
A Sound and Complete Axiomatization
of Majority-n Logic

Luca Amar�u, Student Member, IEEE,
Pierre-Emmanuel Gaillardon, Member, IEEE,

Anupam Chattopadhyay, Senior Member, IEEE,
and Giovanni De Micheli, Fellow, IEEE

Abstract—Manipulating logic functions via majority operators recently drew the

attention of researchers in computer science. For example, circuit optimization

based on majority operators enables superior results as compared to traditional

synthesis tools. Also, the Boolean satisfiability problem finds new solution

approaches when described in terms of majority decisions. To support computer

logic applications based on majority, a sound and complete set of axioms is

required. Most of the recent advances in majority logic deal only with ternary

majority (MAJ-3) operators because the axiomatization with solely MAJ-3 and

complementation operators is well understood. However, it is of interest extending

such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical

and practical perspective. In this work, we address this issue by introducing a

sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally

includes existing MAJ-3 and MAJ-5 axiomatic systems. Based on this general set

of axioms, computer applications can now fully exploit the expressive power of

majority logic.

Index Terms—Majority logic, Boolean algebra, axiomatization, soundness,

completeness

Ç

1 INTRODUCTION

BOOLEAN logic and its axiomatization is fundamental to the
whole field of computer science. Traditionally, Boolean logic is
axiomatized in terms of conjunction (AND), disjunction (OR)
and complementation (INV) operators. Virtually, all of today’s
digital computation is performed by using these operators with
their associated laws. Recently, it was shown that more efficient
logic computation is possible by using a majority operator in
place of conjunction and disjunction operators [1], [2], [3], [4].
Moreover, the properties of majority operators, such as stabil-
ity, have been proved to be the best fit for solving important
problems in computer science [5], [6], [7], [8]. Regarding emerg-
ing technologies, majority operators are the natural logic primi-
tives for several beyond-CMOS candidates [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]. In order
to exploit the unique opportunity led by majority in computer
applications, a sound and complete set of manipulation rules is
required. Most of the recent studies on majority logic based
computation consider ternary majority (MAJ-3) operators
because the axiomatization in this context is well understood.
To unlock the real expressive power of majority logic, it is of
interest to extend such axiomatization to n-ary (n odd) majority
operators (MAJ-n).

We introduce in this paper a sound and complete axiomati-
zation of MAJ-n logic. Our axiomatization is the natural exten-
sion of existing majority logic systems with fixed number of

inputs. Based on the majority axioms introduced in this work,
computing systems can use at its best the expressive power of
majority logic.

The remainder of this paper is organized as follows. Section 2
gives background and notations useful for the rest of this paper.
Section 3 introduces our sound and complete axiomatization for
MAJ-n logic. Section 4 discusses relevant applications of our major-
ity logic system in logic optimization, Boolean satisfiability, repeti-
tion codes and emerging technologies. Section 5 concludes the
paper.

2 BACKGROUND AND NOTATIONS

We provide hereafter terms and notions useful in the rest of the
paper. We start by introducing basic notation and symbols for logic
operators and we continue by presenting special properties of
Boolean functions. We define a compact vector notation for Bool-
ean variables and discuss Boolean algebras with a particular
emphasis on MAJ-3/INV Boolean algebra.

2.1 Notations

In the binary Boolean domain, the symbol B indicates the set of
binary values f0; 1g; the symbols ^ and _ represent the conjunction
(AND) and disjunction (OR) operators; the symbol : represents
the complementation (INV) operator; and 0/1 represent the false/
true logic values. Alternative symbols for ^, _ and : are �p, þ,
and 0, respectively.

2.2 Self-Dual Function

A logic function fðx; y; . . . ; zÞ is said to be self-dual if fðx; y; . . . ; zÞ ¼
:fð:x;:y; . . . ;:zÞ [7]. By complementation, an equivalent self-dual
formulation is:fðx; y; . . . ; zÞ ¼ fð:x;:y; . . . ;:zÞ.

2.3 Majority Function

An n-input (n being odd) majority functionMn is defined on reach-
ing a threshold dn=2e of true inputs [7]. For example, the three
input majority function M3ðx; y; zÞ can be expressed as ^;_ by
ðx ^ yÞ _ ðx ^ zÞ _ ðy ^ zÞ. Also ðx _ yÞ ^ ðx _ zÞ ^ ðy _ zÞ is a valid
representation for M3ðx; y; zÞ. The majority function is self-dual [7].
Note that an Mn operator filled with bn=2c 0/1 collapses into a
AND/OR operator [7].

2.4 Vector Notation for Boolean Variables

For the sake of compactness, we denote a container (vector) of
n�mþ 1 Boolean variables by xnm, where the notation starts from

index m and ends at index n. When the actual length of the vector
is not important, a simpler notation for xn

m is boldface xx. The ele-

ment at index i in vector xnm is denoted by xi. The complementation

of a vector xnm is denoted by :xnm which means :xi 8i 2 ½m;mþ
1; . . . ; n� 1; n�. With this notation, the aforementioned self-dual
property becomes :fðxnmÞ ¼ fð:xnmÞ. For the sake of clarity, we

give an example about the vector notation. Let ða; b; c; d; eÞ be five
Boolean variables to be represented in vector notation. Here, the
start/end indeces are m ¼ 1 / n ¼ 5, respectively, and the vector

itself is x51. The elements of x51 are x1 ¼ a, x2 ¼ b, x3 ¼ c, x4 ¼ d and

x5 ¼ e.

2.5 Boolean Algebra

The standard binary Boolean algebra (originally axiomatized by
Huntington [24]) is a non-empty set ðB;^;_;:; 0; 1Þ subject to iden-
tity, commutativity, distributivity, associativity, and complement axi-
oms over ^;_ and :[7], [26]. For the sake of completeness, we
report these basic axioms in Eq. (1):

� L. Amar�u, P.-E. Gaillardon, and G. De Micheli are with the Integrated Systems
Laboratory, Swiss Federal Institute of Technology, Lausanne, EPFL, 1015, Lausanne,
Switzerland.
E-mail: {luca.amaru, pierre-emmanuel.gaillardon, giovanni.demicheli}@epfl.ch.

