z4)
BUF(x3, z2)
RM(z1, 0, z2)
RM(z1, z4, z2)

(a) (b)

FIGURE 4. Two PLiM programs constructed from the MIG in Figure 3b: (a) 19 RM3
instructions and seven RRAM cells and (b) 15 RM3 instructions and four RRAM cells. The
difference in the programs is due to the choice of node-traversal order and the mapping
of the nodes’ children to RM3 operands. The i � indicates the computation of node i.

 J U N E 2 0 1 7 39

using comparably simple computa-
tions. PLiM computers and programs
allow a new paradigm of computing,
where programs are sequences of
RM3 instructions that send the data
from one PLiM computer to another.
These PLiM programs can be par-
tial and distributed, where each IoT
device provides its part to the compu-
tation. This model allows a high degree
of configurability.

As part of our ongoing research
efforts, we are evaluating the physical
design of a PLiM computer and more
advanced programming models.

ACKNOWLEDGMENTS
We thank Luca Amarù and Giulia Meuli
for fruitful discussions. This research
was supported by H2020-ERC-2014-ADG
669354 CyberCare, the Swiss National
Science Foundation (200021-169084 MAJ-
esty and 200021-146600), the University of
Utah SEED grant 51900298, and the Uni-
versity of Bremen’s graduate school SyDe
(System Design), funded by the German
Excellence Initiative.

REFERENCES
1. M. Chang et al., “Designs of Emerg-

ing Memory Based Non-volatile
TCAM for Internet-of-Things (IoT)
and Big Data Processing: A 5T2R
Universal Cell,” Proc. Int’l Symp.
Circuits and Systems (ISCAS 16), 2016,
pp. 1142–1145.

2. M. Ueki et al., “Low-Power Embedded
ReRAM Technology for IoT Applica-
tions,” Proc. Symp. VLSI Circuits (VLSI
Circuits 15), 2015, pp. 108–109.

3. R. Fackenthal et al., “A 16Gb ReRAM
with 200MB/s Write and 1GB/s Read
in 27nm Technology,” Proc. IEEE Int’l
Solid-State Circuits Conf. (ISSCC 14),
2014, pp. 338–339.

4. S. Sheu et al., “A 4Mb Embedded SLC
Resistive-RAM Macro with 7.2ns
Read-Write Random Access Time and
160ns MLC-Access Capability,” Proc.
IEEE Int’l Solid-State Circuits Conf.
(ISSCC 11), 2011, pp. 200–202.

5. S.B. Akers Jr., “Synthesis of

Combinational Logic Using Three-
Input Majority Gates,” Proc. 3rd
Ann. Symp. Switching Circuit Theory
and Logical Design (SWCT 62), 1962,
pp. 149–158.

6. H.S. Miller and R.O. Winder,
“Majority- Logic Synthesis by

ad
de

r

ba
r

di
v

lo
g2

m
ax

m
ul

tip
lie

r

si
n

sq
rt

sq
ua

re

ca
vl

c

ct
rl

de
c

i2
c

in
t2

flo
at

m
em

ct
rl

pr
io

rit
y

ro
ut

er

vo
te

r

0

(a)

(b)

1.0

0.5

1.5

–105

ad
de

r

ba
r

di
v

lo
g2

m
ax

m
ul

tip
lie

r

si
n

sq
rt

sq
ua

re

ca
vl

c

ct
rl

de
c

i2
c

in
t2

flo
at

m
em

ct
rl

pr
io

rit
y

ro
ut

er

vo
te

r

0

2,000

4,000

6,000

8,000

No
. o

f i
ns

tru
ct

io
ns

No
. o

f R
RA

M
s

Naive Rewriting Rewriting and transversal

Naive Rewriting Rewriting and transversal

FIGURE 5. Experimental results after compiling MIGs into PLiM programs: (a) number
of instructions and (b) number of RRAMs. The blue bars show a configuration in which
the MIGs were translated naively without taking rewriting or node-traversal heuristics
into account. The red bars show the results after rewriting, and the brown bars show the
results after rewriting and node-traversal heuristics.

