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Abstract—We propose effective algorithms for exact synthesis
of Boolean logic networks using satisfiability modulo theories
(SMTs) solvers. Since exact synthesis is a difficult problem, it
can only be applied efficiently to very small functions, having
up to six variables. Key in our approach is to use majority-
inverter graphs (MIGs) as underlying logic representation as
they are simple (homogeneous logic representation) and expres-
sive (contain AND/OR-inverter graphs) at the same time. This
has a positive impact on the problem formulation: it simplifies
the encoding as SMT constraints and also allows for various
techniques to break symmetries in the search space due to the
regular data structure. Our algorithm optimizes with respect
to the MIG’s size or depth and uses different ways to encode
the problem and several methods to improve solving time, with
symmetry breaking techniques being the most effective ones. We
discuss several applications of exact synthesis and motivate them
by experiments on a set of large arithmetic benchmarks. Using
the proposed techniques, we are able to improve both area and
delay after lookup table (LUT)-based technology mapping beyond
the current results achieved by state-of-the-art logic synthesis
algorithms.

Index Terms—Boolean satisfiability, exact synthesis, logic
rewriting, logic synthesis, majority logic.

I. INTRODUCTION

M INIMUM logic networks are of high interest in logic
synthesis as they offer strong opportunities for logic

optimization. Exact synthesis is the task of finding an optimum
logic network representation for a given input specification.
Optimality typically addresses the size of the network, i.e., the
number of gates, or the depth of the circuit, i.e., the length of
the critical path. Exact synthesis is a special instance of the
minimum circuit size problem (MCSP, [1]) which is also inten-
sively studied in the computational complexity community and
conjectured to be a difficult problem (see [2], [3]).
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Implicit enumerative algorithms are considered the most
practical ones to solve exact synthesis [4]. These algorithms
solve exact synthesis using constraint satisfaction and opti-
mization techniques such as integer linear programming [5]
or Boolean satisfiability [6].

The efficiency of implicit enumerative algorithms for exact
synthesis depends mainly on: 1) the size or depth of the
optimum representation; 2) the encoding of the problem for-
mulation as constraint satisfaction problem; and 3) the ability
to trim the search space, e.g., due to symmetric solutions.
These three are hard to fulfill equally well at the same time.
For example, a rich gate library allows for compact logic
networks; however, it impedes to encode the problem and
to formulate constraints for symmetry breaking. On the other
hand, a minimalist gate library such as NAND gates allows for a
simple encoding and a lot of regularity for symmetry breaking
constraints, but has larger optimum network representations.

In this paper, we propose to use majority-inverter graphs
(MIGs, [7]) as network representation for exact synthesis, as it
addresses the three requirements equally well. MIGs are homo-
geneous logic networks that only have the majority-of-three
operation and inversion as logic operations. This makes MIGs
simple but yet expressive at the same time, since they contain
AND/OR-inverter graphs (AOIGs, see [8], [9]). This allows
for a simple encoding while also offering a compact network
representation. One striking example is that all functions of
three variables are representable with MIGs with at most two
logic levels, but require up to four logic levels in AOIGs. In
addition, the rich algebraic properties of MIGs support sym-
metry breaking. Several heuristics for MIG optimization have
been proposed in the past (see [7], [10]–[15]).

We solve the task of exact synthesis using MIGs by encod-
ing the problem as an instance of the satisfiability modulo
theories (SMT, [16]) problem. We provide an in-depth descrip-
tion of how to encode exact synthesis to SMT for both explicit
and implicit representations of the input specification. The
exact synthesis algorithm can generate optimum MIGs based
on a truth table representation but also based on a nonoptimal
MIG. Due to the encoding to SMT formulas the algorithm
is general and can in principle be used for many different
cost criteria (see also [5]). We show how it can be used to
find size-optimum and depth-optimum MIGs. Various sym-
metry breaking techniques are able to reduce the number of
solutions and have a tremendous impact on the runtime.

As the (apparent) complexity of the MCSP limits an effi-
cient applicability of the proposed algorithm to only small
functions (with up to six variables), it first becomes truly pow-
erful when embedded into heuristic algorithms. In fact, we
show how the proposed exact algorithm can be transformed
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into a heuristic itself. We illustrate several logic synthesis
applications that make use of exact synthesis as part of their
algorithmic description.

Experimental results show that with algorithms based on
exact synthesis heavily optimized MIGs can be further opti-
mized in size and depth. We were able to improve the best
results of the arithmetic EPFL benchmarks in both cost cri-
teria. The current best results are produced by the strongest
and-inverter graph (AIG) and MIG optimization scripts from
Berkeley and EPFL groups, hence, our improvements advance
the state-of-the-art in logic optimization.

II. RELATED WORK

Synthesis algorithms to find optimal and optimum network
realizations can be divided into three categories [4]: 1) algo-
rithms based on functional decomposition (see [17]–[20]);
2) algorithms based on explicit (see [9], [21]–[23]) or implicit
network enumeration (see [5], [6], [24]–[28]); and 3) hybrid
approaches that are based on both functional and struc-
tural properties (see [4], [29], [30]). Our approach is based
on implicit enumeration. The associated techniques, besides
hybrid approaches, is considered the most practical ones [4].
We only focus on algorithms from these two categories in
the remaining discussion. Further information on the other
algorithms is described in [4].

One of the first algorithms to find optimum circuit
realizations with implicit enumeration was proposed by
Muroga and Ibaraki [5]. They present a method based on inte-
ger linear programming. Although they put an emphasis on the
synthesis of multilevel NOR networks, their approach is generic
and can take into account several other network restrictions.

Ernst [4] has thoroughly investigated the problem of optimal
multilevel logic synthesis. Her algorithm is implemented using
a branch-and-bound method similar to the ones proposed by
Davidson [29] and Culliney et al. [30]. The algorithm allows
to handle different synthesis options and can be adapted to
various cost criteria. Also, being based on branch-and-bound,
the algorithm can easily be adapted to relax the optimality
guarantee and find networks of near-optimal cost.

Knuth [6] has shown an SAT encoding to find size-optimum
networks consisting of binary logic gates, borrowing ideas
presented in [27] and [28]. His formulation requires the input
function to be represented as a truth table and he shows how
symmetry breaking and the restriction to normal functions can
reduce the search space, borrowing previous ideas presented
for explicit network enumeration [23].

The striking advantage of using an SAT or an SMT-based
approach is that advances in new solvers directly influence
the performance of our exact synthesis algorithm. Techniques
used in branch-and-bound algorithms, such as presented in [4],
mimic a lot of techniques that are implemented inside SAT and
SMT solvers, however, tailored for the dedicated use of exact
synthesis. This may be advantageous at the time the algorithm
is implemented but not sustainable in the long run as SAT
and SMT progress cannot affect such an application specific
implementation.

III. NOTATION AND DEFINITIONS

A. Boolean Functions

In this paper, we are concerned with Boolean functions
f : Bn → B that map n input truth values to one output

truth value. The central function in this paper is the majority-
of-three function. The majority function of three Boolean
variables x, y, and z, denoted 〈xyz〉, evaluates to true if and
only if at least two of the three inputs are true. The majority
function is monotone and self-dual [23] and can be expressed
in disjunctive and conjunctive normal form as

〈xyz〉 = xy ∨ xz ∨ yz = (x ∨ y)(x ∨ z)(y ∨ z). (1)

Setting any variable to 0 gives the conjunction of the other
two variables, and analogously one obtains the disjunction by
setting any variable to 1, i.e., 〈0xy〉 = x∧ y and 〈1xy〉 = x∨ y.

We like to emphasize some basic identities of the majority
function which are essential for the forthcoming definition of
MIGs. First, all three arguments to the majority function are
commutative, i.e., 〈xyz〉 = 〈yxz〉 = 〈zxy〉. Also, the majority
function evaluates to a single argument if two arguments are
equal or inverse to each other, i.e., 〈xxy〉 = x and 〈xx̄y〉 =
y. Since the majority function is self-dual, inverters can be
propagated from the inputs to the outputs, i.e., 〈x̄ȳz̄〉 = 〈xyz〉.

The majority function can be generalized for an odd number
of n variables to 〈x1 . . . xn〉 = [x1 + · · · + xn > (n/2)]. Many
of the contributions in this paper can be generalized to this
general majority function, although the description is restricted
to 3-input majority functions in this paper. More details about
general majority functions and their properties can be found
in [31] and [32].

An interesting class of Boolean functions is the class of
symmetric Boolean functions which occur frequently through-
out this paper. Let 0 ≤ i1 < · · · < ik ≤ n be a given sequence
of distinct numbers ranging from 0 to n. Then

Si1,...,ik(x1, . . . , xn) = [x1 + · · · + xn ∈ {i1, . . . , ik}] (2)

is an n-variable symmetric function that evaluates to true if
and only if the number of 1s in the input assignment equals
a number in the given sequence. If the sequence of numbers
is the interval [0, ik] or [i1, n], we can write S≤ik or S≥i1 ,
respectively. These special cases are also called threshold func-
tions with unity weights.1 Majority functions are a special
case of threshold functions with unity weights and the gen-
eral n-variable majority function is described by the symmetric
function S≥�n/2�.

