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Abstract—Nanowire field effect transistors (FETs) with multi-
ple independent gates around a silicon channel feature ultimate
gate control, and are regarded as promising candidates for next-
generation transistors. Being inherently more complex than the
conventional gate-all-around nanowire FETs, they require longer
simulation time, especially with numerical simulations. We present
a new model, enabling the efficient computation of voltages and
current in modular semiconductor structures with an arbitrary
number of independent gate regions. Its validity extends on gate-
all-around MOSFETs, FinFETs, and gateless channels. It exploits
existing models for conventional devices and builds results on top of
these. Being completely general, the method is independent from
the models used to describe each region, a charge-based model
in our case. Applied to a multiindependent-gate nanowire FET
structure, extensive comparison of the proposed method with re-
sults from physics-based TCAD Atlas software and with numeri-
cal exact results show very good agreement with relative errors of
less than 1.8% for potentials and less than 4% for currents, un-
der a broad variations of physical parameters as well as biasing
conditions. Interpreted language implementation shows a perfor-
mance advantage in excess of one order of magnitude with respect
to standard optimized numerical methods, still providing excel-
lent accuracy, and making it suitable for implementation in circuit
simulators.

Index Terms—Charge-based compact model, gate-all-around,
multiple independent gate devices, silicon nanowire FETs.

I. INTRODUCTION

MULTIGATE Transistors, e.g., gate-all-around (GAA)
Metal Oxide Semiconductor Field Effect Transistors

(MOSFETs), double-gate MOSFETs, FinFETs, have been thor-
oughly investigated in recent years primarily because of their
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Fig. 1. General structure of a device with multiple sections and two examples
of application: (a) Cascade of N GAA MOSFETs: current and voltages are
related the gate voltages and VD S ; (b) Structure of a GAA Vertically Stacked
Silicon Nanowire FET where different structures in (a) are connected in parallel
between metallic contacts and biased by three different gate potentials; (c)
Schematic representation of a GAA Silicon Nanowire array: nanowires on the
top layer bias the transistors on the bottom one: resulting current flows through
the sections.

high electrostatic control over the channel and their high immu-
nity to Short Channel Effects (SCE) [1]. To pursue these highly
sought-after electrical characteristics and to achieve an even
greater immunity to SCE, researchers are considering Nanowire
Field Effect Transistors (NWFETs) with Multiple Independent
Gates (MIG). In addition to the good electrostatic proper-
ties, MIG structures enable innovative semiconductor structures
like double-gate and Gate-All-Around vertically-stacked Sili-
con NWFETs, which are regarded as the evolution of FinFETs
due to their improved control [3]. The unique feature of these
devices is their capability of being polarized electrostatically
through a terminal, called the Polarity Gate (PG), (see Fig. 1(b))
which allows the users to dynamically select between the n- and
p-type characteristics. The ambipolar behavior of these devices,
traditionally suppressed by processing steps [2], [3]), is of high
interest for logic design. Vertically-stacked silicon NWFETs
were first employed to build a reconfigurable logic cell [4], and
later used to define a static XOR intensive logic family [5] with
improved compactness compared to standard CMOS transistors.

Similarly, interest is growing for new nanowire transistors
where numerous nanowire FETs are connected in parallel be-
tween drain and source in nanoarray disposition [6], [7].

In particular, nanowire arrays (see Fig. 1(c)) [8]–[10] are or-
ganized in matrices [11], which allow the creation of active
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nanodevices (diodes and FETs) in their crosspoints [12]. These
structures combine high compactness with good performances
and, therefore, are extremely promising in terms of parallel
computation capabilities. NanoASICs designs indeed have been
indicated as a valid way to reach denser designs with better fab-
ric exploitation and efficient cascading of circuits with respect
to general-purpose programmable fabrics [13]–[15]. Narayanan
et al. [16], [17] proposed these structures for an optimal deploy-
ment of massively parallel architectures in specific applications,
like cellular neural networks or image processors.

Due to their promising circuit impacts, designers are in need
for analytical descriptions of MIG performances. Recent liter-
ature presents several compact models [1], [18]–[24] able to
describe the electrical behavior of multi-gate transistors. Never-
theless, analyzing and verifying the behavior of circuits based
on a large number devices of this kind is still hardly doable due
to the computation complexity and the lack of a proper support
of the gate independence in the existing models [6].