� A. Chattopadhyay is with the Nanyang Technological University, 639798, Singapore.
E-mail: anupam@ntu.edu.sg.

Manuscript received 25 Mar. 2015; revised 23 Nov. 2015; accepted 24 Nov. 2015. Date of
publication 6 Dec. 2015; date of current version 15 Aug. 2016.
Recommended for acceptance by V. Piuri.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2506566

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016 2889

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

DD

Identity : DD:II

x _ 0 ¼ x

x ^ 1 ¼ x

Commutativity : DD:CC

x ^ y ¼ y ^ x

x _ y ¼ y _ x

Distributivity : DD:DD

x _ ðy ^ zÞ ¼ ðx _ yÞ ^ ðx _ zÞ
x ^ ðy _ zÞ ¼ ðx ^ yÞ _ ðx ^ zÞ
Associativity : DD:AA

x ^ ðy ^ zÞ ¼ ðx ^ yÞ ^ z

x _ ðy _ zÞ ¼ ðx _ yÞ _ z

Complement : DD:CCo

x _ :x ¼ 1

x ^ :x ¼ 0:

:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)

This axiomatization for Boolean algebra is sound and complete
[25], [26]. Informally, it means that, logic arguments or formulas,
proved by axioms in D are valid (soundness) and all true logic
arguments are provable (completeness). More precisely, it means
that, in the induced logic system, all theorems are tautologies
(soundness) and all tautologies are theorems (completeness). We
refer the reader to [25] for a more formal discussion on mathemati-
cal logic. In computer logic applications, only sound axiomatiza-
tions are of interest [26]. Complete and sound axiomatizations are
desirable [26].

Other Boolean algebras exist, with different operators and axio-
matizations, such as Robbins algebra, Freges algebra, Nicods alge-
bra, MAJ-3/INV algebra, etc. [25]. In the immediate following, we
give details on the MAJ-3/INV Boolean algebra.

2.6 MAJ-3/INV Boolean Algebra

The MAJ-3/INV Boolean algebra introduced in [1] is defined over
the set ðB;M3;:; 0; 1Þ, where M3 is the ternary majority operator
and : is the unary complementation operator. The following set of
five primitive transformation rules, referred to asV3, is an axiomatic
system for ðB;M3;:; 0; 1Þ. All variables belong to B

VV3

Commutativity : VV3:CC

M3ðx; y; zÞ ¼ M3ðy; x; zÞ ¼ M3ðz; y; xÞ
Majority : VV3:MM

ifðx ¼ yÞ :M3ðx; y; zÞ ¼ x ¼ y

ifðx ¼ :yÞ :M3ðx; y; zÞ ¼ z

�

Associativity : VV3:AA

M3ðx; u;M3ðy; u; zÞÞ ¼ M3ðz; u;M3ðy; u; xÞÞ
Distributivity : VV3:DD

M3ðx; y;M3ðu; v; zÞÞ ¼
M3ðM3ðx; y; uÞ;M3ðx; y; vÞ; zÞ
Inverter Propagation : VV3:II

:M3ðx; y; zÞ ¼ M3ð:x;:y;:zÞ:

:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

(2)

It has been shown that this axiomatization is sound and com-
plete with respect to ðB;M3;:; 0; 1Þ [1]. The MAJ-3/INV Boolean
algebra finds application in circuit optimization and has already
showed some promising results [1].

Note that early attempts to majority logic have already been
reported in the 60’s [31], [32], [33], [34], [35], [36] but they mostly
focused on three input majority operators. Also, derived logic
manipulation methods failed to gain momentum due to their
inherent complexity.

While traditional Boolean algebras can be naturally extended
from 2 to n variables, it is currently unclear how such a majority
axiomatization extends to an arbitrary number of variables n
(odd). In the following, we address this question by proposing a
natural axiomatization of MAJ-n/INV logic.

3 AXIOMATIZATION OF MAJ-n LOGIC

In this section, we present the generic axiomatization of MAJ-n
logic. We first extend the set of five axioms presented in [1] to
n-variables, with n being an odd integer. Then, we show their
validity in the Boolean domain. Finally, we demonstrate their com-
pleteness by inclusion of other complete Boolean axiomatizations.

3.1 Generic MAJ-n/INV Axioms

The five axioms for MAJ-3/INV logic in [1] deal with commutativ-
ity, majority, associativity, distributivity, and inverter propagation
laws. The following set of equations extends their domain to an
arbitrary odd number n of variables. Note that all axioms, hold
with n � 3.

VVn

Commutativity : VVn:CC

Mnðxi�1
1 ; xi; x

j�1
iþ1 ; xj; x

n
jþ1Þ ¼

Mnðxi�1
1 ; xj; x

j�1
iþ1 ; xi; x

n
jþ1Þ

Majority : VVn:MM

If(dn2e elements of xn1 are equal to y):

Mnðxn1 Þ ¼ y

Ifðxi 6¼ xjÞ :
Mnðxn1 Þ ¼ Mn�2ðyn�2

1 Þ
where yn�2

1 ¼ xn1 removing fxi; xjg
Associativity : VVn:AA

Mnðzn�2
1 ; y;Mnðzn�2

1 ; x; wÞÞ ¼
Mnðzn�2

1 ; x;Mnðzn�2
1 ; y; wÞÞ

Distributivity : VVn:DD

Mnðxn�1
1 ;Mnðyn1 ÞÞ ¼

MnðMnðxn�1
1 ; y1Þ;Mnðxn�1

1 ; y2Þ; . . . ;
Mnðxn�1

1 ; ydn2eÞ; ydn2eþ1; . . . ; ynÞ ¼
MnðMnðxn�1

1 ; y1Þ;Mnðxn�1
1 ; y2Þ; . . . ;

