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ABSTRACT Resistive Random Access Memory (RRAM)-based routing multiplexers, built using a one-
level structure, are significantly more delay efficient than state-of-art SRAM-based implementations thanks
to their lower achievable on-state resistance. In addition, the delay of RRAM-based multiplexers scales better
with respect to input size than SRAM-based multiplexers. This property allows RRAM-based FPGA archi-
tectures to employ larger multiplexers than their SRAM-based counterparts, without generating any delay
overhead. In this paper, we first evaluate at the circuit-level the delay improvements of a state-of-art RRAM-
based multiplexer. Then, to unlock the potential of RRAM-based multiplexers, we propose three related
FPGA architecture optimizations: (a) The routing tracks should be interconnected to Look-Up Table (LUT)
inputs via a one-level crossbar, instead of through Connection Blocks and local routing; (b) The Switch Block
(SB) should employ larger multiplexers; (c) Length-2 wires should be used instead of length-4 wires. When a
classical architecture is considered for both SRAM and RRAM technologies, RRAM-based FPGAs can
reduce area by 17 percent and delay by 32 percent with zero power overhead for a 40 nm technology.
The proposed architectural enhancements can further improve area by 15 percent, delay by 10 percent and
channel width by 13 percent. Combining RRAM technology and architectural enhancements, the proposed
RRAM-based FPGA architecture improves Area-Delay Product by 57 percent and Delay-Power Product by
38 percent, as compared to a SRAM-based FPGA exploiting a classical architecture.

INDEX TERMS Resistive memory (RRAM), FPGA, multiplexer, routing, high-performance, low-power

I. INTRODUCTION

The promises of the Resistive Random Access Memories
(RRAMs) technology have initiated [1]–[6], in the past
few years, intensive research efforts in exploring high-
performance RRAM-based FPGA. Previous works [7]–[13]
focus on replacing Static Random Access Memory (SRAM)-
based routing multiplexers of classical FPGA architectures
with RRAM-based multiplexers. A RRAM-based routing ele-
ment uses RRAMs not only to store the configuration of the
multiplexer tree, but employs the memory elements to route
the data path signals. Since RRAM-based multiplexers can
achieve lower on-state resistances than SRAM-based multi-
plexers, they are naturally more delay-efficient and lead to
higher-performance FPGA architectures. It is reported that a
7-15 percent gain in area, a 45-58 percent reduction in delay,

and a 20-58 percent reduction in power can be achieved,
when compared RRAM-based FPGAs to their SRAM-based
counterparts [7]–[11]. However, previous works [7]–[11] typ-
ically employ 2T(ransistor)1R(RAM)-based circuit designs,
and only focus on the architectural repercussions of this tech-
nology. Very limited works investigate realistic RRAM-based
circuit design constraints, while these have strong impact on
the final architectural performances.
Most SRAM-based FPGA architectures typically employ

multiple levels of small crossbars, instead of large multi-
plexers, due to a strong limitation of SRAM-based multi-
plexer: Whatever multiplexer structure is employed, their
area, delay and power increase linearly with the input size
[14]. However, we will see in this paper that the delay of
RRAM-based multiplexers is independent from the input

Received 17 May 2016; revised 25 August 2016; accepted 6 November 2016.
Date of publication 17 November 2016; date of current version 7 June 2017.

Digital Object Identifier 10.1109/TETC.2016.2630121

210

2168-6750� 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 5, NO. 2, APRIL-JUNE 2017



size and therefore the architectural design space can be
extended beyond the limitations of SRAM-based multi-
plexer. Indeed, the properties of RRAM-based multiplexer
allow the FPGA architect to size differently its routing multi-
plexers by: privileging one-level crossbars, made of large
multiplexers, as much as possible. This paradigm shift in the
interconnection topology also requires to rethink the optimal
architectural parameters, which have been well determined
for classical SRAM-based architectures. Hence, it is worth-
while to identify properly-sized RRAM-based FPGA archi-
tectures which can exploit the full potential of RRAM-based
multiplexers, and determine the associated optimal architec-
tural parameters.
Compared to our previous work [11]–[13], the contribu-

tions of this paper are:

1) We investigate the circuit design aspects of RRAM-
based multiplexers based on the current state-of-art 4T
(ransistor)1R(RAM) programming structure [13]. By
applying circuit-level optimizations, 4T1R-based multi-
plexers can achieve up to 2� delay improvements with
regards to regular routing multiplexers. Averaged over
the twenty biggest MCNC and VTR benchmarks, when
a traditional architecture is considered for both SRAM
and RRAM technologies, RRAM-based FPGA reduces
area by 17 percent and delay by 32 percent with zero
power overhead for a 40 nm technology.

