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Abstract—With the growing number of process variation (PV)
sources in deeply nano-scaled technologies, parameterized device
and circuit modeling is becoming very important for chip design
and verification. However, the high dimensionality of param-
eter space, for PV analysis, is a serious modeling challenge
for emerging VLSI technologies. These parameters correspond
to various interdie and intradie variations, and considerably
increase the difficulties of design validation. Today’s response
surface models and most commonly used parameter reduction
methods, such as principal component analysis and indepen-
dent component analysis, limit parameter reduction to linear
or quadratic form and they do not address the higher order
of nonlinearity among process and performance parameters.
In this paper, we propose and validate a feature selection
method to reduce the circuit modeling complexity associated
with high parameter dimensionality. This method relies on
a learning-based nonlinear sparse regression, and performs a
parameter selection in the input space rather than creating a new
space. This method is capable of dealing with mixed Gaussian
and non-Gaussian parameters and results in a more precise
parameter selection considering statistical nonlinear dependen-
cies among input and output parameters. The application of
this method is demonstrated in digital circuit timing analysis
in both FinFET and Silicon Nanowire technologies. The results
confirm the efficiency of this method to significantly reduce
the number of required simulations while keeping estimation
error small.

Index Terms—Circuit modeling and simulation, parameter
reduction, process variation (PV), statistical analysis.

I. INTRODUCTION

THE CURRENT dimension shrinkage trend in CMOS
technology has led to the development of various nano-

devices such as Doped/Schottky barrier silicon nanowire
FETs (SiNWFETs) [1], [2], carbon nanotube FETs [3], and
graphene-based devices [4] exhibiting short-channel effect
immunity, greater electrostatic control, and lower leakage.
However, fabrication-induced process variations (PVs) on
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device and circuit characteristics are a growing challenge with
ongoing feature size downscaling. Geometrical and physi-
cal parameter variations, e.g., changes in transistor effective
gate-length or threshold voltage (Vth), lead to considerable
effects on performance and reliability of modern integrated
circuits (ICs). Moreover, the performance sensitivity on each
parameter can vary from a technology to the next. These
parameter fluctuations may adversely affect the circuit perfor-
mance. Therefore, variation analysis is becoming significant
in circuit modeling and simulation.

PV analysis through simulation is the mostly realistic
approach for comprehensive study of variation impacts for
both circuit static timing and leakage power. Parametric vari-
ation analysis is performed by means of Monte Carlo (MC)
simulation and is widely used in microelectronics industries,
even if it is extremely time-consuming for large circuits.
Considering the variety of local and global variations in device
and circuit simulations would need up to some thousands
or millions of variation variables to represent the distribu-
tions of the geometrical and physical parameter quantities [5].
Moreover, for practical reasons circuits are usually charac-
terized with relatively small number of parameters through
compact models. Scaling beyond 28 nm forces a transition
from CMOS technologies to others like fully depleted silicon
on insulator, FinFET, or SiNW, for which statistical compact
models are inevitable for variability aware design. Statistical
compact models exploit technology computer aided design
(TCAD) to predict the impacts of fluctuations on device per-
formance [6], [7]. The results of TCAD simulation can be
fed to SPICE-like simulator for MC simulations of circuits.
Nevertheless, the high dimensionality of the parameters space
and the computational complexity of TCAD simulation make
the PV analysis very costly and even sometimes infeasible.
Therefore, new tools which speed up the variation analysis
for deeply nano-scaled circuits are required.

The efficiency of current methods for performance anal-
ysis, e.g., statistical timing verification techniques, critically
relies on the dimension of the parameter space [8]–[10].
Most of the existing techniques such as principal component
analysis (PCA) and independent component analysis (ICA) use
a linear transformation to reduce the number of input param-
eters by decorrelating the input space [11], [12]. In spite of
their popularity, they are inherently limited because they only
consider the relations among the input parameters and ignore
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the impact of each input on the circuit outputs. This limita-
tion becomes important when either some critical parameters,
which significantly affect the output, are ignored or a large set
of transformed parameters may still be produced after redun-
dancy removal. Moreover, although statistical methods, such
as reduced ranked regression (RRR) and canonical correlation
analysis (CCA), consider the correlation between the input
parameters and the circuit outputs, they ignore the correlation
among the input parameters [13]. Therefore, they may lead to
a large set of correlated parameters while the input space can
be compressed by considering interparameter correlation. Last
but not least, the mentioned methods put strict assumptions on
the distribution of the model parameters such as Gaussian dis-
tribution which limits their applicability to recently proposed
nano-devices in which parameters have mixed Gaussian and
non-Gaussian distributions.

In this paper, we introduce a novel multiobjective parame-
ter selection method capable of addressing the aforementioned
limitations. A preliminary version of this paper appeared
in [14]. This method takes into account the interset (among
inputs) and intraset (between input and output sets) correla-
tions. The objective function is modified to be distribution free
and minimize the error of output estimation. The major con-
tributions of the method can be summarized as the following.

1) High precision by considering nonlinear dependencies
between interset and intraset parameters.

2) Distribution free feature selection which can be used
for any model or parameter set with unknown statistical
distributions.

3) Feature selection in the input parameter space which
preserves the meaning of the parameters and highlights
the major contributors on device or circuit variability.

We show that such parameter selection approach leads to more
feasible PV analysis of complex design. Therefore, param-
eterized models are built with a smaller set of statistically
significant parameters.