Mnðxn�1
1 ; ydn2eþ1Þ; ydn2eþ2; . . . ; ynÞ ¼

MnðMnðxn�1
1 ; y1Þ;Mnðxn�1

1 ; y2Þ; . . . ;
Mnðxn�1

1 ; yn�1Þ; ynÞ
Inverter Propagation : VVn:II

:Mnðxn1 Þ ¼ Mnð:xn1 Þ:

:

8
>>><

>>>:

(3)

Commutativity means that changing the order of the variables
in Mn does not change the result. Majority defines a logic decision
threshold (over n � 3 variables) and a hierarchical reduction of
majority operators with complementary variables. Note that
M3ðx; y;:yÞ ¼ x as boundary condition. Associativity says that
swapping pairs of variables between cascaded Mn sharing n� 2
variables does not change the result. In this context, it is impor-
tant to recall that n� 2 is an odd number if n is an odd number.
Distributivity delimits the re-arrangement freedom of variables
over cascaded Mn operators. Inverter propagation moves comple-
mentation freely from the outputs to the inputs of a Mn operator,
and viceversa.

For the sake of clarity, we give an example for each axiom over a
finite n-arity.

Commutativity with n ¼ 5:

M5ða; b; c; d; eÞ ¼ M5ðb; a; c; d; eÞ ¼ M5ða; b; c; e; dÞ.
Majority with n ¼ 7:

2890 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016

M7ða; b; c; d; e; g;:gÞ ¼ M5ða; b; c; d; eÞ.
Associativity with n ¼ 5:

M5ða; b; c; d;M5ða; b; c; g; hÞÞ ¼ M5ða; b; c; g;M5ða; b; c; d; hÞÞ.
Distributivity with n ¼ 7:

M7ða; b; c; d; e; g;M7ðx; y; z; w; k; t; vÞÞ ¼
M7ðM7ða; b; c; d; e; g; xÞ;M7ða; b; c; d; e; g; yÞ;
M7ða; b; c; d; e; g; zÞ;M7ða; b; c; d; e; g; wÞ; k; t; vÞ.

Inverter propagation with n ¼ 9:
:M9ða; b; c; d; e; g; h; x; yÞ ¼ M9ð:a;:b;:c;:d;:e;:g;:h;:x;:yÞ.

3.2 Soundness

To demonstrate the validity of these laws, and thus the validity of
the MAJ-n axiomatization, we need to show that each equation in
Vn is sound with respect to the original domain, i.e., ðB;Mn;:;
0; 1Þ:1 The following theorem addresses this requirement.

Theorem 3.1. Each axiom in Vn is sound (valid) w.r.t. ðB;Mn;:; 0; 1Þ.
Proof.

Commutativity VVn:C Since majority is defined on reaching a
threshold dn=2e of true inputs then it is independent of the
order of its inputs. This means that changing the order of oper-
ands in Mn does not change the output value. Thus, this axioms
is valid in ðB;Mn;:; 0; 1Þ.

Majority VVn:M Majority first defines the output behavior of
Mn in the Boolean domain. Being a definition, it does not need
particular proof for soundness. Consider then the second part
of the majority axiom. The recursive inclusion of Mn�2 derives
from the mutual cancellation of complementary variables. In a
binary majority voting system of n electors, two electors voting
to opposite values annihilate themselves. The final decision is
then just depending on the votes from the remaining n� 2
electors. Therefore, this axiom is valid in ðB;Mn;:; 0; 1Þ.

Associativity VVn:A We split this proof in three parts that
cover the whole Boolean space. Thus, it is sufficient to prove the
validity of the associativity axiom for each of these parts. (1) the

vector zn�2
1 contains at least one logic 1 and one logic 0. In this

case, it is possible to apply Vn:M and reduce Mn to Mn�2. If we
remain in case (1), we can keep applying Vn:M. At some point,

we will end up in case (2) or (3). (2) the vector zn�2
1 contains all

logic 1. For n > 3, the final voting decision is 1 for both equa-

tions, so the equality holds. In case n ¼ 3 and the the vector zn�2
1

contains all logic 1, the majority operator collapses into a
disjunction operator. For example, M3ð1; a;M3ð1; c; dÞÞ ¼
_2ða;_2ðc; dÞÞ. Here, the validity of the associativity axiom fol-
lows then from traditional disjunction associativity. (3) the vec-

tor zn�2
1 contains all logic 0. For n > 3, the final voting decision

is 0 for both equations, so the equality holds. In case n ¼ 3 and

the vector zn�2
1 contains all logic 0, the majority operator collap-

ses into a conjunction operator. For example, M3ð0; a;M3ð0;
c; dÞÞ ¼ ^2ða;^2ðc; dÞÞ. Here, the validity of the associativity
axiom follows then from traditional conjunction associativity.

Distributivity VVn:D We split this proof in three parts that
cover the whole Boolean space. Thus, it is sufficient to prove the
validity of the distributivity axiom for each of these parts. Note
that the distributivity axiom deals with a majority operator Mn

where one inner variable is actually another independent
majority operator Mn. Distributivity rearranges the computa-
tion in Mn moving up the variables at the bottom level and
down the variables at the top level. In this part of the proof we
show that such rearrangement does not change the functional-
ity of Mn, i.e., the final voting decision in Vn:D. Recall that n is
an odd integer greater than 1 so n� 1 must be an even integer.