B. Majority-Inverter Graphs

An MIG is a combinational logic network that has
only majority-of-three and inverters as possible operations.
Together with a constant value, it is a universal represen-
tation, as one can represent conjunction using the majority
function, which forms a universal gate set together with inver-
sion. Formally, an MIG of size r over variables x1, . . . , xn is
a sequence (xn+1, . . . , xn+r) of gates that combine previous
gates using the majority function

xi = 〈abc〉 for n < i ≤ n+ r. (3)

Child gates are defined as a = xp1i
s1i , b = xp2i

s2i , and c = xp3i
s3i ,

where 0 ≤ s1i < s2i < s3i < i are indexes pointing to the
operands and 0 ≤ p1i, p2i, p3i ≤ 1 with p1i+ p2i+ p3i ≥ 2 are
the operands’ polarities. Note that the operands are ordered by
their index and that at most one of the operands is inverted.
This does not affect the universality of the representation due

1General threshold functions f (x1, . . . , xn) = [w1x1+· · ·+wnxn ≥ t] have
integer coefficients wi and an integer threshold value t (see [23]).
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Fig. 1. MIG for (a) full adder and (b) hidden weighted bit function.

to commutativity and inverter propagation. We define x0 = 0,
such that we can realize AND and OR using MAJ. Finally,
we define outputs f1, . . . , fm with

fi = xpi
si

for1 ≤ i ≤ m (4)

where 0 ≤ si ≤ n+ r and 0 ≤ pi ≤ 1.
The definition may seem quite involved at first sight, but in

practical examples the sequences are fairly simple.
Example 1: The sequence x4 = 〈x̄1x2x3〉, x5 = 〈x1x2x3〉,

and x6 = 〈x1x4x̄5〉 computes the full adder with sum s = x6
and carry-out cout = x5. The hidden weighted bit function [33]
is defined as hn(x1, . . . , xn) = xx1+···+xn with x0 = 0. The
sequence x5 = 〈0x̄1x4〉, x6 = 〈x1x3x̄5〉, x7 = 〈0x2x̄5〉, x8 =
〈x1x̄3x4〉, and x9 = 〈x6x7x8〉 computes h4(x1, x2, x3, x4) = x9.

The definition in (3) avoids some redundant representations.
First, since the majority operation is commutative, an order is
enforced on the operands. Second, we implicitly propagate
inverters by allowing at most one operand of an MAJ oper-
ation to be complemented. Note that this has no effect on
the universality and size of the representation, as inverters are
simply moved toward the outputs.

It is possible to represent and illustrate the sequence as a
directed graph with vertices for x0, . . . , xn+r and f1, . . . , fm.
The graph has edges from gates xi to its operands xs1i , xs2i ,
and xs3i for n ≤ i ≤ n+r. Also, we have edges from outputs fi
to gates or inputs xsi for 1 ≤ i ≤ m. Polarities are represented
using edge attributes: complements are indicated by a solid
black circle on the edge. One readily sees that the resulting
graph is acyclic.

Example 2: Fig. 1 shows the graph representations for
the full adder and the hidden weighted bit function from
Example 1. Note that the arrows of the edges are inverse to the
direction of computation. We chose this way of visualization
for a better understanding of the SMT encoding described in
the following section.

For convenience, we introduce the notation children(i) =
{s1i, s2i, s3i} and pol(i) = (p1ip2ip3i)2 for n < i ≤ n + r to
refer to the operands and polarities of a gate. A path is a
sequence i1, i2, . . . , ik such that:

1) i1 ≤ n, i.e., it starts in a constant or a primary input;
2) ij ∈ children(ij+1) for 1 ≤ j < k, i.e., it is connected via

gates;
3) there exists an l ∈ {1, . . . , m} such that sl = ik, i.e., it

ends in an output.

We refer to k as the length of the path. A longest path in an
MIG is called a critical path. If k is the length of a critical
path in an MIG, then the depth of the MIG is k − 1.

Example 3: The path 2, 4, 6 in the full adder example is a
critical path of length 3. The depth of the full adder is 2.

In order to compute the depth of an MIG we set levels
�i = 0 for i ≤ n and then compute levels �i for each gate
n < i ≤ n+ r

�i = max
{
�s1i , �s2i , �s3i

}+ 1. (5)

The depth of an MIG is then the maximum level over all
outputs

max
fi=x

pi
si

{
�si

}
. (6)

Two gates xi and xj are structurally equivalent if
children(i) = children(j), and pol(i) = pol(j). The gates are
functionally equivalent if xi and xj represent the same func-
tion. Structural equivalence implies functional equivalence and
is easy to detect. We make use of structural hashing to ensure
that no two gates in an MIG are structural equivalent. More
advanced techniques [34] can be employed to guarantee func-
tionally reduced MIGs in which gates that are functionally
equivalent (up to complementation) are merged into choice
nodes [35]. Multiple equivalent MIGs may be merged into a
single functionally reduced MIGs in order to reduce structural
bias in technology mapping [34], [36].

C. Cut Enumeration

A cut of a gate in an MIG is a subnetwork with a bounded
number of inputs. In order to formally define cut enumeration,
we need to define the notion of gate paths, denoted paths(i),
which are all paths that start from a primary input and termi-
nate in gate xi. Given an MIG of size r, we define paths(i) = i
for all 1 ≤ i ≤ n and

paths(xi) =
⋃

j∈children(i)
j =0

{paths(j), i}. (7)

Note that paths to constant zero are discarded. Let p =
i1, . . . , ik be a path, then for convenience we can treat p as a
set {i1, . . . , ik} when being applied to set operations.

Given an MIG of size r, a pair (i, L) consisting of a root
1 ≤ i ≤ n + r and leafs L ⊆ {1, . . . , n + r} is called a cut
(see [37]), if:

1) p∩L = ∅ for all p ∈ paths(i), i.e., all paths to xi contain
at least one leaf l ∈ L;

2) and for all l ∈ L there exists p ∈ paths(i) with l ∈ p,
i.e., each leaf is contained in at least one path.

A cut is called k-feasible, if |L| ≤ k and we denote all
k-feasible cuts of a gate xi as

cutsk(i) = {L | (i, L) is a cut and |L| ≤ k}. (8)

Each cut (i, L) describes a subgraph which may have gates
apart from xi and the ones in L. These gates are called internal
gates. All k-feasible cuts can be generated using the recursive
algorithm

cutsk(i) =

⎧
⎪⎨

⎪⎩

{{}} if i = 0

{{i}} if 1 ≤ i ≤ n

cutsk(si1)⊗k cutsk(si2)⊗k cutsk(si3) otherwise.
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The operation

M1 ⊗k M2 = {m1 ∪ m2 | m1 ∈ M1, m2 ∈ M2, |m1 ∪ m2| ≤ k}
is a saturating union over all combinations of subsets. An
exhaustive enumeration of all cuts in an MIG is feasible as
long as k ≤ 6 [38]. For k larger than 6, priority cuts provide
an alternative approach [38].

D. NPN Classification

Two functions f (x1, . . . , xn) and g(x1, . . . , xn) are NPN-
equivalent, if there exists a permutation σ ∈ Sn (with
Sn being the symmetric group over {1, . . . , n}) and polar-
ities p, p1, . . . , pn ∈ B such that f (x1, . . . , xn) =
gp(xp1

σ(1), . . . , xpn
σ(n)), i.e., g can be made equivalent to f by

negating inputs, permuting inputs, or negating the output.
NPN-equivalence is an equivalence relation that partitions the
set of all Boolean functions over n variables into a smaller
set of NPN classes. As an example all 22n

Boolean functions
over n variables can be partitioned into 2, 4, 14, 222, 616 126
NPN classes for n = 1, 2, 3, 4, 5. As the representative of each
NPN class, we take the function with the smallest truth table,
when truth tables are viewed as a binary number of 2n bits.
For a detailed introduction into NPN classification the reader
is referred to [39] and [40].

IV. EXACT SYNTHESIS

This section describes the exact synthesis formulation as
SMT problem in detail. After the next section provides some
general introductory comments, the subsequent sections deal
with the encoding of the variables and constraints in the SMT
formulation.

A. Generalities

Exact synthesis describes the optimization problem of find-
ing the optimum MIG xn+1, . . . , xn+r that realizes a given
function f : Bn → B, i.e., f = xp

n+r for some p. As cost
criteria we consider in this paper MIGs with:

1) the smallest size r (referred to as size-optimum);
2) the smallest depth within the MIGs of smallest size

(referred to as size/depth-optimum);
3) the smallest size within the MIGs of smallest depth

(referred to as depth/size-optimum).
The second and third criteria have both size and depth as
objectives but in alternating roles for the primary and sec-
ondary objective. As an example, in size/depth-optimum MIGs,
the size is the primary objective.