2) We identify that the classical FPGA architectures may
not fully unlock the potential of 4T1R-based multi-
plexers. Three architectural optimizations are proposed
in order to fully exploit the advantage of 4T1R-based
multiplexers: (a) The routing tracks should be intercon-
nected to Look-Up Table (LUT) inputs via a one-level
crossbar, instead of through Connection Blocks (CB)
and local routing; (b) As a side effect, the Connection
Block Fc;in and Switch Block (SB) Fs connectivity
parameters should be increased; (c) The best single wire
length L should be smaller. We study the best values of
Fc;in, Fs and L in terms of area, delay, power and channel
width. Architecture-level simulations show that a
RRAM-based FPGA should employ (Fc;in ¼ 0:33,
Fs ¼ 6 and L ¼ 2) to achieve the best performance,
which are different from those of classical SRAM-based
architectures. The proposed architectural enhancements
can further improve area by 15 percent, delay by 10 per-
cent and channel width by 13 percent. Combining
RRAM technology and architectural enhancements, the
proposed RRAM-based FPGA reduces Area-Delay
Product (ADP) by 57 percent andDelay-Power Product
(PDP) by 38 percent, when compared to a SRAM-based
FPGAwith a classical architecture.

The rest of this paper is organized as follows. Section II
reviews the background of SRAM-based and previous works
on RRAM-based FPGA architectures. Section III introduces
the general experimental methodology used in this paper.
Section IV presents the RRAM-based multiplexer design
based on 4T1R programming structure. Section V proposes
three architectural optimizations that exploit the advantages
of RRAM-based multiplexers. Section VI shows the overall
improvements by combining 4T1R-based multiplexers and
architectural optimizations. Section VII concludes the paper.

II. BACKGROUND

In this section, we first review the well optimized SRAM-
based FPGA architectures as well as previous works on
RRAM-based FPGA architectures.

A. MODERN SRAM-BASED FPGA ARCHITECTURE

Modern SRAM-based FPGAs typically employ a tile-based
architecture, where an array of logic tiles are interconnected
by high-density routing tracks, as shown in Figure 1 [14]. In
each tile, there are a Configurable Logic Block (CLB), two

FIGURE 1. Tile-based FPGA architecture.
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Connection Blocks and a Switch Block. Routing tracks inside
tiles are connected to CLB inputs by CBs, while SBs inter-
connects the routing tracks between tiles. A CLB is com-
posed of N Basic Logic Elements (BLEs) and a local routing
architecture providing inner-block interconnections. A BLE
contains a fracturable Look-Up Table [15], a Flip-Flop (FF)
and a 2:1 multiplexer, which selects either a combinational
or a sequential output. To improve the efficiency of arithme-
tic functions, commercial FPGAs [16], [17] widely enhance
BLEs by adding more functionalities, such as hardened add-
ers and shift registers. For the sake of accelerating arithme-
tic-intensive implementations, commercial FPGAs [16], [17]
replace columns of tiles by Digital Signal Processor (DSP)
and memory banks.

B. RRAM TECHNOLOGY

A Resistive Random Access Memory (RRAM) typically
employ a three-layer (sandwiched) structure, formed by a Top
Electrode (TE), a Bottom Electrode (BE) and a switching
metal oxide, as shown in Figure 2(a). RRAMs switching
mechanisms can be grouped into Unipolar Resistive Switch-
ing (URS) and Bipolar Resistive Switching (BRS) [18].
Bipolar RRAMs are considered in this paper, by following the
choices of most RRAM-based researches [1]–[13]. Figure 2
(b) depicts the equivalent RC model of a RRAM. Besides the
configurable resistance R, a parasitic capacitance CP induced
by TE and BE should also be considered. The typical I-V
curve of a bipolar RRAM is illustrated in Figure 2(c). By pro-
viding the right combination of programming voltage and
current, RRAMs can be freely switched between two stable
resistance states: a High Resistance State (HRS) and a Low
Resistance State (LRS). A change in conductivity of a RRAM

actually results from the growth/dilution of a conductive fila-
ment in the switching layer, induced by a positive/negative
programming voltage between TE and BE. The width of the
filaments, which determines the LRS resistance, is strongly
correlated to the programming current flowing through the
RRAM. RRAMs are compatible with Back-End-of-Line
(BEoL) process, and can be fabricated on the top of transistors
at low cost[19]. The filamentary conduction property brings
to RRAMs not only device-to-device variation but also cycle-
to-cycle variability. Both device-to-device and cycle-to-cycle
variations are reported to be well controlled between
10-20 percent [20]–[22]. To be more robust in cycle-to-cycle
variations, we can introduce program-verify strategy in
programming RRAMs, similar to that of Flash memory
[23]–[25]. More details about RRAMs can be found in [18].

C. PREVIOUSWORKS ON RRAM-BASED FPGA

ARCHITECTURE

Previous RRAM-based FPGA studies [7]–[12] mainly account
on one/multi-level RRAM-based multiplexers to achieve area,
delay and power reduction. In principle, RRAM multiplexers
replace both the routing transmission gates and the configura-
tion SRAMs with single RRAM elements. When a RRAM is
programmed to LRS/HRS, it propagates/blocks signals, similar
to a transmission gate in on/off state. However, most RRAM-
based researches overlook the challenges coming from physi-
cal designs, i.e., consider a ideal RRAM, which may lead to a
strong bias in the estimation of any performance metric
improvements. Recent work [13] has carefully studied the
physical design details of RRAM programming structures, and
proposes a 4T(ransistor)1R(RAM) programming structure.
Previous works [7]–[11] predict that RRAM-based FPGAs
can reduce the area by 7-15 percent, increase the perform-
ance by 45-58 percent, and save the power consumption by
20-58 percent, compared to SRAM-based FPGAs. However,
these architectural improvements are obtained by simply
replacing SRAM-based multiplexers in classical FPGA archi-
tectures with RRAM-based multiplexers. Very limited work
studies the impact on novel RRAM-based FPGA architectures
that exploit the circuit-level features of RRAM-based multi-
plexers. Therefore, it is worthy to investigate specific architec-
tural optimizations for RRAM-based FPGAs that would derive
from realistic RRAM-based multiplexer designs.