To validate the technique, we performed two sets of exper-
iments on two different target technologies. First, we use
FinFET 20 nm technology as a contemporary IC technology.
Based on that, we analyzed the delay variation of the longest
path for a couple of ITC’99 and ISCAS benchmark circuits.
Here, 5× speed up in MC is obtained for timing variation
analysis with the average variance error of 4.1% in presence
of 5% variation on each parameter. Second, we use double-
gate silicon nanowire FETs (DG-SiNWFETs) technology as a
strong potential substitute for future silicon technologies [2].
The simulation results for timing analysis of the combinational
logic ISCAS89 benchmark circuit s27, using this technology,
prove the performance of this technique for selecting relevant
parameters. Indeed, up to 2.5× speed up in MC is obtained
for timing variation analysis with the variance error of 11.7%
in presence of 30% variation on each parameter.

The organization of this paper is as follows. Section II
describes the motivation and background. In Section III, we
explain the proposed methodology for fast variation anal-
ysis, including a nonlinear learning-based sparse parameter
selection technique. Section IV validates the method using
simulations, and finally Section V concludes this paper.

II. BACKGROUND AND MOTIVATION

In the nanoscale era, modeling and simulation of VLSI cir-
cuits have been facing a significant challenge called “curse of
dimensionality.” Due to the extra process complexity required
to build deeply scaled devices, the number of device param-
eters affected by interdie and intradie variations dramatically
grows [15]. The variation modeling requires distinct variables
for each physical and structural parameter in order to repre-
sent the effect of PV. Exploiting modeling techniques such
as response surface model technique is not applicable any-
more because the complexity of the model is exponential with
respect to the number of parameters [16].

Fortunately, all the model parameters are not indepen-
dent. Indeed, the correlations among these parameters can
be exploited to get rid of redundant parameters. Parameter
reduction methods are generally are generally divided into two
categories.

1) Unsupervised Parameter Reduction: In this category,
parameter reduction is done only considering the cor-
relation among models parameters (intraset correlation).
Indeed the impact of the parameters on the model func-
tionality is not considered. Thus, the parameters with a
negligible impact on the functionality may be selected.
Methods such as PCA and ICA are among the examples
of unsupervised parameter reduction methods. These
methods are favorable when finding the relation between
model parameters and its functionality is not easy, nor
is it cost-effective.

2) Supervised Parameter Reduction: The impact of a redun-
dant parameter can be significant on the model outputs.
Therefore, the correlation between model parameters
and model outputs (intraset correlation) can be exploited
for efficient feature reduction. This is done by using
either an objective function that considers the intraset
correlation (i.e., CCA) or a regression model that shows
the relations between models parameters and the model
output (i.e., �1-norm regularization). Unlike the unsu-
pervised category, the parameters are ranked based on
their impact on the model output, and then the important
ones are selected.

The mentioned methods and some of their modifications have
widely used in VLSI applications. In the following, we discuss
these methods in detail and review their potentials and their
limitations. In Section II-D, we briefly explain the require-
ments of an efficient parameter reduction method for PV
analysis, which provides the motivation for our research.

A. Principal Component Analysis

PCA has been widely used in the field of device compact
modeling [11] and statistical static timing analysis [17]. The
PCA performs a linear transformation through the conversion
of correlated parameters into a smaller set of new uncorrelated
parameters, called principal components. Indeed, the param-
eter space is transformed to new coordinates in which the
largest variance of the data is projected to the first few princi-
pal components. Then, the principal components, which have
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(a) (b) (c)

Fig. 1. Visual representation of the common parameter reduction techniques. (a) PCA. (b) ICA. (c) CCA.

the maximum variations in the parameter space, are selected
as it follows.

Given an n-dimensional input set x = [x1, x2, . . . , xn],
which has zero mean and multivariate Gaussian distributions.
Assume that the correlation of components in x is repre-
sented by the covariance matrix �. Using eigen-decomposition
procedure, PCA computes � as

� = E ψ ET (1)

where ψ is a diagonal matrix of � eigenvalues, and E =
[e1, e1, . . . , en] contains the corresponding orthogonal eigen-
vectors. Fig. 1(a) illustrates the projection of a multivariate
Gaussian distribution for which the vectors e1 and e2 are cor-
responding orthogonal eigen-vectors computed by PCA. By
including few eigenvectors of E that have the largest eigen-
values into the projection matrix Ered, the new parameter set
that has a smaller dimension than that of the original set can
be obtained by

xred = ET
red x. (2)

As a main limitation of the PCA, it only focuses on the correla-
tion among the input parameters and discards the dependency
between the input parameters and the corresponding outputs.
Therefore, a set of parameters may selected that have no con-
siderable impact on the output of the model. Moreover, when
the underlying statistical information about the distribution of
the input parameters is unknown, PCA fails to select the rel-
evant parameters contribute to the model output. Last but not
least, the maximum performance can be obtained when the
distribution of input parameters is Gaussian [18].

B. Independent Component Analysis

For a Gaussian distribution, uncorrelatedness implies statis-
tical independence which means that the principal components
are also statistically independent. However, such a property
does not hold for general non-Gaussian distributions. In (2),
the random vector x consists of correlated non-Gaussian ran-
dom variables, and a PCA transformation would not guarantee
statistical independence for the components of the trans-
formed input parameters. Since the PCA technique focuses
only on second order statistics, it can only ensure uncorrelat-
edness, and not the much stronger requirement of statistical
independence.