The large amount of different MIG structures rule out direct
algorithms to solve this optimization problem. Instead, we pro-
pose to solve the optimization problem by solving a sequence
of decision problems (see also [41]). The decision problem
asks whether there exists an MIG of a given size r and a
given maximum depth d that realizes f . Then, the decision
problem is

∃xn+1, . . . , xn+r ∃p :
(
xp

n+r = f
) ∧ (�n+r ≤ d). (9)

Note that �r corresponds to the depth of the overall MIG, as
it has only one output.

We refer to the decision problem in (9) as HasMIG( f , r, d)
and it either returns an MIG xn+1, . . . , xn+r and output polarity
p, if one exists, or false otherwise.

For size-optimum MIGs the depth is irrelevant. Then, the
clause (�n+r ≤ d) is removed from (9) and the decision
problem is referred to as HasMIG( f , r).

The decision problem can be solved using an SMT solver,
if we find an encoding for the existentially quantified variables
and for the equivalence and depth constraint on the right-
hand side of (9). The remainder of this section describes the
encoding of the variables, which are essentially the operands
s1i, s2i, s3i and the polarities p1i, p2i, p3i, and the encoding of
the constraints.

We will use a simple preprocess to check whether f can be
represented without any gate, i.e., HasMIG( f , 0) is satisfiable.
This is true, if and only if f is constant or f = xp

i for some
i and some p. We do not need to utilize an SMT solver for
such a simple check and therefore assume that r > 0 when
describing the encoding for the SMT solver.

B. Encoding of Variables

According to the definition of MIGs we introduce inte-
ger variables s1i, s2i, s3i and Boolean variables p1i, p2i, p3i for
each n < i ≤ n + r and one other Boolean variable p for
the output polarity. Also, to follow the definition we need to
add constraints to ensure: 1) that there are no cycles; 2) that
the children are ordered; and 3) that at most one child is
complemented.

Cycles are avoided by adding the constraint

sci < i for 1 ≤ c ≤ 3. (10)

The constraint

(s1i < s2i) ∧ (s2i < s3i) (11)

ensures that the children are ordered. Finally

(p1i ∨ p2i)(p1i ∨ p3i)(p2i ∨ p3i) (12)

ensures that at most one children is complemented. Note
that (12) is the conjunctive normal form of the majority
operation (1).

C. Encoding of the Equivalence Constraint

We propose two ways to encode the equivalence constraint
depending on the representation of f , which can be either
explicit in terms of a truth table or symbolic, e.g., in terms of
a Boolean expression or a logic circuit, e.g., a nonoptimized
MIG.

1) Explicit Function Representation: In this case f is rep-
resented as a truth table with truth values for all 2n input
assignments. The idea is to “copy” each majority gate with
index i ∈ {n + 1, . . . , n + r} for each input assignment
t ∈ {0, . . . , 2n − 1}. Each copy represents the simulation of
one input assignment. The copies are “connected” by the sci
and pci (for 1 ≤ c ≤ 3) variables which have the same values
in each copy, since they represent the structure of the MIG.
For each gate xi in each copy t four Boolean variables a(t)

1i ,
a(t)

2i , a(t)
3i , and b(t)

i encode the simulation values of the input
assignment in the MIG. The variables a(t)

ci represent the value
at input c of gate xi and the variable b(t)

i represents the value
at the output of gate xi.

We need to add constraints that ensure: 1) the semantics
of the majority functionality of each gate; 2) the propagation
of simulation values through the circuit; and 3) the correct
function value at the root gate k.
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Fig. 2. Explicit function representation.

a) Majority functionality: The formula

b(t)
i = 〈a(t)

1i a(t)
2i a(t)

3i 〉 (13)

ensures the correct functionality of the gate, i.e., the output
value b(t)

i of the gate xi is the majority of the gate’s three
input values a(t)

1i , a(t)
2i , and a(t)

3i for all assignments t.
b) Input connections: Constraints on the input connec-

tions are given in terms of implications of the variables sci,
where c ranges from 1 to 3. The constraint

(sci = j)→
(

a(t)
ci = b(t)

j ⊕ p̄ci

)
(14)

ensures that values are propagated correctly through the MIG
that is represented by the s- and p-variables. In (14), j ranges
from 0 to i − 1 and we define b(t)

0 = 0 and b(t)
j is the tth bit

in the truth table representation of xj when 1 ≤ j ≤ n.
c) Function semantics: Finally, the correct function

semantics is ensured by the formula

b(t)
n+r = p̄⊕ f (t). (15)

Note that n+ r is the largest node index and therefore refers
to the root node.

The encoding is illustrated by means of Fig. 2. The “ ”
together with the polarity variable p next to it represent a
conditional edge complement, which is assumed to exist if
p = 0. Note that each node xi is copied r−1 times; the output
node xn+r is shown explicitly, since its output value b(t)

n+r in
polarity p must be equal to f (t). Hence, all r nodes are copied
2n times for each entry t in the truth table. Also note that
node xi can have more than one ingoing edge, if more than
one parent points to it.

2) Symbolic Function Representation: In case f is repre-
sented symbolically, the equivalence constraint is encoded by
universally quantifying over the input variables

∀x1, . . . , xn : (bn+r ⊕ p) = f . (16)

In (16) f is assumed to be the function value of f through some
encoding, e.g., Tseytin encoding [42] or EMS encoding [43].
The expression bn+r represents the output value of the root
gate xn+r. The output expressions bi are

bi = 〈a1ia2ia3i〉 (17)

Fig. 3. Symbolic function representation.

with input expressions

aci =
i−1∧

j=0

(
(sci = j)→ p̄cl ⊕ bj

)
(18)

for all n < i ≤ n+ r and 1 ≤ c ≤ 3. The value of aci depends
on the variables sci and pci. Variable sci determines the value of
the input depending on where it points to. As in the explicit
encoding we have b0 = 0 and bj = xj for 1 ≤ j ≤ n. The
variable pci determines the polarity of that value. SMT solvers
can use tactics such as quantifier elimination in order to handle
the universal quantifiers in (16).

In contrast to the encoding where f is explicitly represented,
the variables aci and bi variables are not existentially quantified
since they depend on the values of xi. Since bi depends on the
aci variables and the aci variables in turn depend on variables
bi′ with i′ < i, the expressions in (17) and (18) result in a
large nested “let” expression.

The encoding for a symbolic function representation is illus-
trated by means of Fig. 3. In contrast to the encoding for the
explicit function representation, the variables are not copied
for each input assignment. The XOR gate that connects the
output value of the root node xn+r with the output of the
encoded f is set to 0 at its output, what ensures the function
semantics for the MIG.

3) Soundness: Soundness follows immediately from the
construction of the SMT formula as we reuse the exact same
variables appearing in the definition of an MIG as variables
in the SMT formula. We add a- and b-variables to encode the
evaluation of the function f . The b values are related to the
a-variables of the same gate via the majority operation and
the a values are related to b-variables of lower gates via cor-
responding s- and p-variables which encode the structure of
the MIG.

D. Encoding of the Depth Constraint

When considering depth constraints we are interested in
finding an MIG which depth does not exceed a given value d,
or in other words the level �n+r of the output gate does not
exceed d. We add four additional integer variables �1i, �2i, �3i,
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Algorithm 1: Exact Synthesis for Size-Optimum MIGs
Input : Function f : Bn → B
Output : Size-optimum MIG (xn+1, . . . , xn+r), p

1 set r← 0;
2 while true do
3 if HasMIG( f , r) then
4 return (xn+1, . . . , xn+r), p
5 else
6 set r← r + 1;
7 end
8 end

and �i for each gate n < i ≤ n + r to the SMT formula-
tion, where �ci encodes the level of input c at gate xi and �i
encodes the depth at the output of gate xi as in (5). Three types
of constraints are required to ensure a correct interpretation.
As described above, the case r = 0 is checked explicitly, and
therefore we can assume that d > 0 when encoding the SMT
formula.

a) Gate depth: The formula

�i = max{�1i, �2i, �3i} + 1 (19)

constrains that each gate’s level is the maximum level of its
children incremented by 1.

b) Depth propagation: The constraints

(sci = j)→ (
�ci = �j

)
for n < i ≤ n+ r (20)

where �j = 0 for j ≤ n ensure that the depth values are
correctly propagated through the circuit, similar to how the
constraints (14) ensure a correct propagation of simulation
values.

c) Depth bound: Finally, the formula

�n+r ≤ d (21)

restricts the maximum depth, i.e., the depth of the output gate
xn+r, to the given bound d.