(1) half of xn�1
1 values are logic 0 and the remaining half are

logic 1. In this case, the final voting decision in axiom Vn:D

only depends on yn1 . Indeed, all elements in xn�1
1 annihilate due

to axiom Vn:M. In the two identities of Vn:D, we see that when

xn�1
1 annihilate the equations simplify to Mnðyn1 Þ, according to

the predicted behavior. (2) at least dn=2e of xn�1
1 values are

logic 0. Owing to Vn:M, the final voting decision in this case is
logic 0. This is because more than half of the variables are logic
0 matching the prefixed voting threshold. In the two identities
of Vn:D, we see that more than half of the inner Mn evaluate to
logic 0 by direct application of Vn:M. In the subsequent phase,
also the outer Mn evaluates to logic 0, as more than half of the
variables are logic 0, according to the predicted behavior. (3) at

least dn=2e of xn�1
1 values are logic 1. This case is symmetric to

the previous one.
Inverter Propagation VVn:I Inverter propagation moves com-

plementation from output to inputs, and viceversa. This axiom is
a special case of the self-duality property previously presented.
It holds for all majority operators in ðB;Mn;:; 0; 1Þ. tu

The soundness ofVn in ðB;Mn;:; 0; 1Þ guarantees that repeatedly
applyingVn axioms to a Boolean formula we do not corrupt its origi-
nal functionality. This property is of interest in logic manipulation
systemswhere functional correctness is an absolute requirement.

3.3 Completeness

While soundness speaks of the correctness of a logic systems, com-
pleteness speaks of its manipulation capabilities. For an axiomati-
zation to be complete, all possible manipulations of a Boolean
formula must be attainable by a sequence, possibly long, of primi-
tive axioms.

We study the completeness ofVn axiomatization by comparison
to other complete axiomatizations of Boolean logic. The following
theorem shows our main result.

Theorem 3.2. The set of five axioms in Vn is complete w.r.t.
ðB;Mn;:; 0; 1Þ.

Proof. We first consider V3 and we show that it is complete w.r.t.
ðB;M3;:; 0; 1Þ. We need to prove that every valid argument,
i.e., ðB;M3;:; 0; 1Þ-formula, has a proof in the system V3. By
contradiction, suppose that a true ðB;M3;:; 0; 1Þ-formula, say a,
cannot be proven true using V3 rules. Such ðB;M3;:; 0; 1Þ-for-
mula a can always be reduced into a ðB;^;_;:; 0; 1Þ-formula.
Indeed, recall that Mðx; y; zÞ ¼ ðx _ yÞ ^ ðx _ zÞ ^ ðy _ zÞ. Using
D, all ðB;^;_;:; 0; 1Þ-formulas can be proven, including a.
However, every ðB;^;_;:; 0; 1Þ-formula is also contained by
ðB;M3;:; 0; 1Þ, where ^ and _ are emulated by majority opera-
tors. Moreover, rules in V3 with one input fixed to 0 and 1
behaves as D rules Eq. (1). For example, V3:A with variable u

fixed to logic 1 (0) behaves as D:A for disjunction (conjunction).
The other axioms follow analogously. This means that also
V3 is capable to prove the reduced ðB;M;:; 0; 1Þ-formula a,
contradicting our assumption. Thus V3 is complete w.r.t.
ðB;M3;:; 0; 1Þ.

We consider now Vn. First note that ðB;Mn;:; 0; 1Þ naturally
includes ðB;M3;:; 0; 1Þ. Similarly, Vn axioms inherently extend
the ones in V3. Thus, the completeness property is inherited
provided that Vn axioms are sound. However, Vn soundness is
already proven in Theorem 3.1. Thus, Vn axiomatization is also
complete. tu

Being sound and complete, the axiomatization Vn defines a con-
sistent framework to operate on Boolean logic via n-ary majority
operators and inverters. In the following section, we discuss some
promising applications in computer science of such majority logic
system.

1. ByMn, it is intended anyMi with i � n. Indeed, anyMi operator with i � n
can be emulated by a fully-fed Mn operator with pairs of regular/complemented
variables, e.g.,M5ða; b; c; d;:dÞ ¼ M3ða; b; cÞ:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016 2891

4 DISCUSSION

In this section, we discuss relevant application of Vn axiomatiza-
tion. We first present the potential of logic optimization performed
via MAJ-n operators and inverters. Then, we show how Boolean
satisfiability can be described in terms of majority operators and
solved using Vn. Successively, we demonstrate the manipulation
of repetition codes via Vn under a majority logic decoding scheme.
Finally, we discuss the application of majority logic to several
emerging technologies, such as quantum-dot cellular automata
(QCA), spin-wave devices, threshold logic and others.

4.1 Logic Optimization

Logic optimization is the process of manipulating a logic data struc-
ture, such as a logic circuit, in order to minimize some target metric
[27]. Usual optimization targets are size (number of nodes/elements),
depth (maximumnumber of levels) and interconnections (number of
edges/nets). More elaborated targets use a combination of size/
depth/interconnections metrics, such as nodes�interconnections
and others.

Theoretical results from computer science show that majority
logic circuits are much more compact than traditional ones
based on conjunction and disjunction operators [6]. For example,
majority logic circuits of depth 2 and 3 possess the expressive
power to represent arithmetic functions, such as powering, mul-
tiplication, division, addition etc., in polynomial size [6]. On the
other hand, the traditional AND/OR-based counterparts are
exponentially sized [6].

Given the existence of very compact majority logic circuits,
we need an efficient set of manipulation laws to reach those
circuits automatically. In this context, the axiomatic system pre-
viously introduced is the natural set of tools addressing this
need. For example, consider a logic circuit (or Boolean func-
tion) f ¼ M5ðM3ða; b; cÞ;M3ða; b; dÞ;M3ða; b; eÞ;M3ða; b; gÞ; hÞ. In
circuit optimization, a common problem is to minimize the
number of elements while keeping short some input-output
paths. Suppose we want to minimize the number of majority
operators while keeping the path h to f as short as possible,
i.e., one majority operator. The original circuit cost is five
majority operators. To manipulate this formula, we first equal-
ize the n-arity of the majority operators using axiom Vn:M, i.e.,
by adding a fake annihilated variable x, as:

f ¼ M5ðM5ða; b; c; x;:xÞ;M5ða; b; d; x;:xÞ;
M5ða; b; e; x;:xÞ;M5ða; b; g; x;:xÞ; hÞ:

At this point, we can apply Vn:D and save one majority opera-
tor as:

f ¼ M5ðM5ða; b; c; x;:xÞ;M5ða; b; d; x;:xÞ;
M5ða; b; e; x;:xÞ; g; hÞ.