III. EXPERIMENTAL METHODOLOGY

In this paper, we will base our analysis using a commercial
40 nm technology, whose nominal working voltage is
VDD ¼ 0:9V . Area is estimated and expressed by the number
of minimum width transistors, based on the area model in [32].
Delay results are extracted from electrical simulations by run-
ning HSPICE simulator [34]. Datapath logic gates are built
with standard logic transistors (Wlogic=Llogic ¼ 140nm=40nm,
WPMOS;logic=WNMOS;logic ¼ 1:9), while programming structures
employ I/O transistors (Wprog=Lprog ¼ 320nm=270nm,
WPMOS;IO=WNMOS;IO ¼ 3). SRAM-based multiplexers are built
with two-level structures and transmission gates for best

FIGURE 2. (a) RRAM structure and illustration on conducting fila-

ments; (b) Equivalent RC model of a RRAM; (c) Typical bipolar

RRAM I-V characteristics.
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area-delay product [26]. RRAM-based multiplexers are built
with one-level structure and I/O transistors [13]. Electrical sim-
ulations use the Stanford RRAM model [33] with following
parameters: RLRS ¼ 2kV, RHRS ¼ 27MV, Iset ¼ 500mA,
Vset ¼ Vreset ¼ 1:2V . The parasitic capacitance of a RRAM is
considered to be CP ¼ 0:02fF. The considered RRAM param-
eters are sufficient to guarantee that the RRAM-based circuits
are as power efficient as SRAM-based circuits [12]. To deter-
mine the size of CB and SBmultiplexers, we set channel width
toW ¼ 320, which is close to the practical number in commer-
cial products [16], [17].
Since each architectural optimization involves different

routing architecture parameters, such as Fc;in, Fs and L, for a
fair comparison, we vary a single parameter in each compari-
son and find a reasonable value for each parameter. Once we
find the best value of one parameter, we set it to this value
and vary another. All the investigated tile-based FPGA archi-
tectures share the Stratix IV-like CLB architecture [35],
which contains 10 BLEs, consisting of six-input fracturable
LUTs and FFs (K ¼ 6;N ¼ 10). We consider a uni-direc-
tional routing architecture and the CLB output connection
flexibility, Fc;out, is fixed to 0.1. All the baseline architectures
have 40 inputs for each CLB (I ¼ 40). Because the local
routing is removed in the proposed architecture, we provide
60 inputs for each CLB (I ¼ K � N ¼ 60). We will focus on
studying the effect of the different architectural modifications
on both SRAM-based and RRAM-based FPGAs. Both
SRAM-based and RRAM-based implementations of the pro-
posed architecture are then investigated and their benefits are
examined by comparing to the baseline SRAM-based and
RRAM-based architectures, respectively. We believe that
such methodology helps to identify where RRAM FPGAs
can be improved beyond SRAM FPGAs. Then, we will dis-
cuss the benefits of a properly-optimized RRAM-based
FPGA compared to the SRAM counterpart.
We use the VTR flow [37] to evaluate the area, delay,

power and channel width of the investigated FPGA architec-
tures. The twenty biggest MCNC [36] and VTR benchmarks
[37] suites are logic optimized by ABC [38] and then packed,
placed and routed by VPR7. We add a 30 percent slack to the
minimum routable channel width Wmin, in order to simulate a
low-stress routing [14]. For a fair comparison, the maximum
routing iterations are set to 50 for the classical architecture,
while 100 routing iterations are used for the proposed archi-
tectures. Indeed, our proposed architecture requires more
routing efforts because local routing is removed and more
nets have to be routed by the global router.

IV. HIGH-PERFORMANCE RRAM-BASED MULTIPLEXER

In this section, we investigate the circuit design details of
RRAM-based multiplexers. We review the benefits of a
4T1R programming structure and discuss the proposed multi-
plexing structure and possible circuit-level optimizations.

A. 4T1R PROGRAMMING STRUCTURE

The programming structure is one of the most critical consid-
erations to make during the design of RRAM-based multi-
plexers because it controls the quality of set/reset process,
and therefore its electrical parameters. A good programming
structure should be able to drive a programming current as
large as possible while keeping the introduced parasitics as
small as possible. Figure 3 depicts the schematic of a 4T1R
programming structure, where two pairs of n-type and p-type
transistors are employed to set/reset a RRAM. To enable a
set process, transistors P1 and N2 are turned on, while, in a
reset process, transistors P2 and N1 are turned on. During
regular operation, all the programming transistors are turned
off. Compared to the 2T(ransistor)1R(RAM) and 2T(ransmis-
sion-gates)1R(RAM) programming structures, which are
used in previous works [7]–[12], the 4T1R programming
structure improves the programming current for a given
occupied area by 1:4�, as shown in Figure 4. The efficiency
of 4T1R programming structure comes from that it guaran-
tees balanced source-to-drain voltages VDS of both n-type
and p-type transistors, maximizing the programming current.
Note that the programming voltage Vprog should be much
larger than VDD in order to ensure sufficient VDS of program-
ming transistors. In order to support such high programming
voltage and avoid disturbance with regular logic operations,
we have to employ I/O transistors for programming purpose.
To maximize the VDS, we can use a Vprog close to the break-
down voltage of I/O transistors. As shown in Figure 4,
compared to the nominal voltage of I/O transistors
(Vprog ¼ 2:5 V), the higher Vprog ¼ 3:0 V can further
improve programming current by 1:9�. A significant

FIGURE 3. Schematic of a 4T1R programming structure.