V. SYNTHESIS ALGORITHMS

This section describes how to utilize the decision problems
HasMIG( f , k) and HasMIG( f , k, d) in order to find optimum
MIGs with respect to the three cost criteria introduced in the
previous section.

A. Size-Optimum Synthesis

Algorithm 1 describes the simplest algorithm that guar-
antees size-optimum results. Input is a Boolean function
f : Bn → B and it returns a size-optimum MIG. The call
to HasMIG( f , r) in line 3 is either unsatisfiable or returns
a solution that is extracted from the satisfying assignment
to the existentially quantified variables. Note that xn+i =
〈xp1i

s1i xp2i
s2i xp3i

s3i 〉 is composed of six variables in the SMT instance.
Also the output polarity p is returned. Then f = xp

n+r, after
the algorithm terminated. In order to guarantee a size-optimum
result r is initially set to 0 and incremented as long as no MIG
of size r can be found.

Instead of a linear search for an optimum size r, the algo-
rithm can also be implemented using binary search. This
is enabled due to the following lemma, which states that
HasMIG( f , r) has a monotonic behavior.

Algorithm 2: Exact Synthesis for Size/Depth-Optimum
MIGs

Input : Function f : Bn → B
Output : Size/depth-optimum MIG (xn+1, . . . , xn+r), p

1 set r← 0;
2 while true do
3 if HasMIG( f , r) then
4 set d← 0;
5 while true do
6 if HasMIG( f , r, d) then
7 return (xn+1, . . . , xn+r), p
8 else
9 set d← d + 1;

10 end
11 end
12 else
13 set r← r + 1;
14 end
15 end

Lemma 1: If HasMIG( f , r) is satisfiable, then also
HasMIG( f , r + 1) is satisfiable.

Proof: Let xn+1, xn+2, . . . , xn+r with f = xp
n+r for some p be

a solution to HasMIG( f , r). Then x′n+1 = xn+1, . . . , x′n+r−1 =
xn+r−1, x′n+r, x′n+r+1 = xn+r with f = (x′n+r+1)

p is a solution
to HasMIG( f , r + 1) where x′n+r = x′n+i for i ∈ {1, . . . , r −
1, r + 1} can be chosen arbitrarily.

The gate x′n+r then has no parent and also no output points
to it. Since all children of a majority gate need to be different
according to the definition of MIGs, we cannot simply add a
gate xn+r+1 = 〈xn+rxn+rxn+r〉.

Lemma 1 shows that there is a clear cut between unsatisfi-
able and satisfiable instances of HasMIG( f , r).

However, binary search may not necessarily perform faster
since the runtime of the HasMIG( f , r) calls can diverge signif-
icantly for different values of r; especially since unsatisfiable
instances of HasMIG( f , r) are typically harder to solve than
satisfiable ones. In theory, the upper bound for the number of
gates for arbitrary Boolean functions is (2n/n)(1+3(lg n/n)+
O((1/n))) given from Lupanov for circuits consisting of binary
operations (see [23], [44]). However, for practical examples
this upper bound is far too large and it is easier to derive an
upper bound from heuristic synthesis methods. In our experi-
mental environment we use the commands “read_truth; strash;
dc2” in ABC [45] to first convert a truth table into an AIG
and then optimize it for size. Since an AIG can be represented
by an MIG with the same number of gates, it can serve as an
upper bound. Instead of implementing a binary search, one
can also reverse Algorithm 1, set r to an upper bound and
then decrease until HasMIG( f , r) becomes unsatisfiable (see
also [46]).

B. Size/Depth-Optimum Synthesis

The size-optimum MIG representation is not unique. There
are possibly many MIGs that have the same size, but not the
same depth. For example, consider the two MIGs in Fig. 4
that both realize the function x1 ⊕ x2 ⊕ x3 with three gates.
The second MIG in Fig. 4 has a depth of 2, which is optimum,
while the first MIG has a depth of 3.

Algorithm 2 shows an extension of the size-optimum algo-
rithm to find MIGs that have smallest area as primary cost
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Fig. 4. Two MIGs for f = x1 ⊕ x2 ⊕ x3 with 3 gates: (a) size-optimum
(depth 3) and (b) size/depth-optimum (depth 2).

Fig. 5. Alternative size/depth-optimum MIG for h4.

criteria and the smallest depth as secondary cost criteria.
We first determine the minimum number of gates r with the
approach described in the previous section. We then fix r and
increase the depth d until a satisfying solution is found using
the extension described in this section.

One can obtain the algorithm by replacing line 4
in Algorithm 1 by a loop that determines the best depth.
Instead of starting the loop from d = 0, one can set d← �n+r
in line 4, i.e., to the level or the root gate xn+r extracted
from the satisfiable solution. Then d is decreased until
HasMIG( f , r, d) becomes unsatisfiable and the previously
found solution is returned.

Global Delay-Aware Synthesis: In practical applications the
functions to be synthesized are often extracted from larger cir-
cuits. The optimized subnetwork can be significantly different
from the starting point as no structural information is taken
into consideration. When optimizing for size as a first crite-
ria, it is guaranteed that the overall network does not increase
in size after replacing the subnetwork by its optimum coun-
terpart. However, the replacement may have a negative effect
on the overall delay, even when applying size/depth-optimum
synthesis.

We illustrate this effect with an example. Consider the MIG
for the h4 in Fig. 1(b), which is size/depth-optimum with a
size of 5 and a depth of 3. The longest paths from the out-
put gate x9 to x2 and x3 have length of 2, while the longest
paths to the other two inputs have length of 3. Now, assume
that this network is a subnetwork extracted from a larger
MIG in which the path from x2 to x9 is on the critical path.
Size/depth-optimum synthesis may as well have returned the
solution illustrated in Fig. 5 which also has a size of 5 and
depth of 3. However, the longest path from the x9 to all inputs

Algorithm 3: Exact Synthesis for Depth/Size-Optimum
MIGs

Input : Function f : Bn → B
Output : Depth/size-optimum MIG (xn+1, . . . , xn+r), p

1 set d← 0;
2 while true do
3 foreach r ∈ {0, . . . , (3d − 1)/2} do
4 if M← HasMIG( f , r, d) then
5 return (xn+1, . . . , xn+r), p
6

7 end
8 set d← d + 1;
9 end

is 3. Hence, replacing the MIG of Fig. 1(b) with the MIG
of Fig. 5 in the context of the larger MIG will increase the
critical path by 2.

The problem can be circumvented by considering the depth
information of each node in the original circuit in the encoding
of the synthesis problem. Instead of setting �j = 0 for j ≤ n
in (20) we preassign these values with the depth information
from the larger circuit.

C. Depth/Size-Optimum Synthesis

When considering depth as the primary cost criteria, the
size of the optimum MIG may be larger than the size of the
smallest MIG (when depth is not considered). As a result, we
need to perform the algorithm in a different manner if we want
to find MIGs with the smallest depth. Algorithm 3 illustrates
the procedure. We start by setting d← 0 and then increase the
number of gates k. If no solution can be found, d is increased,
otherwise the optimum has been determined. We know when
to increase d, because the number of gates in an MIG with
depth d is bounded by

30 + 31 + · · · + 3d−1 = (3d − 1)/2 (22)

gates. This is the case, when no sharing is possible and the
MIG is a tree.

One can strengthen this upper bound by taking further con-
siderations into account. For example, the first level of MIG
nodes (closest to the inputs) is bounded by 4 · (n

3

)
: for each

triple of three inputs we can have eight different majority func-
tions and the complemented edges allow us to represent them
by four different gates. Hence, the last term in (22) can be
replaced by min{3d−1, 4 · (n

3

)}. One can imagine similar con-
siderations for the other levels, however, we do not investigate
this further in the scope of this paper.

VI. OPTIMIZATIONS

This section shows different optimizations that speed up the
solving time. First, we show that it is possible to discard the
output polarity variable when considering only normal func-
tions for synthesis. We introduce several symmetry breaking
rules which discard equivalent solutions and thereby reduce
the solving time. Finally, we show that the encoding of inte-
gers has an effect and propose how the exact algorithm can
be turned into a heuristic.
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A. Normal Functions

Knuth [6], [23] restricted both explicit and implicit enumer-
ation to normal functions and can thereby cut the search space
in half. A Boolean function f is normal, if f (0, . . . , 0) = 0.
A normal function can be represented by a logic network that
consists only of normal gates, i.e., gates which represent nor-
mal functions. This also applies to optimum networks. There
are four possible occurrences of gates in an MIG according to
its definition, which are

modulo a permutation of the children (i.e., the input comple-
ment may be on any of the three children). The last two cases
only occur due to the possibility of complementing the output
functions, and these two cases are the only gates which are
not normal, i.e., f (0, 0, 0) = 1.

