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Emerging applications are dramatically changing computer 

architecture requirements, with a shift toward big data that 

is processed using simple computations. A programmable 

logic-in-memory (PLiM) computer can allow memory cells 

to perform primitive logic operations and therefore compute 

without needing to communicate with a processing unit.

The work of Hungarian-American mathemati-
cian John von Neumann uniquely influenced 
how we design computers. His “First Draft of 
a Report on the EDVAC,” written in 1945 while 

von Neumann was commuting by train to Los Alamos, 
New Mexico, proposed a uniform memory that contains 
both data and instructions. Known today as the von 
Neumann architecture, this key concept has been con-
tinually improved over the past few decades, resulting 

in today’s highly optimized and sophisticated memory 
hierarchies. The driving assumption behind this innova-
tion has been that computation is complex and must be 
fast, and therefore memory needs to be readily available. 
Memory hierarchies allow fast access to small amounts 
of data and require longer times to access the larger 
memory located deeper in the hierarchy. Consequently, 
the fundamental assumption underlying today’s com-
puting architectures is only valid as long as computation 
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is dominant and not too much data is 
being processed.

Today, the requirements of emerg-
ing applications such as deep learn-
ing, data fusion, and the Internet of 
Things (IoT) are a challenge for the von 
Neumann architecture as the focus 
shifts to large amounts of data that are 
processed using comparably simple 
computations. At this point, improve-
ments to the memory hierarchy can-
not solve the problem, so a revolution-
ary change is necessary. In-memory 
computing is a promising candidate.1,2 
With this approach, memory cells can 
perform primitive logic operations 
and can therefore compute without 
needing to communicate with a pro-
cessing unit. In addition, independent 
memory cells can perform their com-
putations in parallel. 

In this article, we propose a pro-
grammable logic-in-memory (PLiM) 
computer and demonstrate how it 
can help implement IoT applications. 
We show how to implement a Bool-
ean majority operation with a single 
resistive RAM (RRAM) memory device 
(which can be used in industrial- scale 

applications),3,4 build the PLiM com-
puter from these devices, and program 
the PLiM computer. The underlying 
RRAM device switches its internal 
state based on its two terminals via 
inversion (complementation) and a 
majority-of-three operation. Conse-
quently, for in-memory computing, 
this approach offers an assembly-level 
abstraction in terms of a natively imple-
mented majority and complement oper-
ator. Therefore, we can use innovations 
in majority-based logic synthesis5–9 to 
program the PLiM computer. Finally, 
because programs are data that are 
executed directly in memory, we can 
link applications by providing parts of 
the program’s instructions from dis-
tributed devices. This innovative and 
new programming paradigm ideally 
matches the capabilities of in-memory 
computing in the IoT context.

INTRINSIC MAJORITY 
OPERATIONS
Among other types of emerging non-
volatile memories, RRAMs are con-
sidered a leading candidate to imple-
ment memory arrays with higher 

density, lower power, and higher per-
formance.10 In addition to their mem-
ory properties, RRAMs can perform 
primitive Boolean logic operations.

To begin, let’s review the basic 
Boolean switching primitive offered 
by RRAMs (see Figure 1). A RRAM is 
a two-terminal device with an inter-
nal resistive state that can be pro-
grammed depending on the voltage 
difference between the top electrode 
T and the bottom electrode B. Tran-
sition occurs whenever T and B are 
assigned different voltage. If T = 0 and 
B = 1 (that is, VTB < Vprog), the resulting 
low- resistance state is Z = 0. If T = 1 and 
B = 0 (that is, VTB > Vprog), then Z = 1. 
Here, Vprog is the memory technology’s 
programming voltage, which for sim-
plicity we assume is symmetric. The 
truth table in Figure 1d summarizes 
this behavior.

By denoting Z as the current resis-
tance value and Z′ as the resistance 
value after assigning signals to T and 
B, it is possible to express Z′ as

Z Z T B Z T B TBZ ,( ) ( )′ = ∧ ∨ ∧ =  (1)

where 〈xyz〉 = xy ∨ xz ∨ yz is the Bool-
ean three-input majority function 
that evaluates to true, if and only if at 
least two of its inputs are true. In the 
special case of Equation 1, one oper-
and is negated, and for convenience, 
we define RM3(T, B, Z) = TBZ  for a 
three-input resistive majority. RM3 is 
universal and will be used as the PLiM’s 
elementary computing operation.

PLiM COMPUTER
The general philosophy underpin-
ning the PLiM architecture addresses 
how to add computing capabilities 
(through bit-level RM3 instructions) to 
a regular dense memory array. Extra 
hardware is necessary to obtain a 

(d)(c)(b)(a)

FIGURE 1. Intrinsic majority operations: (a) a schematic of a resistive RAM (RRAM) cell 
with its internal state Z and electrodes B and T; (b) state machine illustrating how Z 
changes based on values for B and T; (c) transition relation for the state machine, result-
ing in the RM3 operation; and (d) truth table for the transition relation.
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computer’s abstraction without losing 
the standard memory functionality.