Finally, we can reduce the majority n-arity to its minimum via
Vn:M as:

f ¼ M5ðM3ða; b; cÞ;M3ða; b; dÞ;M3ða; b; eÞ; g; hÞ.
The resulting circuit cost is four majority operators.

4.1.1 Optimization Script

As emerged from the previous optimization example, an intuitive
heuristic to optimize majority logic circuits consists of majority
inflation rules (from Vn) followed by majority reduction rules
(from Vn). Algorithm 1 depicts a simple optimization script and a
brief description follows.

First, the n-arity of all majority operators in the logic circuit is
temporarily increased by using Vn:M rule from right to left, for
example M3ða; b; cÞ ¼ M5ða; b; c;:c; cÞ. This operation unlocks new
simplification opportunities. Then, redundant majority operators
are identified and deleted through Vn:A;Vn:D;Vn:M rules. Finally,
the n-arity of all majority operators in the logic circuit is decreased
to the minimum via Vn:M rule from left to right.

Algorithm 1.Majority Logic Optimization Heuristic

INPUT:Majority Logic Network.
OUTPUT: Optimized Majority Logic Network.
Majority Operator Increase n-arity(Vn:M);
// increase n-arity of the majority operator
Majority Operator Simplifcation(Vn:A;Vn:D;Vn:M);
// deleting redundant majority operators
Majority Operator Reduce n-arity(Vn:M);
// decrease n-arity of the majority operator

This approach naturally targets depth and size reductions in
the majority logic network. However, it can be extended to target
more elaborated metrics, such as

PM
i¼1 faninðnodeiÞ or M �Ninv,

where M is the total number of nodes and Ninv is the number of
inverters. The best metric depends on the considered technology
for final implementation.

4.1.2 Full-Adder Case Study

In order to prove the efficacy of the majority optimization heuristic
in Algorithm 1, we consider as case study the full-adder logic cir-
cuit. The full-adder logic circuit is fundamental to most arithmetic
circuits. Consequently, the effective optimization of full-adders is
of paramount importance.

A full-adder represents a three-input and two-output Boolean
function:

sum ¼ a	 b	 cin
cout ¼ M3ða; b; cÞ
Using just majority operators with n-arity equal to three, the

best full-adder implementation counts three majority nodes, inver-
ters apart, as depicted by Fig. 1.

However, a more compact majority logic network is possible by
exploiting higher n-arity degrees and manipulating such majority
logic circuit via Vn. In particular, the critical operation is sum

because cout is naturally represented by a single M3 operator. So,
for sum our optimization heuristic first expands the top majority
operator from an n-arity of three

sum ¼ M3ða;:M3ða; b; cinÞ;M3ð:a; b; cinÞÞ
to an n-arity of 5 as
sum ¼ M5ða;:M3ða; b; cinÞ;:M3ða; b; cinÞ;

M3ða; b; cinÞ;M3ð:a; b; cinÞÞ.
After that, derived simplification rules from Vn, called rele-

vance rules in [1], reduce the number of majority operators to 2 as
sum ¼ M5ða;:M3ða; b; cinÞ;:M3ða; b; cinÞ; b; cinÞ.
In its graph representation, depicted by Fig. 2, this representa-

tion of sum just consists of two majority operators as the internal
M3ða; b; cinÞ; is shared.

Moreover, M3ða; b; cinÞ is also generating the cout function which
can be further shared. This means that the optimized logic circuit
in Fig. 2, counting just two majority operators, is a minimal imple-
mentation for the full-adder in terms of majority logic.

Fig. 1. Majority logic circuit for the full-adder with operator n-arity equal to 3.
Complementation is represented by bubbles on the edges.

2892 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016

To provide a reference, an optimized AND-inverter graph
representation for the full-adder is depicted by Fig. 3. It counts
eight nodes and has been optimized using the state-of-the-art aca-
demic ABC optimizer [39] which manipulates AND-inverter
graphs. We can see that the majority logic circuit produced by our
optimization heuristic is much more compact thanks to the major-
ity logic expressiveness and to the properties of our axiomatic sys-
tem, Vn.

The minimality of the majority logic circuit in Fig. 2 is formally
proved in the following theorem.

Theorem 4.1. The majority logic circuit in Fig. 2 for the full-adder has
the minimum number of majority operators.

Proof. The full-adder consists of two distinct functions. Being dis-
tinct, they require at least two separate majority operators fed
with different signals. The majority logic circuit in Fig. 2 actu-
ally consists of two majority operators thus being minimal. tu

On top of having the minimum number of operators, the major-
ity network in Fig. 2 has lower

PM
i¼1 faninðnodeiÞ metric (equal to

8) as compared to the majority network in Fig. 1 (equal to 9). The
number of inverters is 2 in both cases.

We see that the axiomatic system Vn can be used to optimize
majority logic circuits and produces excellent results. As the Vn

rules are simple enough to be programmed on a computer, MAJ-n
logic optimization can be automated and applied to large systems.