We can exploit this property and restrict the synthesis algo-
rithm to only consider normal functions. This simplifies the
decision problem as the variable p can be dropped from the
formula, reducing (9) to

∃xn+1, . . . , xn+r :
(
xn+r = f ′

) ∧ (�n+r ≤ d) (24)

where f ′ = f , if f is normal, and f ′ = f̄ , otherwise. In the latter
case, the outgoing edge of the root gate is complemented.

B. Symmetry Breaking

All the constraints described in Section IV ensure a cor-
rect result in case of a satisfying assignment. In order to
reduce the search space, we make use of symmetry break-
ing which discards equivalent solution of the same quality.
In order to demonstrate the effect of symmetry break-
ing, we introduce a running example in this section. We
apply different configuration of symmetry breaking rules to
the function S1,3,4 = (x1 ⊕ x2 ⊕ x3 ⊕ x4) ∨ x1x2x3x4,
which is a worst-case example of a 4-variable function.
The optimum MIG requires seven gates. Further details are
given in the experimental evaluation. In the running exper-
iment, we measure the runtime of finding the optimum
MIG under the consideration of different symmetry breaking
rules.

1) Breaking Using Structural Hashing: In an optimum
MIG no gate can occur twice. This can be enforced by adding
the clauses

∧

n<i<j≤n+r

((
s1i = s1j

) ∨ (
s2i = s2j

) ∨ (
s3i = s3j

)

∨(
p1i = p1j

) ∨ (
p2i = p2j

) ∨ (
p3i = p3j

))
. (25)

These constraints have no effect on the number of satisfiable
solutions, but can reduce the runtime. In the running example
(see Fig. 6) the runtime is almost halved, and a solution is
found after 123.13 instead of 217.13 s.

2) Breaking Using Associativity: For Boolean functions
u, x, y, z, the associativity law in majority logic is

〈xu〈yuz〉〉 = 〈yu〈xuz〉〉 = 〈zu〈xuy〉〉. (26)

In a size-optimum MIG we only need to consider one of these
three cases. However, the majority operations in (26) are only

Fig. 6. Runtime and memory usage to find optimum MIG for S2,4 using
different symmetry breaking rules. Each rule is applied additive with respect
to the previous ones, i.e., the rightmost entry considers the combination of all
five symmetry breaking rules.

special cases of a more general rule, since the common child
u may be at different positions. The general gate structure that
enables this associativity property is

In other words, xj points to xi with child β, i.e., sβj = i.
Child α of xj and child γ of xi point to the same gate xd, i.e.,
sαj = sγ i = d. On gate xj, the child which is not α and β points
to xc, i.e., s(6−α−β)j = c. Further, we want that the most right
child of xi that is not γ point to xb, i.e., s(5−max(2,γ ))i = b. In
order to break symmetries for such structures, we enforce that
a ≤ b ≤ c. Note that a < b is already guaranteed due to (11)
in the definition of MIGs, and therefore it suffices to enforce
b ≤ c. From this observation, we can derive the constraint

∧

n<i<j≤n+r

∧

1≤α,β,γ≤3
α =β

(
sβj = i ∧ sαj = sγ i ∧ pαj = pγ i

)

→ (
s(5−max(2,γ ))i ≤ s(6−α−β)j

)
. (28)

Symmetry breaking based on the associativity law leads
to further runtime improvement. In the running exam-
ple when being applied together with breaking based on
structural hashing, the runtime is reduced from 123.13 s
to 38.98 s.

Notice that this symmetry breaking cannot be used when
optimizing for depth, as the levels of xa, xb, and xc in (27) are
different and reordering may lead to a different overall depth
of the MIG.

3) Breaking Using Colexicographic Ordering: If a gate xi
is not a child of the successor xi+1, then they can be executed
in any order, e.g., the MIG will not change if we replace x7 =
〈x3x5x6〉, x8 = 〈x2x4x5〉 by x7 = 〈x2x4x5〉, x8 = 〈x3x5x6〉. In
order to disambiguate this case, we enforce a colexicographic
order on the children, i.e., only the second order in the example
will be valid, since 2 < 3. Notice that xi is a child of xi+1,
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if and only if s3(i+1) = i due to (11). The constraint to break
symmetries is

∧

n<i<n+r

(
s3(i+1) = i

)→ ((
s1i < s1(i+1)

)

∨((
s1i = s1(i+1)

) ∧ (
s2i < s2(i+1)

))

∨((
s1i = s1(i+1)

) ∧ (
s2i = s2(i+1)

)

∧(
s3i ≤ s3(i+1)

)))
. (29)

It is important to use “≤” for the comparison between s3i and
s3(i+1) because it is possible that all children of xi and xi+1
are the same but with different polarities.

In the running example, we can improve the runtime by
another 10 s from 38.98 s to 28.22 s when being applied to
all previously introduced symmetry breaking rules.

The symmetry breakers that have been discussed so far
can be applied in general to all functions that are input
to the exact synthesis algorithm. The next two symmetry
breakers take properties of the input function into account.
Consequently, a preprocess is required to extract these prop-
erties. For the proposed symmetry breakers, the runtime to
obtain the properties is negligible.

4) Breaking Using Support Information: Let f : Bn → B
be the function to be synthesized. If f does not depend on xj
with 1 ≤ j ≤ n, i.e., a change in xj does not change the output
value of f , then no gate points to xj in an optimum MIG for f .
We refer to the functional support of f as the set of variables
on which f depends. It is unlikely that input variables are not
in the functional support for practical examples. However, for
small functions the functional support can be easily computed.
For each xj that is not in the functional support, the constraint

∧

n<i≤n+r

(s1i = j) ∧ (s2i = j) ∧ (s3i = j) (30)

is added. This symmetry breaking constraint will not lead to
fewer satisfiable solutions but can reduce the runtime.

We have excluded this symmetry breaking optimization in
our experiment in Fig. 6, because the considered function
depends on all variables.

5) Breaking Using Symmetric Variables: A function
f : Bn → B is symmetric in two different variables xk and xl if

f (x1, . . . , xk, . . . , xl, . . . , xn) = f (x1, . . . , xl, . . . , xk, . . . , xn)

(31)

that is interchanging xk and xl does not change the output
values of f . Let us assume that k < l. Then, we can break the
symmetry by enforcing that xk’s first appearance in the MIG
must be before xl’s first appearance. This can be expressed
using the following constraint:

∧

n<i≤n+r

∧

1≤c≤3

⎛

⎝(sci = k) ∧
∧

(d,j)≺(c,i)

(
sdj = k

)
⎞

⎠→
∧

(d,j)≺(c,i)

(
sdj = l

)
(32)

where (d, j) ≺ (c, i) ⇔ (d ≤ 3)∧(j ≤ i)∧((j < i)∨(d < c)).
The constraint considers cases in which sci = k, i.e., the cth
child of gate xi points to xk and no gate and no child before
points to xk. Then, no child of a previous gate can point to xl,
but also no smaller child of gate xi can point to xl.

Algorithm 4: Heuristic Synthesis for Size-Optimized
MIGs

Input : Function f : Bn → B
Output : Size-optimized MIG (xn+1, . . . , xn+r), p

1 set r← 0;
2 while true do
3 if HasMIGTO(f , r, t(r)) then
4 return (xn+1, . . . , xn+r), p
5 else
6 set r← r + 1;
7 end
8 end

This symmetry breaking rule has even further impact on the
experiment function in Fig. 6. The runtime can be reduced to
20.90 s. That is, the overall improvement when applying all
symmetry breaking rules is more than 10×.

C. Encoding of Integers

The s-variables in the encoding are integers that point to
preceding gates, input variables, or constants. The introduced
constraints only require comparison operators and no arith-
metic operations on these variables. SMT solvers allow several
possibilities to encode integers, e.g., as bitvectors of fixed size
or as integer types. The choice of encoding has an impact on
the runtime.

As an example, when enabling all symmetry breaking rules
for the function S2,4, which has been used as running example
in the previous section, the runtime increases from 20.90 s
when using the bitvector encoding to 56.71 s when using an
integer encoding. We have observed this trend in all considered
benchmarks.

D. Timeout Heuristic

The search for a size-optimum MIG with r gates requires
to solve r decision problems using an SMT solver (recall
that HasMIG( f , 0) is checked explicitly). Most of the over-
all runtime in this case is typically required to prove that
HasMIG( f , r − 1) is unsatisfiable, and often HasMIG( f , r)
can be solved quickly as it stops once the first solution has
been found.

We propose a heuristic that exploits this behavior.
Algorithm 4 demonstrates the idea. Instead of HasMIG( f , r)
the algorithm calls an alternative function HasMIGTO(f , r, t)
which terminates with no result after t seconds. In this case,
the algorithm behaves as if HasMIG( f , r) returns unsatisfiable
and increments r by 1. Once r is large enough that the problem
is satisfiable, a solution may be found within the time limit.
However, if the timeout (TO) is chosen too small, it may not
be sufficient to find a satisfying solution. In this case, no call
to HasMIGTO(f , r, t) returns a solution and the algorithm is
stuck in an infinite loop. A better strategy is to use a function
t(r) that returns a TO value depending on the progress in the
algorithm. Ideally, the TO value increases proportional to r.