FIGURE 4. A comparison between the programming current driven

by 2T1Rand 4T1Rprogramming structure. 1Wprog ¼ 320 nm.
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increase in programming current can lead to lower pro-
grammed RLRS, further increasing the performance of
RRAM-based multiplexers. More discussion of 4T1R pro-
gramming structure can be found in [13].

B. MULTIPLEXING STRUCTURE

Figure 5 illustrates the schematic of a one-level n : 1 4T1R-
based multiplexer. The transistors of the 4T1R programming
structures can be effectively shared among RRAMs in the
one-level structure at the output node A. All the RRAMs are
programmed sequentially. For example, to set a RRAM R0,

control lines BL½0� and WL½N� are enabled while the others
are disabled, allowing programming current (highlighted in
blue dash lines) to flow across the RRAM.
Note that whatever the input size is, there are only one pair

of programming transistors at the output node A in Figure 5.
The parasitic capacitance of RRAMs (C0; . . . ; CN�1) are
typically smaller than that of transistors. This reveals an out-
standing feature of RRAM-based multiplexers: the delay of
RRAM multiplexer scales better with the input size n than
SRAM-based ones. This feature indicates that RRAM-based
FPGA architectures can prefer the use of larger multiplexers
rather than smaller ones.

C. PROGRAMMING TRANSISTOR SIZING TECHNIQUE

The programming transistor sizing technique is a circuit-level
optimization method proposed in [11] to guarantee the best
Power-Delay Product (PDP) of a RRAM-based multiplexer.
Increasing the sizes of programming transistors leads to large
programming current meanwhile which in turn leads to low
RLRS values, but it also introduces large parasitic capacitances
to the datapath. When the increase in parasitic capacitances
becomes larger than the reduction of RLRS, the delay and
power of a RRAM-based multiplexer would only get worse.
Therefore, there exists a best achievable delay for a RRAM-
based multiplexer, which comes from a trade-off between the

introduced parasitic capacitances and the obtained RLRS.
Figure 7 depicts the PDP of a 50-input one-level RRAM-
based multiplexers obtained by sweeping the size of pro-
gramming transistors from 1 Wprog to 2 Wprog. The minimum
sized programming transistors produce the best PDP while
larger programming transistors lead to an overhead of up to
15 percent. All the one-level RRAM-based multiplexers con-
sidered in this paper, varying with input size, have a similar
conclusion as shown in Figure 7. In rest of this paper, if not
specified, we consider minimaly sized programming transis-
tors in 4T1R-based multiplexers.
Figure 8 shows the delay of optimally-sized 4T1R-based

multiplexers compared to the SRAM-based counterparts. All

FIGURE 6. Schematic of a n : 1 two-level SRAM-basedmultiplexers.

FIGURE 5. Schematic of a n : 1 one-level 4T1R-basedmultiplexers.

FIGURE 7. Impact of the size of programming transistors on the

PDP of a 50:1 one-level 4T1R multiplexer.
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the multiplexers drive a fan-out equivalent to the smallest
inverter. Delay of 4T1R-based multiplexers scales better
with the number of inputs thanks to their smaller parasitic
capacitances than those of SRAM-based multiplexers. For
large multiplexers, i.e., input size is 50, 4T1R-based imple-
mentations can reach 2� delay improvement as compared to
SRAM-based. Note that even for the smallest multiplexers
(input size is 2), 4T1R-based multiplexer is as delay efficient
as SRAM-based. However, in modern FPGA architectures,
most of the multiplexers are large, i.e., local routing and con-
nection blocks, and very few 2:1 multiplexers are deployed,
i.e., BLE output selector. Therefore, the FPGA architectures
can benefit from the outstanding performance of 4T1R-based
multiplexers. Table 1 compares the delay of SRAM-based
and 4T1R-based multiplexer in their architectural context,
i.e., by considering realistic sizing and loads. In high fan-in
and low fan-out condition, such as local routing, the 4T1R-
based multiplexer can achieve 48 percent reduction in delay.
In contrast, when fan-in is low and fan-out is high, e.g., the
BLE output selector, 4T1R-based multiplexer guarantees a
similar performance level as an SRAM-based implementa-
tion. The area of 4T1R programming structures is also
impacted by the sizes of programming transistors, which also
determines the amount of set/reset currents for a RRAM. We
assume the transistor area of a 4T1R programming structure
composed of two pairs of p-type and n-type programming

transistors as shown in Figure 3 (RRAM is fabricated above
transistors and does not occupy transistor area) while a
SRAM cell consists of a 6-transistor SRAM and a transmis-
sion gate. The area of a programming transistor is considered
to be 40 percent larger than a standard logic transistor
according to layout rules. Figure 9 compares the area
between a 4T1R programming structure and a SRAM cell by
sizing programming transistors, expressed in terms of the
number of Minimum Width Transistor Area. Since the pro-
gramming transistors are typically minimum sized for best
PDP as illustrated in Figure 7, a 4T1R programming struc-
ture leads 10 percent less area than a SRAM cell.