ICA is a statistical technique that precisely transforms a
set of non-Gaussian correlated parameters to a set of param-
eters that are statistically as independent as possible, through
a linear transformation. Given a linear mixture of n indepen-
dent components such as x = [x1, x2, . . . , xn]T , that are the
correlated non-Gaussian parameters, the n statistically inde-
pendent components like s = [s1, s2, . . . , s1]T can be obtained
as follows:

x = A s (3)

where A ∈ R
n×n is a transformation matrix. Similar to PCA,

the independent components of vector s are mathematical
abstractions that cannot be directly observed. The ICA tech-
nique requires centering and whitening of the vector x, leads
to variables with zero mean and unit variance. The goal of
ICA is to estimate the elements of unknown transformation
matrix A, and the samples of statistically independent com-
ponents of vector s given only the samples of the observed
vector x. Equation (3) can also be written as

s =W x : si = wT
i x =

n∑

j=1

wijxi for i = 1, . . . , n. (4)

Here, W ∈ R
n×n is the inverse of the unknown mixing

matrix A. Fig. 1(b) represents a hypothetical multivariate
distribution along with the corresponding independent com-
ponents (s1 and s2). It is obvious that ICA has found the
original components by relaxing the constraint that all the
identified directions have to be orthogonal. However, PCA
fails to estimate the major components for this data set, as
it finds each uncorrelated and orthogonal component in the
direction of highest variance (e1 and e2). Algorithms for
computing ICA estimate the vectors wi that maximize the
non-Gaussianity of wT

i x by solving a nonlinear optimization
problem. This can be performed by using kurtosis, neg-
entropy, and mutual information as typical methods measuring
non-Gaussianity [19].

In contrary to PCA, ICA is used for feature reduction of
non-Gaussian parameters. When more than two parameters
follow the Gaussian distribution, ICA fails to find the con-
structive components [20]. ICA like PCA is output ignorant
which means that the parameters with minor impacts on the
outputs may be selected, and important information may be
lost during the dimensionality reduction.
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C. Canonical Correlation Analysis

As an output sensitive statistical method, CCA is capable of
reducing the parameters which have major impacts on the out-
put. Suppose that the relationship between model parameters
x = [x1, x2, . . . , xn], and model outputs y = [y1, y2, . . . , ym],
can be estimated by the following regression:

Y = AX+ ε (5)

where X ∈ R
n×k and Y ∈ R

m×k are matrices containing the
samples of the x and the corresponding y, A is a (m × n)
matrix to project the n-dimensional parameter space onto an
m-dimensional output space, and ε is matrix of a zero-mean
random error of the regression. CCA computes two sets of
basis vectors, wx ∈ R

n for X and wy ∈ R
m for Y, such that

the correlations between the projections of the variables onto
these basis vectors (wT

x X and wT
y Y) are mutually maximized

ρ = arg max
wx,wy

corr(wT
x X,wT

y Y)

= E[wT
x XYTwy]

√
E[wT

x XXTwx]E[wT
y YYTwy]

= wT
x Cxywy√

wT
x CxxwxwT

y Cyywy

(6)

where Cxy ∈ R
n×m, Cxx ∈ R

n×n, and Cyy ∈ R
m×m are in

interset and within sets covariance matrices.
Since the correlation is not influenced by rescaling, the CCA

problem is formulated to maximizing the numerator subject to

wT
x Cxxwx = 1, wT

y Cyywy = 1. (7)

The CCA method then is reduced to find the optimum ρ

under the above constraints. This problem now can be solved
by Lagrange multiplier method result in

CxxC−1
yy Cyxwx = λ2Cxxwx. (8)

Finally, the problem is reduced to a general eigen problem
of the form Ax = λBx. Therefore, the sequence of basis vec-
tors (wxs and wys) is obtained by computing the eigenvectors
of the (8). This leads to a new coordinate system that optimizes
the correlations between input parameters and target outputs.

Now, the parameter reduction problem is reduced to form
an r-dimensional space of the most important basis vectors so
that r ≤ n. The importance of each basis vector is determined
according to their computed eigen values. Fig. 1(c) shows how
CCA selects a basic vector in the input space which has the
maximum correlation with the projected output space. The
maximum correlation is obtained when the angle between two
projected variables is reduced toward 0.

Similar to previous methods, CCA strictly requires a
Gaussian distribution of input variables to significantly
enhance the performance of feature reduction. However, vari-
ation analysis of deeply nanometer scaled technologies has
revealed that the distribution of several parameters, such as
Vth, does not follow a Gaussian distribution [21]. Thus, the

performance of feature selection may be considerably affected
by the distribution of input parameters. Furthermore, in CCA
like other linear models input parameters are considered inde-
pendent, while several geometrical parameters of the transistor,
e.g., gate length and Vth are correlated to one another [20].

D. Sparse Linear Regression via �1-Norm Regularization

Sparsity via �1-norm regularization is a learning-based fea-
ture selection method [22]. This method focuses on the cases
where the number of samples is less than the number of coef-
ficients. In this case, the solution (i.e., the model coefficients)
is not unique, unless exploiting several additional constraints.
As a result, sparsity can be used to uniquely determine the
values. For a vector of input parameters such as w, �1-norm
regularization technique is used to find the most important
parameters subject to the following objective function:

min L = ‖wx− y‖22 + λ‖w‖1 (9)

where ‖ · ‖2 and ‖ · ‖1 represent the �2-norm and �1-norm of a
vector, respectively. The �1-norm (‖w‖1) gives us the sum of
the absolute non-zero elements of the w. Indeed, it measures
the sparsity of w in the regression model. Therefore, �1-norm
regularization attempts to find a sparse solution that minimizes
the least-square error. λ is a hyper parameter in (8) that con-
trols the tradeoff between the sparsity of the input parameters
and the minimal value of the loss function ‖wx− y‖22. For
example, a large λ value will result in a small error function,
but it will increase the number of non-zero elements in w. It
is important to note that a small error function does not neces-
sarily mean a small modeling error. Although this method can
find linear dependencies between input and output parameters,
it suffers from lack of modeling nonlinear relations among
parameters.