When using the TO heuristic with t(r) = 1 for the running
example S1,3,4 we can find the optimum MIG with seven gates
in 2.65 s instead of 7.14 s.

Other functional symmetry breakers are possible but have
not been evaluated in the scope of this paper. One can for
example break symmetries based on unateness properties or
functional decomposibility.
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VII. APPLICATIONS

Although the proposed exact synthesis algorithm is effi-
cient for small functions, it does not scale for large functions.
Further, it is not expected to find optimum networks for large
functions. However, the exact synthesis algorithm can be used
for large functions when being applied to small subnetworks
to guarantee local optimality. In this section, we describe
several application scenarios in which the exact synthesis algo-
rithm can be employed. The description is kept brief. The
applications have already been presented in the literature and
references are provided that point to further details.

A. Functional Hashing

Functional hashing using exact synthesis has been proposed
in [47]. The idea is to replace cuts by optimum MIGs. The
algorithm is fast when the cut size is 4 or less, because,
in this case, the optimum networks for all NPN classes of
functions with up to four variables can be precomputed. The
quality of results is affected by the strategy on how cuts are
replaced. A top-down approach starts with cuts from the out-
puts and selects the cut with the largest improvement in gate
reduction. Then, the algorithm recurs at the children of the
replaced network and internal gates in a replaced cut are
not further considered. A bottom-up approach computes the
optimum replacement for each gate and then assembles the
optimal network using a dynamic programming approach.

When replacing cuts, it is important that no internal gate
fans out to other gates outside of the cut, because such
internal gates do not exist anymore after the replacement.
Two approaches were presented to counteract this problem.
First, one can discard cuts with internal gates that fan out to
other gates. Second, one can restrict replacement to fanout-free
regions.

While this approach is successful in reducing the size of the
overall network, the depth may significantly increase because
critical paths can be extended with the replaced optimum
networks (see previous discussion on global depth-aware syn-
thesis, Section V-B). Heuristics can be used to circumvent this
effect, however, this leads to less flexibilities in reducing size.

B. LUT-Based Optimization

In order to keep the depth of the circuit in a reasonable
boundary when replacing subnetworks by optimum networks,
lookup table (LUT)-based optimization provides an attractive
alternative to functional hashing. The idea is to identity the
subnetworks using LUT mapping. First the network is mapped
into k-LUTs, e.g., in a depth-optimal manner [48]. Each k-LUT
represents a k-variable Boolean function which is then used
as input for exact synthesis. LUT-based mapping for exact
synthesis has been proposed in [49].

Another difference of this approach compared to functional
hashing is that it is not in-place. This means that it is essen-
tial to find an MIG for every subnetwork in order to derive an
MIG globally for the whole function. In contrast, if a subnet-
work cannot be optimized in functional hashing, the overall
network is locally nonoptimal for this subnetwork, but the
overall representation stays an MIG. If no optimum network
can be found in LUT-based mapping, an alternative method
needs to be used to synthesize the LUT. First, one can use the
TO heuristics discussed in Section VI-D. Second, one can use

Fig. 7. Optimum MIG for S0,2(x1, x2, x3, x4).

majority-logic synthesis approaches, such as [10], that work
on a truth table, and therefore, scale well for small functions.

C. Inverter Minimization

The inverter propagation property of the majority operation
allows a large flexibility in arranging inverters in an MIG.
For some technology dependent synthesis one is interested
in MIGs with a small number of inverters, or some other
characteristic.

For example, beyond-CMOS spintronic devices, such as
spin transfer torque/domain wall devices [50], spin wave
device [51], [52], or nanomagnetic logic [53] are majority-
based. Consequently, MIGs can be used to derive spintronics
realizations for given functions [12], [54]. Since the physical
realization of an inverter is more expensive than the realization
of the majority operation (from 1.5× to 4× depending on the
technology [55]), one is interested in MIGs with a possibly
small number of inverters.

The number of inverters can be constrained to a maximum
value of P using the cardinality constraint

∑

n<i≤n+r

p1i + p2i + p3i ≤ P. (33)

Details on this encoding are provided in [56]. Notice that
in this formulation we already make use of the optimization
based on normal functions. This makes sense, since the exis-
tence of the output polarity solely depends on whether f is
normal or not and cannot be adjusted using inverter propaga-
tion (when restricting the maximum number of inverted inputs
for each majority gate to 1).

VIII. EXPERIMENTS

We have implemented exact synthesis in C++ as command
“exact_mig” in the logic synthesis framework CirKit using
Z3 [57] as the underlying SMT solver.2 The following sections
provide details of the experimental evaluation. All experiments
have been carried out on an Intel Xeon CPU E5-2680 v3 at
2.50 GHz with 64GB of main memory running Linux 4.4.

2The code can be downloaded from github.org/msoeken/cirkit, see also
lsi.epfl.ch/MIG.
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TABLE I
OPTIMUM MIGS FOR ALL 4-VARIABLE NPN CLASSES

A. Computing Optimum MIGs

1) 4-Variable Functions: In order to compare exact synthe-
sis for different cost objectives (i.e., size-optimum, size/depth-
optimum, and depth/size-optimum), we computed all optimum
MIGs for each objective and each representative of the 222
NPN classes using Algorithms 1–3. Table I lists the results.

The left part lists the results for size-optimum and
size/depth-optimum synthesis partitioned by the number of
majority gates. Two classes (the constant functions and the
one-variable functions) do not require a majority gate. Another
two classes (the two-variable AND and OR-like functions, as
well as the MAJ-like functions) require one majority gate.
All other functions require at least two majority gates. The
representative of the single most difficult NPN class is the
symmetric function S0,2(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ∧
x1x2x3x4, which is NPN-equivalent to S1,3,4 = (x1 ⊕ x2 ⊕
x3⊕x4)∨x1x2x3x4 from Section VI-B. Its MIG representation
is illustrated in Fig. 7. The overall runtime to obtain size-
optimum MIGs for all 222 functions is a bit more than 3 min.
Compared to the previous listed results [47] (18378.15 s), the
use of symmetry breaking and other optimizations lead to a
92× speed-up. Additionally, considering depth-optimality as
second criteria increases the total runtime by a factor of 2.4.

The right part of Table I lists the results for depth/size-
optimum MIGs. The results are partitioned by the depth.
Only for the NPN representation of the deepest NPN class
(see [23], [47]) S1,3(x1, x2, x3, x4) = x1⊕x2⊕x3⊕x4 we were
not able to compute the optimum representation within 3 h. The
problem are the unsatisfiable checks for HasMIG( f , r, 3) (see
Algorithm 3) which have to be checked for r ≤ 13 [see (22)].
This underlines the importance to find better upper bounds for
the maximum number of possible gates at each level.

2) 6-Variable Functions: A similar enumerative experiment
as in the previous section for 4-variable functions can be done
for 5-variable functions in a very large but yet reasonable
amount of time. There are 616 126 NPN classes that parti-
tion all 5-variable Boolean functions. Generously assuming
that computing the optimum MIG for one class takes 10 min,
one can find all optimum MIGs within 90 days when using 48
parallel processes. However, there are already over 200 tril-
lion (200 × 1012) NPN classes for 6-variable functions, which
rules out enumeration.

We applied size-optimum exact synthesis using Algorithm 1
to a set of 6-variable functions. These functions have been
mined from various benchmark sets by performing 6-cut
enumeration on AIGs (see [58]). The functions have been
partitioned based on whether they are disjoint-support decom-
posable (DSD, [59]). The function can be either fully

TABLE II
COMPUTATION TIME FOR 6-VARIABLE FUNCTIONS

decomposable (full-DSD), partly decomposable (part-DSD),
or nondecomposable (non-DSD). The expectation is that fully
decomposable functions are simpler, and therefore, easier for
exact synthesis.

We run exact synthesis on each function, but give a TO of
one minute to each call of HasMIG( f , r) in Algorithm 1. If the
TO exceeds, the algorithm stops and reports a TO. Note that
this is different from the TO used in Algorithm 4; there the
algorithm does not terminate after the TO but increases the
number of gates. Successful functions are partitioned based
on their required runtime, where we take an upper limit that
is a factor of 10. Note that the overall required runtime can
exceed a minute, since the TO is given for an individual call
of HasMIG( f , r).

The results are listed in Table II. For the full-DSD and part-
DSD functions, most of the functions can be solved within
the given time resources. For non-DSD functions, 42% of
the instances led to an optimum MIG before the TO. For all
three classes of functions, a common trend is observable. If an
optimum MIG can be found, then for most of the successful
instances it can be found within less than 30 s. This motivates
to use exact synthesis as a first attempt and resort to heuristics
if not successful after a short time.