D. LEAKAGE ISSUE

As explained in [12], RHRS of RRAMs significantly influence
the leakage power of RRAM-based multiplexers. When a
small RHRS, i.e., ¼ 20MV, is used, the leakage power of
4T1R-based multiplexer is 5� larger than SRAM-based, sim-
ilar to the conclusion in [12]. On the one hand, a trivial route
to suppress the leakage power overhead is to technologically
increase RHRS to 200MV. On the other hand, the leakage over-
head observed at the multiplexer level must be put into per-
spective. Indeed, the overhead is in fact non-existent in the
architecture context, because: (a) in high fan-out condition,
the leakage power of a multiplexer is much smaller than its
large output buffers; (b) leakage power is negligible as com-
pared to dynamic power and 4T1R-based multiplexers con-
sume less dynamic power than SRAM-based thanks to their
lower parasitic capacitances. (c) RRAM enables efficient
power saving and instant-on/normally-off behavior [39]. As a

FIGURE 8. Comparison of delay between SRAM-based multi-

plexers and 4T1R-based multiplexers.

TABLE 1. Delay comparison between SRAM-Based and RRAM-Based routing multiplexers.

Multiplexer Location Input Size fan-out SRAM-based MUX (ps) 4T1R-based MUX (ps) Improvements

Local Routing 80 1 57.7 30.4 �48%
BLE output selector 2 70 38.8 42.2 þ11%
Connection block 48 60 76.0 48.2 �36%
Switch block 4 1241 57.8 49.6 �14%

�Output buffers are considered and sized according to the fan-outs of routing multiplexers in architecture.
1The fanout includes the parasitics of long metal wires driven by SBs.

FIGURE 9. Area comparison between a 4T1R cell and a SRAM cell

under differentWprog.
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result, according to [12], although RHRS ¼ 20MV introduces a
high leakage overhead (5�) to 4T1R-based multiplexers, the
total power of the resulting RRAM-based FPGA is similar to
its SRAM-based counterpart. Therefore, we believe that the
considered RHRS ¼ 27MV in this paper is large enough to pre-
vent any power issues.

V. ARCHITECTURAL OPTIMIZATIONS

As discussed in Section IV, there is a strong need to optimize
FPGA architectures, in order to exploit the high-performance
of 4T1R-based multiplexers. In this section, we propose three
architectural optimizations: (1) The realization of a Unified
Connection Block; (2) The increase of Switch Blocks capac-
ity; (3) The decrease of the best length of routing wire; For
each architectural optimization, we study its impact on both
SRAM-based and RRAM-based FPGAs.

A. UNIFIED CONNECTION BLOCK

In SRAM-based FPGA architectures, a routing track has to
pass through a CB multiplexer and a local routing multi-
plexer before reaching a LUT input, as shown in Figure 10.
Such routing architecture efficiently reduces the number of
CB multiplexer to be used. Indeed, the number of the
inputs of a CLB, typically I ¼ KðN þ 1Þ=2, is smaller than
the total number of LUTs inputs, K � N, where K is the
input size of a LUT and N is the number of BLEs in a
CLB. However, it requires tapered buffers at the outputs
of CB multiplexers, in order to drive the high fan-outs.
Take the example in Figure 10, each CB multiplexer has
to drive K � N local routing multiplexers. The use of large
tapered buffers potentially increase the delay from a rout-
ing track to a LUT input. This situation is extremely ineffi-
cient for RRAM-based FPGAs since the delay of a tapered
buffer may be far larger than the delay of the RRAM-
based multiplexer itself.
Therefore, we propose that RRAM-based FPGA should

use a one-level RRAM-based crossbar to provide

interconnections between routing tracks and LUT inputs, as
illustrated in Figure 11. Note that feedback connections are
also resolved by the unified Connection Block. The proposed
routing architecture is well suited to RRAM-based multi-
plexers for three reasons: (a) Each CB multiplexers now has
a unique fan-out, and tapered buffers can be avoided;
(b) Only one large multiplexer interconnects between a rout-
ing track to a LUT input; Both routing delay and feedback
delay can be significantly reduced when a RRAM-based
multiplexer is used; (c) The number of inputs of a CLB is
increased to I ¼ K � N, which can potentially lead to a total
area reduction even for SRAM-based FPGAs [27]; Since
RRAM-based multiplexers require a smaller footprint, the
area reduction could be more significant.
The proposed routing architecture requires to redefine the

best fraction of routing tracks can be reached by each CB
multiplexer, Fc;in. Note that in the classical architecture
(Fc;in ¼ 0:15), all the nets mapped to the inputs of a CLB are
different because the local routing can connect a net from a
CLB input to multiple LUTs. The proposed architecture may
have a net mapped to multiple CLB inputs due to the absence
of local routing. Therefore, we need to increase Fc;in to allow
more CLB inputs to be reached by a single routing track, to
compensate the potential loss in routability. In an FPGA tile,
all the LUT inputs are connected to the right and bottom
sides of a CLB. Each LUT has K=2 input connected to the
right/bottom side of a CLB. To ensure that different LUT
inputs can be connected from a common routing track, Fc;in

should be at least 2=K. Figure 12 depicts such an example
when K ¼ 6. Input in0 of LUT0 and input in0 of LUT1 can
be reached by the same track Track0. Note that there is no
need to allow two inputs of the same LUT to share a routing
track. The case where two inputs of a LUT share the same

FIGURE 10. Classical interconnection from routing tracks to LUT

inputs.