E. Parameter Reduction for PV Analysis

In order to handle the high dimensionality of the circuits’
models in presence of PV, parameter reduction is necessary to
find the intrinsic dimensionality of the models. The intrinsic
dimensionality of the models is the minimum number of PV
parameters needed to account for variation analysis. In the
framework of PV analysis, the applicable parameter reduc-
tion method needs to capture the nonlinearity among process
parameters and performance parameters. The simple construc-
tion of process parameters from the reduced space is necessary
for experimental simulations. Last but not least, the reduction
method should be able to handle PV variables with different
statistical distributions.

The methods mentioned above are linear. Considering non-
linear dependencies can remarkably increase the precision
of parameter reduction. Many modifications [20] have been
proposed to alleviate this problem, e.g., function driven com-
ponent analysis, quadratic RRR, kernel PCA, and kernel ICA.
kernel-based methods try to address this issue by using fixed
nonlinear kernels, e.g., quadratic, polynomial, and exponential
functions. They map the input space to a higher dimensional
space, and then linearly relate the model to the output space.
This has several limitations: it increases the dimensionality of



MOHAMMADI et al.: EFFICIENT STATISTICAL PARAMETER SELECTION FOR NONLINEAR MODELING 1999

Fig. 2. General flow of the parameter reduction toward a fast and efficient PV analysis.

problem before reducing it, and, more importantly, it assumes a
known nonlinear relationship between the input and the output
spaces.

Moreover, these methods perform dimensionality reduc-
tion, meaning that the problem is transformed from an input
parameter space to a reduced parameter space. Since these
transformations change the meaning of physical parameters,
either we need to reconstruct the original parameters from
the reduced parameters, or modify the PV simulator to work
with the new set of parameters. Modifying device and pro-
cess simulators like TCAD simulators is very challenging.
Moreover, due to the nonlinearity of these transformations,
it is extremely costly to reconstruct the original parameters
from the lower dimension space. While the above nonlin-
ear methods increase the precision, but they can not be used
efficiently in our applications. Therefore, a parameter selec-
tion method in the input space, that considers the nonlinear
relation between the input and the output spaces, is then
proposed in the following section. The method accelerates sta-
tistical PV analysis and addresses the major drawbacks of the
previous work.

III. LEARNING-BASED PARAMETER REDUCTION FOR

FAST VARIATION ANALYSIS OF EMERGING DEVICES

In this section, we present a learning-based feature selec-
tion method adapted to VLSI modeling and simulation. We
overview the framework of parameter selection, and then
discuss the method in detail.

In Section III-A, we introduce our general parameter reduc-
tion methodology for PV analysis. Next, we briefly review
the nonlinear regression through feed forward neural net-
work (FFNN) which is used to build the nonlinear regressor
of our parameter reduction method (Section III-B). The train-
ing and validation algorithms of the nonlinear regressor are
discussed in Sections III-C and III-D. In Section III-E, the
mathematical background of the sparsity we use in our method
is explained. Finally, the proposed parameter reduction method
is introduced in Section III-F.

A. Parameter Reduction Toward Low Dimensional Device
and Circuit Models

In order to achieve fast PV analysis for digital ICs, large
designs have to be partitioned into a set of logic cells. The size
of each logic cell should be small enough such that the parame-
ter selection can be efficiently performed. After extracting the
variation parameters, logic cells are hierarchically clustered
to form the initial large circuit. Then, the parameter selec-
tion can be performed again on each cluster with the new
reduced parameter set, to completely cover the targeted large
circuit. In most cases, the circuits that we want to model are
known to be structured in the sense that their physical param-
eters are highly correlated and therefore the associated models
are compressible. Considering the correlation among parame-
ters provides an opportunity by which the circuit functionality
can be estimated with smaller number of parameters which
leads to a lower computational complexity.

Fig. 2 illustrates the general flow of the proposed param-
eter reduction method for circuit PV analysis. First, input
and output parameter sets are selected according to the hier-
archy level at which the parameter reduction is performed.
The input parameter set can be obtained from three different
sources: 1) compact model parameters of the device; 2) param-
eters of the TCAD model; and 3) measured characteristics of
the fabricated devices such as threshold voltage (VTh), Ion,
Ioff, and subthreshold slope (SS). The output parameter set
can also be selected among delay, power consumption, or
any other functionality criteria of the logic cells and circuit
blocks. In the next step, a learning-based statistical multi-
variate regression is used to predict the relations among the
input and output parameter sets. The objective function of
the regression is modified to minimize the error of the out-
put prediction while discarding the unnecessary parameters.
Here, training the regressor under the constraint of a lim-
ited error bound is the major step toward parameter reduction.
Finally, the most significant parameters are only considered for
the PV analysis of the target circuit, whereby increasing the
evaluation speed.
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Fig. 3. Structure of nonlinear regression using FFNN.