B. Application to MIG Size Optimization

We used functional hashing (Section VII-A) and LUT-based
optimization (Section VII-B) to reduce the size instances of the
EPFL combinational benchmark suite.3 Both approaches make
use of size-optimum exact synthesis by replacing subnetworks
with their optimum counterparts. Subnetworks with up to four

3lsi.epfl.ch/benchmarks
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TABLE III
USING EXACT SYNTHESIS FOR MIG-SIZE OPTIMIZATION

TABLE IV
USING EXACT SYNTHESIS FOR LUT OPTIMIZATION COMPARED TO BEST KNOWN PREVIOUS RESULTS

variables are considered for which all optimum networks are
precomputed.

Table III shows the results. The average size improve-
ments are 3% and 13% for the arithmetic instances with
functional hashing and LUT-based optimization, respectively.
LUT-based optimization uses LUTs to decompose the circuit
while functional hashing uses cuts within fanout-free regions.
The experiments suggest that the decomposition into LUTs
is more advantages for exact synthesis. This is especially evi-
dent when comparing the depth, which is increased when using
functional hashing but decreased significantly with LUT-based
optimization.

C. Application to LUT Mapping

Next, we show the effectiveness of the exact synthesis-
based optimization approaches to 6-LUT mapping. The EPFL
benchmarks come with the currently best known realizations
(version 2015.1), both with respect to area and delay. Note that
the reported numbers have been obtained from a variety of dif-
ferent techniques and therefore the aim is not to necessarily
improve on all benchmarks, but to advance the state-of-the-art
by improving on some of them.

We used LUT-based size optimization [49] using size-
optimum exact synthesis (for subfunctions with up to four

variables) as engine to decrease the area in the designs that
show best area results. The size optimized MIGs are read with
ABC and mapped using “if −K 6 −a.” As shown by Table IV,
area can be improved for three out of the considered nine
benchmarks.

We compared the best results reported in [47] obtained
using functional hashing to the best delay results in the EPFL
benchmarks (for the barrel shifter no results were reported).
Functional hashing is able to reduce delay for one of the
benchmarks (Log2). However, in six further cases, one can
observe a reduction in area while depth is kept the same. We
also account this for an improvement over the state-of-the art.

IX. CONCLUSION

We have presented an algorithm for exact synthesis of MIGs
based on SMT solving. The advantage of the encoding is
its flexibility to handle different cost criteria and be extensi-
ble to different scenarios, e.g., inverter minimization. Various
optimization techniques including symmetry breaking led to a
significant improvement in runtime and extend the applicabil-
ity to functions up to six variables, a size for which explicit
enumeration is infeasible. We described several applications in
which exact synthesis is embedded into a broader scope and
can therefore be applied to larger functions.
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With exact synthesis and its applications, we are able to
improve best known results of the arithmetic benchmarks in
the EPFL suite for area in three out of nine cases and for delay
in seven out of eight cases. The current best results are pro-
duced by the strongest AIG and MIG optimization scripts from
Berkeley and EPFL groups. Consequently, our findings and
new results advance the state-of-the-art in logic optimization.

ACKNOWLEDGMENT

The authors wish to thank A. Mishchenko, W. Haaswijk,
and E. Testa for their many helpful discussions.

REFERENCES

[1] V. Kabanets and J.-Y. Cai, “Circuit minimization problem,” in Proc. 32nd
Annu. ACM Symp. Theory Comput., Portland, OR, USA, 2000,
pp. 73–79.

[2] C. D. Murray and R. R. Williams, “On the (non) NP-hardness of com-
puting circuit complexity,” in Proc. 30th Conf. Comput. Complexity,
Portland, OR, USA, 2015, pp. 365–380.

[3] A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 24–35, 1997.

[4] E. A. Ernst, “Optimal combinational multi-level logic synthesis,” Ph.D.
dissertation, Dept. Comput. Sci. Eng., Univ. Michigan, Ann Arbor, MI,
USA, 2009.

[5] S. Muroga and T. Ibaraki, “Design of optimal switching networks
by integer programming,” IEEE Trans. Comput., vol. 21, no. 6,
pp. 573–582, Jun. 1972.

[6] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Boston, MA, USA: Addison-Wesley, 2015.

[7] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic opti-
mization,” in Proc. 51st Annu. Design Autom. Conf., San Francisco,
CA, USA, 2014, pp. 1–6.

[8] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, Dec. 2002.

[9] L. Hellerman, “A catalog of three-variable or-invert and-invert logical
circuits,” IEEE Trans. Electron. Comput., vol. 12, no. 3, pp. 198–223,
Jun. 1963.

[10] S. B. Akers, Jr., “Synthesis of combinational logic using three-input
majority gates,” in Proc. 3rd Annu. Symp. Switching Circuit Theory
Logical Design (SWCT), Chicago, IL, USA, 1962, pp. 149–157.

[11] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geomet-
ric methods,” IRE Trans. Electron. Comput., vol. 11, no. 1, pp. 89–90,
Feb. 1962.

[12] R. Zhang, P. Gupta, and N. K. Jha, “Majority and minority network
synthesis with application to QCA-, SET-, and TPL-Based nanotechnolo-
gies,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26,
no. 7, pp. 1233–1245, Jul. 2007.

[13] K. Kong, Y. Shang, and R. Lu, “An optimized majority logic syn-
thesis methodology for quantum-dot cellular automata,” IEEE Trans.
Nanotechnol., vol. 9, no. 2, pp. 170–183, Mar. 2010.

[14] R. Lindaman, “A theorem for deriving majority-logic networks within
an augmented Boolean algebra,” IRE Trans. Electron. Comput., vol. 9,
no. 3, pp. 338–342, Sep. 1960.

[15] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A method of
majority logic reduction for quantum cellular automata,” IEEE Trans.
Nanotechnol., vol. 3, no. 4, pp. 443–450, Dec. 2004.

[16] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“DPLL(T): Fast decision procedures,” in Proc. 16th Int. Conf. CAV,
Boston, MA, USA, 2004, pp. 175–188.

[17] R. M. Karp, F. E. McFarlin, J. P. Roth, and J. R. Wilts, “A computer pro-
gram for the synthesis of combinational switching circuits,” in Proc. 2nd
Annu. Symp. Switching Circuit Theory Logical Design (SWCT), Detroit,
MI, USA, 1961, pp. 182–194.

[18] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
J. Res. Develop., vol. 6, no. 2, pp. 227–238, Apr. 1962.

[19] P. R. Schneider and D. L. Dietmeyer, “An algorithm for synthesis of
multiple-output combinational logic,” IEEE Trans. Comput., vol. 17,
no. 2, pp. 117–128, Feb. 1968.

[20] E. L. Lawler, “An approach to multilevel Boolean minimization,”
J. ACM, vol. 11, no. 3, pp. 283–295, 1964.

[21] R. A. Smith, “Minimal three-variable NOR and NAND logic circuits,”
IEEE Trans. Electron. Comput., vol. 14, no. 1, pp. 79–81, Feb. 1965.

[22] R. Drechsler and W. Günther, “Exact circuit synthesis,” in Proc. Int.
Workshop Logic Synth., 1998.

[23] D. E. Knuth, The Art of Computer Programming, Volume 4A. Reading,
MA, USA: Addison-Wesley, 2011.

[24] C. R. Baugh, T. Ibaraki, and S. Muroga, “Technical note—Results in
using Gomory’s all-integer integer algorithm to design optimum logic
networks,” Oper. Res., vol. 19, no. 4, pp. 1090–1096, 1971.

[25] C. R. Baugh, C. S. Chandersekaran, R. S. Swee, and S. Muroga,
“Optimal networks of NOR-OR gates for functions of three variables,”
IEEE Trans. Comput., vol. 21, no. 2, pp. 153–160, Feb. 1972.

[26] S. Muroga and H. C. Lai, “Minimization of logic networks under
a generalized cost function,” IEEE Trans. Comput., vol. 25, no. 9,
pp. 893–907, Sep. 1976.

[27] A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in Proc. 12th Int. Conf. SAT, Swansea, U.K.,
2009, pp. 32–44.

[28] N. Éen, “Practical SAT—A tutorial on applied satisfiability solving,” in
Proc. FMCAD, Austin, TX, USA, 2007.

[29] E. S. Davidson, “An algorithm for NAND decomposition under network
constraints,” IEEE Trans. Comput., vol. 18, no. 12, pp. 1098–1109,
Dec. 1969.

[30] J. N. Culliney, M. H. Young, T. Nakagawa, and S. Muroga, “Results of
the synthesis of optimal networks of AND and OR gates for four-variable
switching functions,” IEEE Trans. Comput., vol. 28, no. 1, pp. 76–85,
Jan. 1979.