FIGURE 11. Proposed interconnection from routing tracks to LUT

inputs.

216 VOLUME 5, NO. 2, APRIL-JUNE 2017

Tang et al.: A High-Performance FPGA Architecture Using One-Level RRAM-Based Multiplexers



net can never happen because the inputs of a LUT are natu-
rally logic equivalent.
By considering architecture parameters K ¼ 6, the pro-

posed architecture requires Fc;in to be at least 0.33, in order
to ensure routability. In this part, we sweep Fc;in to examine
the best Fc;in for the proposed architecture.
Figures 13(a) and 13(b) show normalized area, delay, power

and channel width of SRAM-based and RRAM-based pro-
posed architectures with Fc;in ¼ f0:15; 0:25; 0:33; 0:5g, when
compared to baseline architectures respectively. The SRAM-
based proposed architecture with Fc;in ¼ 0:33 produces a
slightly better area-delay product (�4 percent) than the classi-
cal architecture, but performs worse (+2 percent) in delay. In
contrast, the RRAM-based proposed architecture with
Fc;in ¼ 0:33 reduces delay by 3 percent and area-delay product
by 15 percent, when compared to the classical architecture. In
either SRAM-based or RRAM-based FPGAs, the proposed
architecture with Fc;in ¼ 0:33 produces the best area-delay
product. Note that we see a 5 percent area reduction in both
SRAM-based and RRAM-based proposed architectures when
Fc;in ¼ 0:33, which is close to the conclusion of literature [27].
The proposed architecture with varying Fc;in reduces power by
10-13 percent for SRAM-based and RRAM-based FPGAs. In
the classical architecture, there are two-stages of multiplexers
(local routing and classical connection blocks) that lead to four
levels of transmission gates between the routing tracks and the
LUTs. However, in the proposed unified connection block,
there is only one-stage of multiplexers (two-levels of transmis-
sion gates) between the routing tracks and the LUTs, contribut-
ing to power efficiency. Besides, the unified connection blocks
eliminates the need for intermediate buffers between the local
routing and the connection block, which further reduce the
power. Channel width overheads are observed in both SRAM-
based and RRAM-based proposed architectures, because their
routability is lower than their baselines due to the absence of
local routing. However, these overheads can be potentially
eliminated because the routability can be significantly
improved when we increase Fs and decrease L. In terms of the
best overall performance, we consider Fc;in ¼ 0:33 for the pro-
posed FPGA architectures in the rest of this paper.

Figure 14 compares the tile area of a classical FPGA archi-
tecture (I ¼ 40;Fc;in ¼ 0:15) and the proposed RRAM
FPGA architecture (I ¼ W � Fc;in;Fc;in ¼ 0:33) for a sweep-
ing channel width W from 100 to 350. Note that the input
size of local routing multiplexers in traditional SRAM
FPGAs is fixed for every W , while that of proposed RRAM
FPGAs is directly related to W . When a small W , e.g. ¼ 100,
is used, the size of the local routing multiplexers in the pro-
posed RRAM FPGAs is smaller than for a classical FPGA
architecture. Therefore, when W < 300, the proposed
RRAM FPGA architecture benefits up to 36 percent area
reduction as compared to classical FPGA architecture. When
W > 300, the input size of multiplexers in the proposed
RRAM FPGAs becomes larger, leading to a 9 percent area
overhead when W ¼ 350. The considered W ¼ 320 in this
paper promises that the proposed RRAM FPGAs is as area
efficient as classical SRAM FPGAs.

FIGURE 12. An illustrative example of the proposed routing

architecture (K ¼ 6) with Fc;in ¼ 0:33 and Fs ¼ 6.

FIGURE 13. Normalized average area, delay, power and channel

width of baseline and proposed architecture by sweeping Fc;in:

(a) SRAM-based architectures; (b) RRAM-based architectures.
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B. INCREASE CAPACITY OF SB MUXES

Since RRAM-based multiplexer is more delay-efficient than
SRAM-based multiplexer, the connection flexibility parame-
ter of Switch Block Fs can be increased. Classical FPGA
architectures typically set Fs ¼ 3, where each routing track
on one side of a SB can reach three other routing tracks on
different sides of a SB. In SRAM-based FPGAs, Fs ¼ 3
promises the best area-delay product [29]. Indeed, a larger Fs

can improve the routability but it may produce area and delay
overhead coming from the larger SB multiplexers to be used.
However, considering RRAM-based routing architecture, the
delay overhead is no longer a concern thanks to the advan-
tage of RRAM multiplexers. Therefore, a larger Fs, i.e. ¼ 6,
can considered, where a routing track can drive six different
tracks, as shown in Figure 12 with Track3. Note that a large
Fs significantly improves the routability of the proposed rout-
ing architecture. Take the example of Figure 12 where netA is
routed through Track3. If Fs ¼ 3, Track3 can only drive
Track0, Track4 and Track6. If Track0 is not available, the
output of LUT0 has to seek for another routing track by
increasing the channel width. If Fs ¼ 6, Track3 can reach
both Track0 and Track2. When Track0 is occupied by
another net, Track3 can easily use Track2 to route netA.
We sweep Fs to determine its best value for the pro-

posed architecture. Figures 16(a) and 16(b) show normal-
ized average area, delay, power and channel width of