B. Nonlinear Regression via Feed Forward Neural Network

FFNN is a powerful nonlinear regressor known to be a uni-
versal approximator by increasing the size of hidden layer [23].
We adopt FFNN here as our regressor to consider the nonlin-
ear relations among the parameters. The regression model is
formulated as

Y =W′tanh(WXT)+ ε (10)

where X ∈ R
n×m is a matrix in which each row represents the

sample values of the input set. The vector Y ∈ R
k×n, repre-

sents the corresponding output. W ∈ R
k×m is a transformation

matrix in which k is the size of the hidden layer. It trans-
forms each input feature to a space formed by hidden units.
W′ ∈ R

k×k is a matrix that forms the output from the hidden
layer. Vector ε represents the error of estimation in compari-
son with target objectives. The hyperbolic tangent (tanh) is an
activation function. In order to use an FFNN as a universal
function approximator, the FFNN activation function needs
to be nonlinear and continuously differentiable. Moreover,
stable training through gradient-descent algorithms needs a
monotonic, finite range, and 0-neighborhood identity activa-
tion function. The tanh satisfies all these properties and is
widely chosen for FFNNs. Fig. 3 represents the structure
of the nonlinear regressor. In the case of multiple outputs,
(Y ⊂ R

k×n, k > 1), we handle each output independently.
To find the best fitting model we perform the following

optimization over the objective function:

argmin
W,W′

L
(
W,W′

) = 1

2

∥∥Y−W′tanh
(
WXT)∥∥2

2. (11)

The above optimization minimizes the prediction error of
the model using all m parameters.

C. Learning Algorithm for Nonlinear Optimization

The Levenberg–Marquardt (LM) algorithm is used for learn-
ing the parameters of the FFNN [24]. LM benefits the steepest
descent (SD) and Gauss-Newton (GN) algorithms to avoid
finding local optimums. The LM algorithm combines the SD
and GN in the following manner:

xk = xk−1 −
(
JT

k−1 Jk−1 + μI
)−1

JT
k−1 e (12)

Fig. 4. Flow-chart of a fivefold cross-validation.

where J is the Jacobian matrix contains first derivatives of the
FFNN errors, e is a vector of FFNN errors in the last step, x
is a vector of unknown parameters wi,j, ki, bi that are obtained
after training, and μ is a hyper parameter that offers a bal-
ance between SD and GN during the learning iterations. The
Jacobian matrix can be computed via back-propagation tech-
nique that is much less complex than computing the Hessian
matrix.

In Section III-F, we design a function to reward sparsity
over input parameters and add that function to the above opti-
mization. Thus, we can find the set of significant parameters
that can predict the output precisely.

D. Validation via k-Fold Cross-Validation

Cross-validation is a frequently used method to avoid over-
fitting on training set and improve the quality of trained
model [25]. In order to perform k-fold cross validation, the
training set is randomly divided into k separate subsets of
equal size. Then, training procedure is performed k times, each
time discarding one set as a testing set, and the average error
over all the runs is computed. Finally, the trained model with
the lowest error is selected. This has the additional benefit of
avoiding local optimums for the trained model.

Fig. 4 illustrates the an example of a fivefold cross-
validation. Here, the training set is divided to five subsets.
The training procedure iteratively is done five times. In each
iteration, one of the subsets is selected as a testing set, and the
remaining ones are exploited as a training set. The trained sys-
tem with the lowest error is then selected. In our experiments
we use tenfold cross-validation which is commonly used for
the efficient training of the two layer FFNN.

E. Column-Wise Sparse Parameter Selection

Our proposed parameter reduction technique inspired by
�1-norm regularization method. If x represents one input
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sample, we can reformulate the �1-norm regularization loss
function as the following:

Y =W′tanh

(
m∑

i=1

Wixi

)
+ ε (13)

in which the vector Wi represents the column i of the
matrix W. The contribution of each input parameter corre-
sponds to a column of the matrix W. To select few number
of parameters, we need to learn W as a column-wise sparse
matrix. If the matrix is column-wise sparse, it means that there
are several columns of all zeros and the corresponding param-
eters do not have any contribution in the model. Consequently,
the significant parameters are the ones with the corresponding
non-zero columns.

To achieve the column-wise sparsity, we measure the spar-
sity on the vector consisting of the maximum of the columns:
||max(W1) · · ·max(Wm)||0. If the entry with maximum value
in a column is pushed toward zero, we expect all the other
values in a column become zeros. It is a common practice
to approximate norm-zero with norm-one to achieve a sparse
answer while making the optimization easier. But, still the
optimization is almost impossible because of the discrete max
function applied on the columns. Big norm function provides
a continuous approximation of the maximum function (infin-
ity norm is equal to max). Therefore, we approximate the max
function with the continues p-norm function (p ≥ 2)

‖v‖p =
(

n∑

i=1

|vi|p
) 1

p

. (14)

We choose p large enough that achieves a column-wise sparse
answer on a held-out data set.1 Similarly in group lasso [26]
combination of norm 1 and 2 is used to achieve a linear group-
wise sparse model.

Fig. 5 schematically represents the concept of column-wise
sparsity. The norm-p (p is selected reasonably big) is applied to
W in order to compute the maximum element of each column.
Then, norm-one is applied to the vector of obtained values to
impose the sparsity. Thus, the column-wise sparsity is mea-
sured by ||||W1||p · · · ||Wm||p||1. In the following, we present
how the column-wise sparsity is applied on an FFNN regressor
to form a feature selector.

F. Nonlinear Column-Wise Sparse Parameter Selection

In order to find the reduced input set, the sparsity objec-
tive function is added to the regressor. Putting the FFNN
regressor and column-wise sparsity together, the objective
function becomes

argmin
W,W′

L(W,W′) = 1

2

∥∥Y−W′tanh
(
WXT)∥∥2

2

+ λ||||W1||p · · · ||Wm||p||1. (15)

The first term of the objective function is called loss function
and tries to minimize the error of regression. The second term

1The held-out data set is referred to a set that is only used for the training
or the evaluation purpose.