4.2 Boolean Satisfiability

Boolean satisfiability (SAT) is the first known NP-complete problem
[28]. Traditionally, SAT is formulated in Conjunctive Normal Form
(CNF) [29]. Recently, majority logic has been considered as an
alternative to CNF to speed-up SAT [4]. In [4], a Majority Normal
Form (MNF) has been introduced, which is a majority of majorities,
where majorities are fed with literals, 0 or 1. The MNF-SAT prob-
lem is NP-complete in its most general definition [4]. However,
there are interesting restrictions of MNF whose satisfiability can
instead be decided in polynomial time. For example, when there
are no mixed logic constants appearing in the MNF, the MNF-SAT
problem can be solved in polynomial time. This result is valid not
just for MNF but for majority logic circuits in general [4].

In order to solve the general problem of majority logic satisfi-
ability, and thus of MNF-SAT, a set of manipulation rules is
needed. Indeed, the core of most modern SAT solving tools make
extensive use of Boolean logic axioms. When dealing with majority
logic, our proposed axiomatic system Vn is the natural tool to oper-
ate on MNF forms, or alike, and prove their satisfiability.

For the sake of clarity, we give an example of majority SAT solv-
ing via Vn laws. We consider not just an MNF, which is a two level
logic representation form, but a general formula in ðB;Mn;:; 0; 1Þ.
Our example is the unSAT function f ¼ M5ðM3ða; b; cÞ;M5ðM5ða; b;

c; 0; 0Þ;:b; c; 0; 0Þ;:a;:b; 0Þ. In order to check the satisfiability of f ,
a majority SAT solver first tries to enforce at least three over five
logic 1 in the top M5 [4]. Otherwise, a conflict in the input assign-
ment appears. If all possible input assignments lead to a conflict
the function is declared unsatisfiable [4].

Let us first focus on the element M5ðM5ða; b; c; 0; 0Þ;:b; c; 0; 0Þ.
Here, even before looking for possible assignments, our axiom
Vn:A re-arranges the variables as M5ðM5ð:b; b; c; 0; 0Þ; a; c; 0; 0Þ. In
this formula, our axiom Vn:M directly annihilates b and :b leading
to M5ðM3ðc; 0; 0Þ; a; c; 0; 0Þ. Furthermore, Vn:M still applies twice
corresponding to M5ð0; a; c; 0; 0Þ and then 0. We can substitute this
to the original formula as f ¼ M5ðM3ða; b; cÞ; 0;:a;:b; 0Þ which
symplifies the SAT problem. Now, we need both :a and :b to be 1
in order to do avoid an immediate conflict. This means a ¼ 0 and
b ¼ 0. However, this assigment evaluates always to 0 the term
M3ða; b; cÞ generating a conflict for all input patterns. Thus, the
original formula is declared unsatisfiable.

As we can see, our majority logic axiomatic system Vn is the

ground for proving the satisfiability of formula in ðB;Mn;:; 0; 1Þ.
WithoutVn, SAT tools would need to decompose all majority oper-

ators in AND/ORs because with conjunctions and disjunctions the

classic set of Boolean manipulation rules apply. However, such

decomposition would nullify the competitive advantage enabled

by the majority logic expressiveness. In this scenario, our Vn rules

fill the gap for manipulating majority operators natively.

4.3 Decoding of Repetition Codes

Repetition codes are basic error-correcting codes. The main ratio-
nale in using repetition codes is to transmit a message several times
over a noisy channel hoping that the channel corrupts only a
minority of the bits [30]. In this scenario, decoding the received
message via majority logic is the natural way to correct transmis-
sion errors.

Consider safety-critical communication systems. It is common
to have hierarchical levels of coding to decrease the chance of error
and thus resulting in system malfunction. When applied on several
levels, majority logic decoding is nothing but a majority logic cir-
cuit. The maximum number of cascaded majority operators deter-
mines the decoding performance. We want to maximize the
decoding performance while keeping the error probability low. In
this scenario, we can use our axiomatic system Vn to explore differ-
ent tradeoffs in depth/size manipulation of the corresponding
majority decoding scheme.

Fig. 2. Majority logic circuit for the full-adder with unbounded operator n-arity. Com-
plementation is represented by bubbles on the edges.

Fig. 3. AND-inverter logic circuit for the full-adder optimized via ABC academic
tool. Complementation is represented by bubbles on the edges.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016 2893

For the sake of clarity, we give an example of the optimization
for majority logic decoding via Vn. Consider a safety-critical com-
munication system sending the same binary message a over five
different channels C1, C2, C3, C4 and C5. Each channel is affected
by different levels of noise requiring just one repetition for C1, C2,
C3, and C4 but five repetitions for C5. Suppose also the communica-
tion over channel 5 is much slower than in the other channels. The
final decoded message is the majority of the each decoded message
per channel. If we name xi the decoded message a for ith channel
and y the final decoded message, the system can be represented in
majority logic as y ¼ M5ðx1; x2; x3; x4; x5Þ. Note that for x1, x2, x3,
x4 the decoded message is actually identical to the received mes-
sage because only one repetition is sent over the channels. The ele-
ment x5 is the only one needing further majority decoding, namely
x5 ¼ M5ðz1; z2; z3; z4; z5Þ where zi are the received a messages over
channel C5. The final system is then expressable as y ¼ M5ðx1; x2;
x3; x4;M5ðz1; z2; z3; z4; z5ÞÞ. To decode the final message y, the criti-
cal element for perfomance is M5ðz1; z2; z3; z4; z5Þ, with z5 being the
latest arriving message to be processed. In this context, we can use
Vn:D axiom to redistribute the decoding operations and obtain an
improvement in performance, which is not a trivial process. The
idea is to push to the top majority level zi variables, with the high-
est possible i index. For this purpose, axioms Vn:D transforms
y ¼ M5ðx1; x2; x3; x4;M5ðz1; z2; z3; z4; z5ÞÞ into y ¼ M5ðM5ðx1; x2; x3;
x4; z1Þ;M5ðx1; x2; x3; x4; z2Þ;M5ðx1; x2; x3; x4; z3Þ; z4; z5Þ.