SRAM-based and RRAM-based proposed architectures
with Fs ¼ f3; 6; 9g, when compared to the baseline archi-
tectures, respectively. The proposed RRAM-based archi-
tectures can benefit larger delay reduction (�7 percent)
than SRAM-based (�4 percent), because RRAM-based
multiplexers are more delay efficient for the unified con-
nection block. However, Fs > 3 introduces larger SB
multiplexers, which potentially increases the area of both
SRAM-based and RRAM-based proposed architectures.
On the other hand, larger SB multiplexers improve the
flexibility of the routing architecture and reduce the num-
ber of necessary SB multiplexers, as explained in
Figure 12. In the end, the proposed architecture can main-
tain the same power efficiency as baseline SRAM one.
Therefore, Fs ¼ 6 produces the best area-delay-power
product for both SRAM-based and RRAM-based proposed
architectures. Note that, even when Fs ¼ 9, RRAM-based
proposed architecture leads to a 8 percent delay reduction
thanks to its RRAM-based multiplexer, while, the SRAM-
based proposed architecture has a 5 percent delay over-
head. As a large Fs boosts the routability, a 20 percent
channel width reduction is achieved in both SRAM-based
and RRAM-based proposed architectures, as compared to
those with Fs ¼ 3. In terms of the best overall perfor-
mance, we consider Fs ¼ 6 for the proposed FPGA archi-
tectures in the rest of this paper.

C. SMALLER BEST LENGTHWIRE < 4
In FPGA architectures, a length-L wire is a wire that spans
across L CLBs [14]. As illustrated in Figure 15(a), a length-L
wire is driven by an output of CLB½0� and ends at
CLB½L� 1�. All the CLBs and SBs along the length-L wire
can be directly routed from the driving output of CLB½0�.
When only one type of wires is allowed to be used in an
FPGA, the type of length-L wires that produces best area-
delay product is called best single wire length. Commercial
FPGAs typically provide different types of wires, i.e.,
length-1 for short connections and length-8 for long connec-
tions. However, best single wire length is useful in deciding
which type of wires should be predominant within the
architecture.
Length-4 wires are the best choice for classical SRAM-

based FPGA architectures (Fc;in ¼ 0:15;Fs ¼ 3) [14]. Betz
et al. show that a length-4 wire is faster than shorter wires in
terms of delay per logic block (¼ Tdelay;wire=Length). In other
words, for a routing path spanning X CLBs, length-4 wires

FIGURE 14. Tile area comparison between a traditional FPGA

architecture and the proposed RRAM FPGA architecture for dif-

ferent channel widthW.

FIGURE 15. (a) Driver multiplexer and fan-outs of a Length-L wire; (b) Equivalent RC model of a Length-L wire.
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promise the best average delay. Indeed, when there is a rout-
ing path with X < 4, shorter wires such as length-1 or
length-2 will give better delay. However, for a routing path
with X � 4, multiple cascaded length-4 wires are faster than
not only any length-X (X > 4) wire but also multiple cas-
caded length-1 or length-2 wires. Therefore, on average,
length-4 wires provide the best trade-off between short and
long connections.
In SRAM-based FPGAs, why long length wires, such as

length-4 wires, are preferred is established on the fact that
the delay of a SB multiplexer is larger than a long metal wire
across a logic block. However, RRAM-based multiplexers
are more delay efficient and can be even faster than a long
metal wire. Therefore, as the cost function between a SB
multiplexer and a long metal wire has been twisted, the best
single wire length L should be revisited. Figure 15(a) illus-
trates the different elements composing a length-L wire,
while Figure 15(b) shows the extracted RC model. We use

Elmore delay [31] to estimate the delay per logic block of a
Length-L wire

Tdelay;wire=L ¼ 1
L

XL�1

i¼0

Ri

XL�1

j¼i

Cj

¼ L � RmCm

2
þ 1
L
� ðTdel þ RoCo � 2RmCSB � 2RmCCBÞ

þ RmðCSB þ CCB � CmÞ þ RoðCm þ CSB þ CCBÞ;
(1)

where Rm and Cm are the resistance and capacitance of a
metal wire spanning a logic block, respectively, Tdel repre-
sents the intrinsic delay of a SB multiplexer, Ro and Co

denote the equivalent resistance and capacitance of the
tapered buffer that drives the metal wire, respectively, CSB

and CCB are the equivalent input capacitance of each SB and
CB, respectively. According to (1), there exists a Loptimal
which guarantees the minimum Tdelay;wire=L

Loptimal ¼ ðTdel þ RoCo � 2RmCSB � 2RmCCBÞ
2RmCm

: (2)