40 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VLSI FOR THE INTERNET OF THINGS

Geometric Methods,” IRE Trans. Elec-
tronic Computers, vol. 11, no. 1, 1962,
pp. 89–90.

7. R. Lindaman, “A Theorem for Deriv-
ing Majority-Logic Networks within
an Augmented Boolean Algebra,”
IRE Trans. Electronic Computers, vol. 9,
no. 3, 1960, pp. 338–342.

8. R. Zhang, P. Gupta, and N.K. Jha,
“Majority and Minority Network
Synthesis with Application to QCA-,
SET-, and TPL-Based Nanotechnol-
ogies,” IEEE Trans. CAD of Integrated
Circuits and Systems, vol. 26, no. 7,
2007, pp. 1233–1245.

9. L.G. Amaru, P.-E. Gaillardon, and
G. De Micheli, “Majority-Inverter
Graph: A Novel Data Structure and
Algorithms for Efficient Logic Opti-
mization,” Proc. Design Automation
Conf. (DAC 14), 2014, article no. 194.

10. H.P. Wong et al., “Metal-Oxide
RRAM,” Proc. IEEE, vol. 100, no. 6,
2012, pp. 1951–1970.

11. P.-E. Gaillardon et al., “The Pro-
grammable Logic-In-Memory (PLiM)
Computer,” Proc. Design, Automation
and Test in Europe (DATE 16), 2016,
pp. 427–432.

12. M. Soeken et al., “An MIG-Based
Compiler for Programmable
Logic-In-Memory Architectures,”
Proc. Design Automation Conf. (DAC
16), 2016, article no. 117.

ABOUT THE AUTHORS
MATHIAS SOEKEN is a scientist at EPFL (École Polytechnique Fédéderale de
Lausanne). His research interests include the many aspects of logic synthesis
and formal verification. Soeken received a PhD in computer science and engi-
neering from the University of Bremen. He is a member of IEEE and ACM. Con-
tact him at mathias.soeken@epfl.ch.

PIERRE-EMMANUEL GAILLARDON is an assistant professor in the Electrical
and Computer Engineering Department at the University of Utah. His research
interests include reconfigurable logic architectures and digital circuits exploit-
ing emerging device technologies and novel electronic design automation
techniques. Gaillardon received a PhD in electrical engineering from the Uni-
versity of Lyon. He is a Senior Member of IEEE and a member of ACM. Contact
him at pierre-emmanuel.gaillardon@utah.edu.

SAEIDEH SHIRINZADEH is a PhD student in the Group for Computer Architec-
ture at the University of Bremen’s Institute of Computer Science. Her research
interests include multiobjective optimization, evolutionary computation, logic
synthesis, and in-memory computing. Shirinzadeh received an MSc in electri-
cal engineering from the University of Guilan. Contact her at s.shirinzadeh@
uni-bremen.de.

ROLF DRECHSLER is a professor and the head of the Group for Computer
Architecture at the University of Bremen’s Institute of Computer Science. He is
also the director of the Cyber-Physical Systems Group at the German Research
Center for Artificial Intelligence (DFKI). Drechsler’s research interests include
the development and design of data structures and algorithms, with a focus on
circuit and system design. He received a PhD in computer science from J.W.
Goethe University Frankfurt am Main. Drechsler is an IEEE Fellow. Contact him
at drechsler@uni-bremen.de.

GIOVANNI DE MICHELI is a professor and director of the Institute of Electrical
Engineering at EPFL. He is also a program leader of the Nano-Tera.ch program.
De Micheli is a recipient of the IEEE Computer Society Harry Goode Award and
the European Design and Automation Association (EDAA) Lifetime Achieve-
ment Award. He is a Fellow of IEEE and ACM, a former president of the IEEE
Circuits and Systems Society, a former IEEE Division 1 director, and a member of
Academia Europaea. Contact him at giovanni.demicheli@epfl.ch.

Subscribe today for the latest in computational science and engineering research, news and analysis,
CSE in education, and emerging technologies in the hard sciences.

www.computer.org/cise