Fig. 5. Role of norm-p regularization in weight matrix for feature selection.

is called regularization term which controls the number of
parameters in regression.

Feature selection can be used whenever the values of the W
and W′ are obtained. Algorithm 1 represents the steps of learn-
ing for the column-wise sparse feature selection method. In
each iteration, the gradient of objective function is computed
to update W and W′ [Algorithm 1 (line 6)]. The algorithm
continues either to reach the defined bound of error or to end
at the maximum learning iterations [Algorithm 1 (line 3)].
Thus W and W′ are learned during the training process. The
λ and p are model hyper parameters. The λ value controls the
number of parameters in the regression model. As the λ value
increases, the objective function shrinks the weights in W in
a column-wise manner toward zero. Thus, the bigger λ value
forces more parameters toward zero and reduces the parameter
space.

G. Hyper Parameter Selection

The hyper parameters of the proposed method can be
selected very efficiently in the following manner.

1) The Value of Regularization Penalty (λ): Binary search
can be efficiently used to determine the λ value. When
the λ value increases, the weights in the W start to
decrease until one of the columns becomes zeros. This
means that the number of parameters remain constant
for an interval of λ values. To find the desired λ value
(which shows the number of parameters after reduction),
we start from a big constant value. First the objective
function (L in Algorithm 1) is computed to give us
the number of remaining parameters. Next the objective
function is recomputed with the value of (λ/2). Similar
to binary search, the desired interval for the λ value is
selected. This procedure continues until we find an inter-
val in which each λ value gives us the desired number
of parameters.

2) The Size of Hidden Layer: This can be done with capac-
ity saturation measurement of the target regressor. In
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Algorithm 1: Nonlinear Multiobjective Parameter
Selection

input : xi = {Input vector}, yi = {Output vector}, ε =
Error bound, λ = Regularization parameter, M =
Maximum number of iterations

output: W,W′ = Matrix of transition weights

1: Initialize W,W′;
2: Iter← ∅, E← ∅;
3: while |E| ≥ ε or Iter ≤ M do
4: E← ∅;
5: for i=1:n do
6: Set the objective function

L← 1
2‖Y−W′tanh(WXT)‖22 + λ‖‖Wi‖P‖1;

7: Compute the error
(E← 1

2‖Y−W′tanh(WXT)‖22);
8: Calculate the gradient of objective function in

order to update weights;
9: W,W′ ← Gradient-based optimization

(W,W′, ∂L
∂W ,

∂L
∂W ′ );

10: Iter← Iter + 1;
11: E← E

n ;

12: return W;

order to find the optimum number of nodes in the hid-
den layer, we performed the following procedure. In
each iteration, hidden nodes are added incrementally
to increase the FFNN learning capacity. This procedure
continues until the performance of the FFNN on the test-
ing set starts to decrease. After this step, increasing the
number of hidden nodes causes the network to overfit
the training set. Here, the training error is driven to a
very small value, but when new data, as a testing set, is
presented to the network the error becomes large. Fig. 6
depicts the error value of the network on the testing
and the training sets for the ITC’99 b03 benchmark cir-
cuits. As shown in the figure, the minimum error on the
testing set is achieved when hidden layer has 40 nodes
(err = 4.26× 10−6). The figure clearly depicts that how
the performance of a larger network is degraded on the
testing set.

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed method by applying the
column-wise feature selection to a set of combinational and
sequential logic benchmark circuits in the context of regular
and emerging technologies. The focus of our study is on the
timing variation analysis. The use of this method is motivated
by the lack of intuition that a skilled designer may have to
identify the critical parameters of novel devices. We first look
at FinFET as a cutting edge technology. Design verification
in FinFET technology is complex because of the novel 3-D
structure of the devices. We then look at a further interesting
technology, silicon nanowires, that are also 3-D structures with
specific features.

Fig. 6. Error of training and testing sets for a network with various number
of hidden nodes.

A. PV Analysis for FinFET Technology

In this section we present the application of described
method for timing variation of FinFET-based circuits.

1) FinFET Technology: FinFET technology is currently
used as the cutting edge IC technologies owing to its remark-
able scalability. FinFET as tree-dimensional structure uses a
fin-shaped channel that efficiently providing more volume than
a planar device for the same surface area. The device gate
wraps around the channel that provides more efficient con-
trol over the channel. Thus, very little amount of leak current
passes through the substrate when the device is in the off state.
This, in turn, provides the opportunity of using lower thresh-
old voltage leading to better performance and lower power
consumption.

2) Setup of Experiments: To evaluate the proposed parame-
ter selection technique, we exploit a number of combinational
and sequential logic circuits from ITC’99 and ISCAS bench-
marks. We study the timing variation of the longest path for
each benchmark circuits. The longest path of each bench-
mark circuit is extracted using Synopsys PrimeTime [27] as
exemplified in Fig. 7. In our analysis, the input parameter set
includes the VTh of each transistor within the circuit. Here,
VThs are selected as they can significantly reflect the variation
of physical parameters of each transistor on its performance.
A transistor pool, which contains 5000 n-type and p-type tran-
sistors in 20 nm FinFET technology, is generated by applying
a 5% Gaussian variation on the VTh of each transistor. To build
each circuit instance, the transistors are randomly selected
from the pool and are added to the SPICE model of the target
circuit. Using the obtained SPICE model, we can assess the
timing variation through MC simulations but require tremen-
dous amount of time. By applying the proposed parameter
selection method, we show how this sampling space can be
limited to the most important input parameters that mainly
impact the timing of the circuits.