Note that CSB and CCB are related to Fs and Fc;in respectively

CSB ¼ Fs � Cin

CCB ¼ W � Fc;in � Cin:
(3)

In the proposed RRAM-based routing architecture, where
both Fs and Fc;in increased and Tdel decreased thanks to
RRAM-based multiplexer, Loptimal will definitely decrease. In
addition, the tile area of the proposed architecture may be
slightly larger than the classical architecture because of the
Fs and Fc;in increases, leading to an increased Rm and Cm.
This would further decrease the Loptimal. Therefore, the best
single wire length of the proposed routing architecture will
be smaller than 4. When a smaller L (< 4) is used, previous
work [14] show that the routability is improved significantly.
Therefore, the proposed RRAM-based routing architecture
can achieve routability improvement without delay overhead.
We sweep L to determine its best value for the proposed

architecture. Figures 17(a) and 17(b) show normalized aver-
age area, delay, power and channel width of SRAM-based
and RRAM-based proposed architectures with L ¼ f1; 2; 4g,
when compared to the baseline architectures, respectively. In
SRAM-based architectures, whatever Fs is, length-4 wires
achieve the best delays and area-delay-power products. How-
ever, the proposed RRAM-based architecture with length-2
wires promises the best delay (�11 percent) and also the best
area-delay-power product (�24 percent), thanks to its better
routability and lower routing congestion. As L is reduced
from 4 to 2, we see a 26 percent channel width reduction
because short wires are more flexible. Conversely, length-1
wires have the smallest channel width but more SB multi-
plexers have to be used in long routing paths. Therefore, we
see significant area and power overhead. Length-4 wires

FIGURE 16. Normalized average area, delay, power and channel

width of baseline and proposed architectures by sweeping Fs:

(a) SRAM-based architectures; (b) RRAM-based architectures.
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guarantee the best power results since less multiplexers are
required in a SB compared to the case where length-2 and
length-1 wires are used. In terms of the best overall perfor-
mance, L ¼ 2 is the best single wire length for the proposed
FPGA architecture.

VI. OVERALL IMPROVEMENTS

In Section V, we determined that Fc;in ¼ 0:33;Fs ¼ 6 and
L ¼ 2 produce the best performances for the proposed FPGA
architecture. In this section, we make a general comparison
between SRAM-based and RRAM-based FPGAs architec-
tures. Figure 18 shows the area, delay, power and channel
width of three FPGA architectures: (1) SRAM-based FPGA
with classical architecture; (2) RRAM-based FPGA with
classical architecture; (3) RRAM-based FPGA with architec-
tural optimizations. When implemented with classical archi-
tecture, RRAM-based FPGAs improve the delay by 32
percent and the area by 17 percent, as compared to SRAM-

based FPGAs, thanks to the delay efficiency of the RRAM-
based routing elements. By properly optimizing the architec-
ture, RRAM-based FPGAs can further reduce the area by 15
percent, the delay by 10 percent and the channel width by 13
percent, leading to a total improvement of 38 percent in delay
and 26 percent in area compared to an SRAM-based FPGA
architecture. In terms of Area-Delay Product and Delay-
Power Product, the proposed RRAM-based FPGA architec-
ture brings a reduction of 57 and 38 percent respectively.
Note that the proposed LB architecture eliminates the com-
plex routing efforts during packing stage, which is required
for the local routing in a classical architecture. Although the
proposed architecture increase the overall routing (local and
global) efforts by 2:4� on average, we believe that the run-
time of EDA flow can be significantly reduced by replacing
the default packer in VPR with a lighter packer.

VII. CONCLUSION

In this paper, we first investigated the circuit design aspects
of RRAM-based multiplexers and identified that their delay
scales better with input size than SRAM-based implementa-
tions. In other words, large RRAM-based multiplexer can be
as delay efficient as the smallest ones. To exploit this advan-
tage, we propose three architectural optimizations for
RRAM-based FPGAs: (a) The traditional CB and local rout-
ing are replaced with a unified CB, leading to ultra-fast inter-
connection from routing tracks to LUT inputs; (b) The CB
connectivity parameter Fc;in should be at least 0.33 to ensure
routability, while the SB connectivity parameter Fs can be
increased to achieve routability improvements without delay
overhead; (c) The best single wire length L is reduced, lead-
ing to better routability. We study the best values of Fc;in, Fs

and L in terms of area, delay, power and channel width.
Experimental results show that a RRAM-based FPGA prop-
erly optimized should employ (Fc;in ¼ 0:33, Fs ¼ 6 and

FIGURE 17. Normalized average area, delay, power and channel

width of baseline and proposed architectures by sweeping L:
(a) SRAM-based architectures; (b) RRAM-based architectures.

FIGURE 18. Normalized average area, delay, energy and channel

width of baseline and proposed architectures: (a) baseline

SRAM-based architectures; (b) baseline RRAM-based architec-

tures; (c) proposed RRAM-based architectures.
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L ¼ 2) to achieve optimal performances. When considering a
classical architecture for both SRAM-based and RRAM-
based FPGAs, an improvement of 32 percent in delay and 17
percent in area can be achieved. The proposed architectural
optimizations can further reduce area by 15 percent, delay by
10 percent and channel width by 13 percent, leading to a total
improvement of Area-Delay Product by 57 percent and
Delay-Power Product by 38 percent.
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