Figure 2 shows the PLiM computer 
architecture, which consists of a stan-
dard memory array with signals that 
are wrapped with the PLiM controller. 
This controller is a lightweight syn-
chronous block that controls the mem-
ory array’s access bus to allow a compu-
tation mode to run. The computation 
mode runs a sequential execution of 
a given set of instructions that repre-
sent a program. The program is stored 
on the memory array, and its output 
updates the memory array itself. The 
logic-in-memory (LiM) input controls 
the transition between the computa-
tion and memory modes.

PLiM revolves around one single 
instruction: RM3(A, B, C). The instruc-
tion takes three operands (A, B, and Z), 
applies the RM3 majority operation with 
A as the top electrode and B as the bot-
tom electrode, and updates the value of 
Z accordingly. The single- instruction 
scheme simplifies the architecture as it 
is directly associated with the memory’s 
intrinsic logic operation.

The architecture’s source, destina-
tion, and processing unit is the memory 
block itself. Performing the instruction 
simply means loading the bit-level val-
ues of A and B from memory and apply-
ing them to Z. Also, the instruction itself 
is stored on the same memory block. 
Hence, to execute an instruction, the 
instruction is first loaded from memory, 
the operands are then loaded from mem-
ory, and the operands are finally applied 
to the destination. (Additional details 
about the RM3 instruction encoding are 
available in earlier work.11)

PLiM COMPILER
We can now show how to compile 
arbitrary Boolean functions into 
RM3 instruction streams. (These 

techniques were initially presented 
in earlier work.12) For the sake of con-
venience, we introduce the following 
commands, which are shorthand for 
several useful RM3 instructions. Given 
registers a, b, and z, we define

 › ZERO(𝑧): 𝑧 ← RM3(0, 1, 𝑧) = 〈00𝑧〉 
= 0

 › ONE(𝑧): 𝑧 ← RM3(1, 0, 𝑧) = 〈11𝑧〉 = 1
 › BUF(𝑎, 𝑧): ZERO(𝑧); 𝑧 ← RM3(𝑎, 0, 𝑧) 
= 〈𝑎10〉 = 𝑎

 › NOT(𝑎, 𝑧): ZERO(𝑧); 𝑧 ← RM3(1, 𝑎, 𝑧) 
= 〈1a 0〉 = a

 › RM(𝑎, 𝑏, 𝑧): 𝑧 ← RM3(𝑎, 𝑏, 𝑧)

In these commands, z is the modified 
register. Also, note that the commands 
ZERO, ONE, and RM require exactly one 
RM3 instruction, whereas the other 
two require two instructions.

Next, we show how to use majority- 
inverter graphs (MIGs)9 to translate 
Boolean functions into a sequence of 
RM3 instructions that compute the 
functions. The left side of Figure 3a 
illustrates the idea using a small MIG. 
It consists of two nodes and four pri-
mary inputs x1, x2, x3, and x4. We want 
to compute the function of the single 
primary output y. We consider primary 
inputs to be environment variables that 
cannot be modified by PLiM instruc-
tions. Because none of the primary 
inputs can be overridden, we need a 
free RRAM to which we can write the 
result in order to compute the output 
of node 1. Also, we need to get rid of 
one of the inverters, because the RM3 
operation expects exactly one input 
to be inverted. The two commands—
NOT(x3, z1); RM(x1, x2, z1)— compute the 
value of node 1 and require three RM3 
instructions and one RRAM cell z1, 
which stores the node’s output. For the 
remainder of this article, we will use z 
variables to refer to RRAM cells.
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FIGURE 2. Programmable logic-in- 
memory (PLiM) computer. The architecture 
consists of a standard memory array and 
a lightweight controller for data access 
and controlling whether the memory 
behaves as a default memory or performs 
in- memory computations.
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FIGURE 3. Using majority-inverter graphs 
(MIGs) to translate Boolean functions into a 
sequence of RM3 instructions. (a) Rewriting 
an MIG involves using inverter propagation, 
which can lead to better starting points for 
PLiM program compilation. (b) The order 
in which nodes are processed in the MIG 
affects the PLiM program’s quality.
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In the next step, we can compute 
node 2 with a similar sequence: NOT(z1, 
z2); RM(x2, x4, z2). Again, this requires 
three RM3 instructions and one addi-
tional RRAM cell z2.

In total, the PLiM program requires 
six instructions and two RRAMs. Sev-
eral MIGs exist that realize the same 
function, and we can obtain one from 
the other by applying rewriting rules.9 
We can illustrate the effect by applying 
the inverter propagation 

x x x x x x, , , ,1 2 3 1 2 3=  (2)

to node 1.
The right side of Figure 3a illus-

trates the resulting MIG. This MIG can 
be translated into the PLiM program 
BUF(x3, z1); RM(x2, x1, z1); RM(x2, x4, z1). 
This program only requires four RM3 
instructions and one RRAM cell. In 
addition to inverter propagation, the 
other rewriting rules from the axi-
omatic set of MIG manipulation rules 
can lead to MIGs for which we can find 
better PLiM programs. Furthermore, 
the MIG rewriting algorithms to opti-
mize for PLiM compilation differ from 
rewriting algorithms that target area 
or delay optimization in conventional 
logic synthesis. 