3) Parameter Reduction and Simulation Speed-Up: We per-
formed 10 000 MC simulations to extract the distribution of
the delay for each benchmark by applying variation on all
the parameters (the total number of parameters are listed in
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Fig. 7. Longest path in ITC’99 b03 benchmark.

(a) (b)

(d)(c)

Fig. 8. Distribution of longest path delay for benchmark b03 before and after parameter selection. (a) Full parameter set. (b) Proposed method parameter
set. (c) �1-norm regularization parameter set. (d) PCA parameter set.

Table I). We then trained our parameter selection method over
1000 MC simulations to pick out the 20% most important
parameters from each benchmark. In our method, the reduced
set of input parameters is achievable through increasing the
value of λ till reaching a desirable balance between the per-
formance estimation accuracy and the number of selected input
parameters. After extracting the important parameters, we per-
form 1000 SPICE simulations for each target benchmark by
applying variations on the selected parameters. Table I demon-
strates the mean and standard deviation of the longest path
delay for each benchmark before and after parameter reduc-
tion. The results reveal average errors of 1.2% and 3.2% on
the mean and the standard variation values, respectively.

The distributions of the longest path delay for ITC b03
benchmark are depicted in Fig. 8 before and after param-
eter reduction. The distribution in Fig. 8(a) is obtained
through 10 000 MC simulations over 88 variation parameters.

We reduced the size of the input parameter space using pro-
posed parameter selection method, and two baselines �1-Norm
regularization and PCA. We did not perform our experiments
using ICA and CCA baseline methods since ICA failed to find
the reduced input parameters having Gaussian distributions,
and �1-norm regularization surpasses the CCA method [28].
The distributions in Fig. 8(b)–(d) are attained through 1000
MC simulations but using only 17 parameters selected by
three mentioned parameter selection methods. The variation
sampling using the most relevant parameters, obtained by
our method, is capable of estimating the timing variation
distribution with less amount of error (σ = 3.68 ps as com-
pared to σ = 3.54 ps) compared to �1-Norm regularization
(σ = 3.30 ps as compared to σ = 3.54 ps) and PCA
(σ = 1.48 ps as compared to σ = 3.54 ps). Therefore,
the proposed parameter selection can efficiently reproduce
the timing variation with a small subset of input parameters.
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TABLE I
COMPARISON OF MEAN AND VARIANCE OF VARIOUS ITC’99 AND ISCAS BENCHMARKS ON THE DELAY

VARIATION OF LONGEST PATH BEFORE AND AFTER APPLYING PROPOSED PARAMETER REDUCTION

TABLE II
COMPARISON OF THE RUNTIME OF THE TIMING ANALYSIS FOR THE

ITC’99 b03 BENCHMARK WITH AND WITHOUT PARAMETER

REDUCTION (CPU: DUAL-XEON X5650, MEMORY: 24 GB)

The number of required MC simulations is reduced
by 5× (2000 simulations for training and reproducing the dis-
tribution of timing variation versus 10 000 MC simulations
without parameter selection). Table II compares the runtime of
finding the longest path delay for the ITC’99 b03 benchmark
circuit with and without parameter reduction. Here, the param-
eter reduction result in 4.9× speed up when it is compared
with MC simulations.

In order to show the stability of the parameter reduction, we
also repeated the experiment by selecting different number of
parameters. Table III clearly shows that the prediction error
is reduced when a larger set of parameters contribute in the
longest-path delay estimation. Here, the increase in the std
error with 20 parameters is due to the fact that the experiments
for finding the distribution for each row is performed with a
new random value for the parameters. So, it is possible that
to see such an increase in the std value or even in the mean
values.

B. PV Analysis for Double-Gate Silicon
Nanowire Technology

Finally, we demonstrate the result of parameter selection for
the variation analysis of a benchmark circuit in double-gate
silicon nanowire technology.

TABLE III
COMPARISON OF THE NUMBER OF THE ACCURACY VERSUS

NUMBER OF PARAMETERS FOR THE ITC’99 b03

1) Double-Gate Silicon Nanowire Technology:
DG-SiNWFET technology is considered as a potential candi-
date for current CMOS technology thanks to its 1-D prop-
erties, lower short channel effect, and lower leakage [2].
DG-SiNWFETs are double independent gate devices whose
polarity can be dynamically configured between n- and p-type
through an additional terminal, called polarity gate (PG) [2].
In-field polarity reconfiguration property is interestingly used
to realize compact exclusive or-based circuits [29]. Fig. 9 sum-
marizes the geometrical structure of the DG-SiNWFET as
well as the constructive device parameters, used in a TCAD
model description. Fig. 10(a) also illustrates the different in-
field reconfigurations of the device polarity. The p-type and
n-type are realized by fixing the PG bias to system ground
(“0”) and Vdd (“1”), respectively.

To perform variation analysis, we first characterize a popu-
lation of devices by TCAD simulation using a 30% Gaussian
variation on each geometrical parameter (σ = 30%). In our
case study, 2500 3-D TCAD simulations were performed to
provide statistical information of the DG-SiNWFET device.
Fig. 11 depicts the distinctive analytical metrics of the device
such as Ion, Ioff, VTh, and SS. Only the distribution of VTh can
be approximated by a Gaussian distribution contrary to the
remaining metrics. This result highlights that the distributions
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Fig. 9. DG-SiNWFET structure with related parameters.