[31] L. G. Amarù, P.-E. Gaillardon, A. Chattopadhyay, and G. De Micheli,
“A sound and complete axiomatization of majority-n logic,” IEEE Trans.
Comput., vol. 65, no. 9, pp. 2889–2895, Sep. 2016.

[32] A. Chattopadhyay, L. G. Amarù, M. Soeken, P.-E. Gaillardon, and
G. De Micheli, “Notes on majority Boolean algebra,” in Proc. IEEE
46th Int. Symp. Multiple Valued Logic (ISMVL), Sapporo, Japan, 2016,
pp. 50–55.

[33] R. E. Bryant, “On the complexity of VLSI implementations and
graph representations of Boolean functions with application to inte-
ger multiplication,” IEEE Trans. Comput., vol. 40, no. 2, pp. 205–213,
Feb. 1991.

[34] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs: A
unifying representation for logic synthesis and verification,” Dept. Elect.
Eng. Comput. Sci., Univ. California at Berkeley, Berkeley, CA, USA,
Tech. Rep., 2005.

[35] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 16, no. 8, pp. 813–834, Aug. 1997.

[36] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and
T. Kam, “Reducing structural bias in technology mapping,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 12,
pp. 2894–2903, Dec. 2006.

[37] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algo-
rithm for LUT-based FPGAs,” in Proc. ACM/SIGDA 6th Int. Symp. Field
Program. Gate Arrays, Monterey, CA, USA, 1998, pp. 35–42.

[38] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton,
“Combinational and sequential mapping with priority cuts,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose, CA,
USA, 2007, pp. 354–361.

[39] S. Muroga, Logic Design and Switching Theory. New York, NY, USA:
Wiley, 1979.

[40] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electron. Syst., vol. 2,
no. 3, pp. 193–226, 1997.

[41] R. Nieuwenhuis and A. Oliveras, “On SAT modulo theories and opti-
mization problems,” in Proc. 9th Int. Conf., Seattle, WA, USA, 2006,
pp. 156–169.

[42] G. S. Tseytin, “On the complexity of derivation in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logic,
Part II, Seminars in Mathematics, A. P. Slisenko, Ed. New York, NY,
USA: Springer, 1970, pp. 115–125.

[43] N. Eén, A. Mishchenko, and N. Sörensson, “Applying logic synthesis
for speeding up SAT,” in Proc. 10th Int. Conf., Lisbon, Portugal, 2007,
pp. 272–286.

[44] O. B. Lupanov, “A method of circuit sythesis,” Isvestiia VUZov
Radiofizika, vol. 1, pp. 120–140, 1958.

[45] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Proc. 22nd Int. Conf. CAV, Edinburgh,
U.K., 2010, pp. 24–40.



SOEKEN et al.: EXACT SYNTHESIS OF MIGs AND ITS APPLICATIONS 1855

[46] N. Lodha, S. Ordyniak, and S. Szeider, “A SAT approach to branch-
width,” in Proc. 19th Int. Conf., Bordeaux, France, 2016, pp. 179–195.

[47] M. Soeken, L. G. Amarù, P.-E. Gaillardon, and G. De Micheli,
“Optimizing majority-inverter graphs with functional hashing,” in Proc.
Design Autom. Test Europe Conf. Exhibit. (DATE), Dresden, Germany,
2016, pp. 1030–1035.

[48] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algo-
rithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 1,
pp. 1–12, Jan. 1994.

[49] W. Haaswijk, M. Soeken, L. G. Amarù, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic optimization,” in Proc. Asia
South Pac. Design Autom. Conf. (ASP-DAC), 2017.

[50] J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A. Ross,
“Low energy magnetic domain wall logic in short, narrow, ferromagnetic
wires,” IEEE Magn. Lett., vol. 3, 2012, Art. no. 3000104.

[51] A. Khitun and K. L. Wang, “Nano scale computational architectures with
spin wave bus,” Superlattices Microstruct., vol. 38, no. 3, pp. 184–200,
2005.

[52] A. Khitun et al., “Inductively coupled circuits with spin wave bus for
information processing,” J. Nanoelectron. Optoelectron., vol. 3, no. 1,
pp. 24–34, 2008.

[53] R. P. Cowburn and M. E. Welland, “Room temperature magnetic quan-
tum cellular automata,” Science, vol. 287, no. 5457, pp. 1466–1468,
2000.

[54] Z. Huo, Q. Zhang, S. Haruehanroengra, and W. Wang, “Logic optimiza-
tion for majority gate-based nanoelectronic circuits,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), 2006, pp. 1307–1310.

[55] D. E. Nikonov and I. A. Young, “Benchmarking of beyond-CMOS
exploratory devices for logic integrated circuits,” IEEE J. Exploratory
Solid-State Comput. Devices Circuits, vol. 1, pp. 3–11, 2015.

[56] E. Testa et al., “Inversion optimization in majority-inverter graphs,” in
Proc. IEEE/ACM Int. Symp. Nanoscale Archit. (NANOARCH), Beijing,
China, 2016, pp. 15–20.

[57] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
TACAS/ETAPS, Budapest, Hungary, 2008, pp. 337–340.

[58] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification,” in Proc. Int. Conf. Field
Program. Technol. (FPT), Kyoto, Japan, 2013, pp. 310–313.

[59] V. Bertacco and M. Damiani, “Boolean function representation based
on disjoint-support decompositions,” in Proc. IEEE Int. Conf. Comput.
Design VLSI Comput. Processors (ICCD), Austin, TX, USA, 1996,
pp. 27–32.

Mathias Soeken (S’09–M’13) received the Ph.D.
degree in computer science and engineering from the
University of Bremen, Bremen, Germany, in 2013.

He is a Scientist with the École Polytechnique
Fédéderale de Lausanne, Lausanne, Switzerland. He
is investigating constraint-based techniques in logic
synthesis and industrial-strength design automa-
tion for quantum computing. He is involved in
active collaborations with University of California
at Berkeley, Berkeley, CA, USA, and Microsoft
Research, Redmond, WA, USA. He is also actively

maintaining the logic synthesis frameworks CirKit and RevKit. His current
research interests include logic synthesis and formal verification.

Dr. Soeken was a recipient of the Scholarship from the German Academic
Scholarship Foundation. He has been serving as a TPC Member for sev-
eral conferences, including DAC’17 and ICCAD’17 and is a Reviewer for
Mathematical Reviews as well as for several journals.

Luca Gaetano Amarù (S’13–M’16) received the
B.S. and M.S. degrees in electronic engineering
from the Politecnico di Torino, Turin, Italy, in 2009
and 2011, respectively, and the Ph.D. degree in
computer science from the Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland, in
2015.

He is a Senior II Research and Development
Engineer with the Design Group of Synopsys Inc.,
Mountain View, CA, USA, where he is responsible
for designing efficient data structures and algorithms

for logic synthesis. His current research interests include electronic design
automation, logic in computer science, and beyond CMOS technologies.

Dr. Amaru was a recipient of the EDAA Outstanding Dissertation Award,
in 2015, the Best Presentation Award at FETCH Conference, in 2013, and the
Best Paper Award Nomination at ASP-DAC conference, in 2013.

Pierre-Emmanuel Gaillardon (S’10–M’11–
SM’16) received the Electrical Engineer degree
from CPE-Lyon, Villeurbanne, France, in 2008, the
M.Sc. degree in electrical engineering from INSA
Lyon, Villeurbanne, in 2008, and the Ph.D. degree
in electrical engineering from the University of
Lyon, Lyon, France, in 2011.

He was a Research Associate with the École
Polytechnique Fédéderale de Lausanne, Lausanne,
Switzerland, and a Research Assistant with
CEA-LETI, Grenoble, France. He is an Assistant

Professor with the ECE Department, University of Utah, Salt Lake City,
UT, USA. His current research interests include the development of
reconfigurable logic architectures and digital circuits exploiting emerging
device technologies and novel EDA techniques.

Prof. Gaillardon is an Associate Editor of the IEEE TRANSACTIONS ON

NANOTECHNOLOGY. He has been serving as a TPC Member for many
conferences, including DATE’15-17, DAC’17, and is a Reviewer for several
journals. He serves as the Topic Co-Chair for DATE’17.

Giovanni De Micheli (M’83–SM’89–F’94) received
the Nuclear Engineering degree from the Politecnico
di Milano, Milan, Italy, in 1979 and the M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from the University of California at
Berkeley, Berkeley, CA, USA, in 1980 and 1983,
respectively.

He was a Professor of Electrical Engineering
with Stanford University, Stanford, CA, USA. He
is a Professor and the Director of the Institute
of Electrical Engineering, École Polytechnique

Fédéderale de Lausanne, Lausanne, Switzerland.
Mr. De Micheli is a recipient of the 2016 IEEE/CS Harry Goode Award for

seminal contributions to design and design tools of Networks on Chips, the
2016 EDAA Lifetime Achievement Award, and other awards. He is a fellow
of ACM and a member of the Academia Europaea.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