Even without rewriting the 
MIG, we can obtain different PLiM 

programs by simply changing the 
order in which the nodes are traversed 
and by changing the children of each 
node to be used as the operand in the 
RM3 instruction. Nodes can be tra-
versed as long as they follow a topo-
logical order from the primary inputs 
to the primary outputs. Operands can 
be selected arbitrarily because the 
majority operation is fully symmet-
ric. However, the choice of a traversal 
order and operand mapping can have 
a significant impact, so we are inter-
ested in finding a good one. Figure 3b 
illustrates this effect. 

Based on the MIG in Figure 3b, sev-
eral different PLiM programs can be 
constructed using the technique we 
just discussed. Figure 4 shows two 
example PLiM programs. For the lon-
ger program (Figure 4a), which con-
sists of 19 RM3 instructions and 7 
RRAM cells, we used the traversal 
order 1, 2, 3, 4, 5, 6. The shorter pro-
gram (Figure 4b) was created using the 
traversal order 1, 2, 3, 5, 4, 6. The latter 
program consists of 15 RM3 instruc-
tions and only 4 RRAM cells. However, 
the traversal order is not the only cause 
of this improvement. When selecting 
which child to map to which operand 
in the RM3 instruction, constants in 
particular allow some freedom. We 
can always invert a constant to match 

the polarity requirement of operand B 
or the RM3 instruction—for example, 
as we did for node 1. In the program 
in Figure 4a, we chose to invert input 
x1, requiring a NOT command and 
one additional RRAM. Those can be 
avoided when using the constant 0 as 
an inverted constant 1, as we did in the 
Figure 4b program. 

Figure 5 shows our experimen-
tal results for the PLiM compiler. We 
applied the PLiM compiler to MIGs for 
instances in the EPFL (École Polytech-
nique Fédéderale de Lausanne) bench-
mark suite (lsi.epfl.ch/benchmarks). 
Figure 5a gives the number of RM3 
instructions, and Figure 5b gives the 
number of instructions. The blue bars 
correspond to an approach in which we 
directly translated the MIGs to PLiM 
programs following a node-traversal 
order on node indexes and selecting 
operands from left to right. The red 
bars show the effect after MIG rewriting 
but still using the naive node- traversal 
order and operand selection. Finally, 
the brown bars show the effect after MIG 
rewriting and taking into consideration 
heuristics for better node traversal and 
operand selection. These results show 
that MIG rewriting strongly affects the 
number of instructions, but not neces-
sarily the number of RRAMs. However, 
when taking the node-traversal heuris-
tics into account, the number of RRAMs 
decreases, but there is little gain in the 
number of instructions.

The PLiM computer we describe 
here is a low-power platform 
that is capable of implement-

ing the IoT applications of tomorrow. 
In- memory computing is a better fit 
for IoT applications than conventional 
von Neumann architectures because 
it can deal with large amounts of data 

NOT(x1, z1)
BUF(x2, z2)
RM(0, z1, z2)
BUF(x3, z3)
RM(1, x2, z3)
NOT(x2, z4)
BUF(x3, z5)
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RM(x1, z4, z5)
NOT(x3, z6)
ONE(z7)
RM(z2, z6, z7)
RM(z2, z3, z5)
RM(z7, z5, z2)

BUF(x2, z1)
RM(x1, 1, z1)
ONE(z2)
RM(x3, x2, z2)
NOT(x2, z3)
BUF(x3, z4)

BUF(x2, z1)
RM(x1, 1, z1)
ONE(z2)
RM(x3, x2, z2)
NOT(x2, z3)
BUF(x3, z4)

RM(x1, z3, z4)
RM(z1, z2, z4)
BUF(x3, z2)
RM(z1, 0, z2)
RM(z1, z4, z2)

(a) (b)

FIGURE 4. Two PLiM programs constructed from the MIG in Figure 3b: (a) 19 RM3 
instructions and seven RRAM cells and (b) 15 RM3 instructions and four RRAM cells. The 
difference in the programs is due to the choice of node-traversal order and the mapping 
of the nodes’ children to RM3 operands. The i �  indicates the computation of node i.
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using comparably simple computa-
tions. PLiM computers and programs 
allow a new paradigm of computing, 
where programs are sequences of 
RM3 instructions that send the data 
from one PLiM computer to another. 
These PLiM programs can be par-
tial and distributed, where each IoT 
device provides its part to the compu-
tation. This model allows a high degree 
of configurability.

As part of our ongoing research 
efforts, we are evaluating the physical 
design of a PLiM computer and more 
advanced programming models. 
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