In this lattermodel ofmajority decoding,most of the computation
is performed in advance before the late messages z4 and z5 arrive.
This means that, when the late z5 arrives, there is need for just one
level ofmajority computation and not two as in the initial model.

4.4 Emerging Technologies

Majority gates with more than three inputs have been simulated and
implemented for a variety of non-CMOS technologies. A further gen-
eralization of majority gates is threshold logic gate [6], which per-
forms weighted sum of multiple inputs and once the sum is more
than a pre-determined threshold, the output is true. As such, a
threshold logic gate can be configured to function as a majority logic
gate. In the following, we describe a few published works that
describesmajority or threshold gateswithmore than three inputs.

Majority logic gates were experimentally demonstrated with
Quantum-dot Cellular Automata in [12] and [13]. For facilitating
QCA circuit design, a tool named QCADesigner is developed [15].
Simulation of M5 gate using QCADesigner is presented in several
papers, including [14]. Fig. 4 depicts two possible QCA implemen-
tations for aM5 gate.

Applications of large majority gates towards efficient adder
construction were also discussed. For example, a M7 has also
been proposed. Fig. 5 depicts a possible QCA implementation for a
M5 gate.

Note that aM5 gate, aM3 gate and an inverter gate are sufficient to
build a full-adder, as highlighted by the theoretical case study in Sec-
tion 4.1. In this scenario, the proposed Vn axiomatic system is key to
unveil such efficient circuit implementations in QCA nanotechnol-
ogy, wheremajority gates are the logic primitives for computation.

Very recently, a majority logic circuit based on domain-wall
nanowires has been proposed in [17]. The circuit is used for

computing binary additions efficiently and can be shown to scale
for majority gates with arbitrary number of inputs.

All-spin logic gates are originally proposed in [11]. Majority
logic gates using all-spin logic is proposed in [10]. There, layout of
M3 gate using all-spin logic is shown and it is noted that majority
gates with larger number of inputs can also be implemented.
Indeed, a high fan-in majority gate is realizable by a simple super-
position of spin-waves with same amplitude but different phases
[20]. Fig. 6 depicts a sketch of a high fan-in majority gate in spin-
wave technology.

In [9], a Spin-Memeristor Threshold Logic (SMTL) gate using
memristive crossbar array is proposed. There, an array of SMTL
gates is designed and simulated with experimentally validated
device model characteristics. By varying the threshold input count,
different possible mappings are demonstrated with good perfor-
mance improvement over CMOS FPGA structures.

A programmable CMOS/memristor threshold logic is proposed
in [16]. A 4-input threshold logic gate is experimentally demon-
strated using Ag/a-Si/Pt memristive devices. They also propose a
threshold logic network similar to [9] with programmable fan-in.

It is to be noted that none of the aforementioned implementa-
tions employed any automated synthesis flow to exploit majority
gates with larger than three inputs. Thus, the potential of compact
realization of diverse applications, even if feasible with these tech-
nologies, is hardly experimented due to the lack of an efficient syn-
thesis flow. Our proposed sound and complete axiomatization
aims at filling this gap.

Note that the aforementioned examples are just few of the possi-
ble applications of n-arymajority logic and of its sound and complete
axiomatization. More opportunities exist in other fields of computer
science but their discussion is out of the scope of this paper.

5 CONCLUSIONS

In this paper, we proposed a sound and complete axiomatization of
majority logic. Stemming from previous work on MAJ-3/INV

Fig. 4. Two different implementations of aM5 gate in QCA technology [14].

Fig. 5. Physical implementation of aM7 gate in QCA technology [14].

Fig. 6. Block diagram and schematic representation of a high fan-in majority gate in
spin-wave technology [20].

2894 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016

logic, we extended fundamental axioms to arbitrary n-ary majority
operators. Based on this general set of axioms, computer applica-
tions can now fully exploit the expressive power of majority logic.
We discussed the potential impact in the fields of logic optimiza-
tion, Boolean satisfiability, repetition codes and emerging technolo-
gies. From a general standpoint, the possibility of manipulating
logic in terms of majority operators paves the way for more effi-
cient computer applications where the core reasoning tasks are per-
formed in the Boolean domain. In particular, possible directions
for future work include the development of (i) a complete majority
satisfiability solver and (ii) a majority synthesis tool targeting
nanotechnologies.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Maciej Ciesielski for valuable
discussions. This research was supported by ERC-2009-AdG-
246810.

REFERENCES

[1] L. Amar�u, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A
novel data-structure and algorithms for efficient logic optimization,” in
Proc. 51st Des. Autom. Conf., 2014, pp. 1–6.

[2] L. Amar�u, P.-E. Gaillardon, and G. De Micheli, “Boolean logic optimization
in majority-inverter graphs,” in Proc. 52nd ACM/EDAC/IEEE Des. Autom.
Conf., 2015, pp. 1–6.

[3] L. Amar�u, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A
new paradigm for logic optimization,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. PP, no. 99, pp. 1–14, 2015.

[4] L. Amar�u, P.-E. Gaillardon, and G. De Micheli, “Majority logic representa-
tion and satisfiability,” in Proc. 23rd Int. Workshop Logic Synthesis, 2014,
pp. 1–5.

[5] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, “Noise stability of functions
with low influences: Invariance and optimality,” in Proc. IEEE 46th Annu.
Symp. Found. Comput. Sci., 2005, pp. 21–30.

[6] M. Krause and P. Pudlak, “On the computational power of depth-2 circuits
with threshold and modulo gates,” Theor. Comput. Sci., vol. 174, pp. 137–
156, 1997.

[7] T. Sasao, Switching Theory for Logic Synthesis. New York, NY, USA: Springer,
1999.