Fig. 10. (a) Use of DG-SiNWFET polarity control. (b) ISCAS89 benchmark
circuit s27 using DG-SiNWFET technology.

of all parameters are not necessarily Gaussian. Thus, the dis-
tribution free parameter reduction techniques are required for
future technologies.

2) Setup of Experiments: For evaluating the proposed
parameter selection method, the small size benchmark circuit
ISCAS89-s27 is selected as a case study. Without loss of gen-
erality, the method can be used for any other circuits. The
main reason to select such a small size circuit is the long
computation time of the TCAD simulations to produce the
DG-SiNWFET device data set due to the lack of a mature
compact model. In other technologies, compact models can be
used to accelerate the data set generation. The schematic of the
circuit is shown in Fig. 10(b). All the gates use DG-SiNWFET
transistors. The PG of each transistor is appropriately config-
ured to provide the correct functionality in the pull-up and
pull-down of the gates. The considered circuit is comprised of
30 transistors leading to 300 geometrical parameters. Normal
MC simulation to evaluate the performance variation requires
tremendous amount of time, considering that no intuitions on
the fundamental parameters can be done in the context of
unconventional device mechanisms. By applying the proposed
method, we show how this sampling space can be restricted to
the main parameters that considerably affect the performance
of the circuit.

Among various performance metrics, we select the delay
of circuit to form the output set. For the sake of keeping a

reasonable complexity for the experiments, a reduced subset
of geometrical parameters of the transistors (50 parameters)
is randomly considered as the input set. Here, the goal is to
determine how much the parameter reduction can improve the
circuit performance evaluation, while the estimation error is
bounded by a certain threshold.

To simulate the characteristics of the target circuit, the
obtained I − V curve of the transistors, are injected in a
Verilog-A table model. This model is run with HSPICE to
perform the MC simulations for the timing analysis purpose.

3) Parameter Reduction and Simulation Speed-Up: After
applying column-wise sparse parameter selection, we can
reduce the number of parameters to improve the computa-
tional complexity of the simulations. Decreasing the number
of parameters can be obtained by increasing the λ value which
results in larger delay estimation error. In this case, the perfor-
mance of the circuit can be evaluated with a smaller number of
parameters which really contribute to the MC simulations, but
results in a higher performance estimation error. The capability
of bounding the error by changing the numbers of parame-
ters enables the designers to tradeoff evaluation precision with
computation complexity. In our case study, reducing the num-
ber of parameters to 10 (from 50) is obtained with the variance
of delay estimation error of 11.7%.

We compared the proposed technique with PCA as a well-
known parameter reduction methods for estimating the delay
of ISCAS89-s27. For PCA, 20% of the new features were
selected according to their highest eigenvalues. To be able
to perform the MC simulations without any change in the
underlying model or simulator, the reverse of these trans-
formations are applied to produce the exact values of the
input space parameters. In our method, λ value was tuned
to select the same number of parameters in input space. Using
reduced input parameter sets obtained by PCA and the pro-
posed method, we performed 1000 MC simulations for each
set to estimate the delay distribution of ISCAS89-s27. The
proposed method shows a better performance compared to
its competitor with lower variance of delay estimation error
(11.7% versus 13.5%).

To verify the accuracy and the performance improvement of
doing such reduction, we evaluate the delay of the target circuit
in the presence of variations. We perform the MC simulations
in both cases of reduced and nonreduced input parameter set
with 10 and 50 parameters, respectively. Fig. 12 represents the
probability density function of the ISCAS89-s27 delay in both
cases. The figure depicts a high correlation between two sets.
We observe that the proposed column-wise sparsity is able
to estimate the major parameters for delay variation analysis
with tiny amount of error on each test samples (σ = 8.91
ps as compared to σ = 10.10 ps leading to a variance error
of 11.7%). Thus, the method is able to efficiently evaluate
the delay variation of the circuit, while reducing the num-
ber of parameters. A reduced input set results in less MC
simulations which is very critical in the case of execution
time. As we used 100 random samples for each parameter, the
parameter reduction reduces the number of required MC runs
by 2.5× (5000 simulations without feature selection ver-
sus 2000 simulations for training and feature selection).
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Fig. 11. Distribution of VTh, Ioff, Ion, and SS for DG-SiNWFET (σ = 30% for structural parameters). Only the variation of VTh follows a Gaussian
distribution.

Fig. 12. Delay distribution comparison of the full and the reduced parameter
models.

V. CONCLUSION

We introduced an efficient parameter selection method
which can be used for performance evaluation of the emerg-
ing technologies like silicon nanowires. Using this method,
we are able to accurately evaluate the PVs while reducing
the computation complexity by utilizing the obtained reduced
parameter set. This method is based on FFNN regression, and
employs column-wise sparsity to reduce the size of parame-
ters space. Unlike the widely used feature reduction methods,
this method is able to take to account the mixed Gaussian and
non-Gaussian parameters. Moreover, it considers the nonlin-
ear dependencies between input parameters and outputs which
lead to effective parameter reduction. We applied this method
to a couple of FinFET-based combinational and sequential
benchmarks from ITC’99 and ISCAS to study the variation
of delay of the longest path for each circuit. In this case,
experimental results show 5× speed up and estimate the
delay distribution with the average variance error of 4.1%
in presence of 5% variation on each parameter. Applied to
ISCAS89-s27 benchmark exploiting DG-SiNWFET technol-
ogy as well, experimental results show 2.5× speed up in
timing analysis and estimation of the delay distribution with
the variance error of 11.7% in presence of 30% variation on
each parameter.
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