[8] P. Wohl and J. A. Waicukauski. (2013, Oct.). ATPG and compression by
using majority gates. U.S. Patent 8 549 372, [Online]. Available: http://
www.google.com/patents/US8549372, Google Patents

[9] D. Fan, M. Sharad, and K. Roy, “Design and synthesis of ultralow energy
spin-memristor threshold logic,” IEEE Trans. Nanotechnol., vol. 13, no. 3,
pp. 574–583, May 2014.

[10] C. Augustine, et al., “Low-power functionality enhanced computation
architecture using spin-based devices,” in Proc. IEEE/ACM Int. Symp. Nano-
scale Archit., 2011, pp. 129–136.

[11] B. Behin-Aein, et al., “Proposal for an all-spin logic device with built-in
memory,” Nature Nanotechnol., vol. 5, no. 4, pp. 266–270, 2010.

[12] A. Imre, et al., “Majority logic gate for magnetic quantum-dot cellular
automata,” Science, vol. 311, no. 5758, pp. 205–208, 2006.

[13] G.L. Snider, et al., “Quantum-dot cellular automata: Line and majority logic
gate,” Japanese J. Appl. Phys., vol. 38, no. 12S, p. 7227, 1999.

[14] R. Arman, et al., “A symmetric quantum-dot cellular automata design for
5-input majority gate,” J. Comput. Electron., vol. 13, no. 3, pp. 701–708, 2014.

[15] K. Walus, et al., “QCADesigner: A rapid design and simulation tool for
quantum-dot cellular automata,” IEEE Trans. Nanotechnol., vol. 3, no. 1,
pp. 26–31, Mar. 2004.

[16] L. Gao, et al., “Programmable CMOS/memristor threshold logic,” IEEE
Trans. Nanotechnol., vol. 12, no. 2, pp. 115–119, Mar. 2013.

[17] Y. Hao, et al., “Energy efficient in-memory machine learning for data inten-
sive image-processing by non-volatile domain-wall memory,” in Proc. IEEE
19th Asia South Pacific Des. Autom. Conf., 2014, pp. 191–196.

[18] W. Li, Y. Yang, H. Yan, and Y. Liu, “Three-input majority logic gate and
multiple input logic circuit based on DNA strand displacement,” Nano
Lett., vol. 13, no. 6, pp. 2980–2988, May 2013.

[19] G. Yang, W. N. N. Hung, X. Song, and M. Perkowski, “Majority-based
reversible logic gates,” Elsevier Theoretical Comput. Sci., vol. 334, nos. 1–3,
pp. 259–274, Apr. 2005.

[20] P. Shabadi, “Towards logic functions as the device using spin wave func-
tions nanofabric,” Master’s Theses 1896, Univ. Massachusetts—Amherst,
Amherst, MA, USA, Feb. 2014.

[21] S. Srivastava and S. Bhanja, “Hierarchical probabilistic macromodeling for
QCA circuits,” IEEE Trans. Comput., vol. 56, no. 2, pp. 174–190, Feb. 2007.

[22] H. Cho and E. E. Swartzlander, “Adder andmultiplier design in quantum-dot
cellular automata,” IEEE Trans. Comput., vol. 58, no. 6, pp. 721–727, Jun. 2009.

[23] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network synthesis
and optimization and its application to nanotechnologies,” IEEE Trans. Com-
put.-Aided Design Integr. Circuits Syst., vol. 24, no. 1, pp. 107–118, Jan. 2005.

[24] E. V. Huntington, “Sets of independent postulates for the algebra of logic,”
Trans. American Math. Soc., vol. 5, no. 3, pp. 288–309, 1904.

[25] B. Jonsson, Bjarni, “Boolean algebras with operators. Part I.,” American
J. Math., vol. 73, pp. 891–939, 1951.[CE: Plz check author name]

[26] F. M. Brown, “Boolean reasoning: The logic of Boolean equations,” Courier
Corporation, 2003.

[27] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York:
McGraw-Hill, 1994.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability—A Guide to the
Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1979.

[29] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability, vol. 185.
Amsterdam, The Netherlands: IOS Press, 2009.

[30] J. L. Massey, Threshold Decoding. Cambridge, MA, USA: MIT Press, 1963.
[31] S. B. Akers, Jr., “On the algebraic manipulation of majority logic,” IRE

Trans. Electron. Comput., vol. EC-10, no. 4, p. 779, Dec. 1961.
[32] M. Cohn and R. Lindaman, “Axiomatic majority-decision logic,” IRE Trans.

Electron. Comput., vol. EC-10, no. 1, pp. 17–21, Mar. 1961.
[33] R. Lindaman, “A theorem for deriving majority-logic networks within an

augmented Boolean algebra,” IRE Trans. Electron. Comput., vol. EC-9, no. 3,
pp. 338–342, Sep. 1960.

[34] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric meth-
ods,” IRE Trans. Electron. Comput., vol. EC-11, no. 1, pp. 89–90, Feb. 1962.

[35] Y. Tohma, “Decompositions of logical functions using majority decision
elements,” IEEE Trans. Electron. Comput., vol. EC-13, no. 6, pp. 698–705,
Dec. 1964.

[36] F. Miyata, “Realization of arbitrary logical functions using majority ele-
ments,” IEEE Trans. Electron. Comput., vol. EC-12, no. 3, pp. 183–191, Jun.
1963.

[37] L. G. Valiant, “Short monotone formulae for the majority function,”
J. Algorithms, vol. 5, no. 3, pp. 363–366, Sep. 1984.

[38] I. Wegener, “The complexity of Boolean functions,” in The Complexity of
Boolean Functions, Wiley-Teubner Series in Computer Science. New York,
NY, USA: Wiley, 1987.

[39] (2015, Nov.). Berkeley logic synthesis and verification group, ABC: A sys-
tem for sequential synthesis and verification [Online]. Available: http://
www.eecs.berkeley.edu/~alanmi/abc/

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 9, SEPTEMBER 2016 2895

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