This work aims to meet the need of compact models for
MIG devices, by building the proposed model on-top of the
vast body of knowledge developed for multi-gate devices. The
study of a MIG is performed by viewing it as a series of MG
devices. Our method consists of estimating the charge densities
and voltages at the interface between the different sections with
successive approximations. Models, available in literature are
used to describe the internal behavior of the different sections.

The proposed methodology (i) is capable to describe struc-
tures with MIG devices in series. Potentials and current inside
the structure are computed with few algorithmic steps; (ii) is
based on existing multi-gate single-device compact models to
describe each section separately. This modularity also makes it
suitable for analysis in circuit simulators; and (iii) is completely
general and independent from the compact models chosen for a
given section and from the number and topology of devices.

Choosing [25] as charge-based model, we apply the proposed
methodology to MIG structures, composed of two and three
sections, and show its accuracy and computation efficiency. Ex-
perimental validation is performed by applying the method to a
multi-independent-gate nanowire FET structure. The method is
proved to validly describe devices with channel lengths larger
than 50 nm and radius larger than 5 nm. In this geometrical
parameter range, drift-diffusion transport is dominant. Com-
parisons of the proposed approach are done with respect to an
exact numerical solution and to data from software TCAD Atlas,
and reveal a good agreement. Worst case relative errors lower
than 4% and 10% have been found for potentials and current,
respectively. It is also computationally efficient: times of hun-
dreds of microseconds (in an interpreted language) shown to
be necessary for current computations with respect to hundreds
of milliseconds necessary for exact numerical solutions imple-
mented in highly optimized code. Furthermore, the computation
time is linearly increasing with the number of cascaded devices,
and maintains a very good accuracy (3%).

The paper is organized as follows. Section II presents back-
ground of the work. Section III presents an overall description
of the device structure considered by the proposed methodol-
ogy. Section IV describes the method itself and analyzes the

associated physical expressions. Section V extends the method
to more particular structures and includes a model for quantum-
mechanical and SCE while Section VI compares the results with
data from a commercial TCAD simulator and comments on the
computational time. Finally, Section VII concludes the paper.

II. BACKGROUND

This section deals with the structure of multiple-independent-
gate field effect transistors and some possible realizations, as
well as with compact models for multi-gate devices, which are
exploited in the present work.

A. Multiple-Independent-Gate Field Effect Transistors

In Fig. 1(a), an idealized version of the general structure of a
MIG device with N sections is shown. Such a device consists of
two pillars, namely the source and drain contacts, and a variable
number of sections in between. In the figure, the sections, labeled
S1 to SN , are all-gated channels. The space between gates can
also be considered as a section. The support for this kind of
section is provided in Section V-B. Two specific examples of
application using MIG FETs are given in Fig. 1(b) and (c).

In Fig. 1(b), a GAA vertically stacked silicon nanowire FET
is shown. Such transistor structure shows promises from a cir-
cuit perspective. In fact, by exploiting dynamic polarity control,
reconfigurable logic gates [27] can be implemented with these
devices. Fundamental logic circuits have also been demonstrated
in [28]. This device can be seen as different MIG structures con-
nected in parallel. Should the distance between gated sections
be relevant, those parts could be modeled more correctly as
gateless sections, that can be treated as well by the proposed
methodology.

In Fig. 1(c), a schematic representation of a GAA silicon
nanowire array is shown. This kind of structure, declined in
different architectures [29], [30], seems of particular interest for
massively parallel architectures [6]. Nanowires on the top layer
bias the transistors on the bottom one: resulting current flows
through the sections. In this case too, there can be sequences of
gated and gateless sections. This necessity is even more relevant
in this case because of the fabric properties themselves.

B. Multi-Gate Device Models

In this work, we rely on existing models for MG devices to
describe the different sections of MIGs.

The models in [18] and [19] are two interesting descrip-
tions of DG MOSFETS which derive expressions for mobile
charge densities and current along the channel in long-channel
devices. In [19], a description of SCE in subthreshold region, in-
cluding Drain Induced Barrier Lowering (DIBL), sub-threshold
swing and mobility degradation[1], enters into the expressions
of charge and current. SCE are also a subject of [20] while
quantum effects (carrier quantization) are treated and included
in the models presented in [21]–[24]. Given the structural simi-
larities between DG MOSFET and FinFET, several models for
the latter are directly derived from the models for the former
(if the top gate is sufficiently high to neglect the edge effects).
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Fig. 2. GAA Single-Gate MOSFET and a two-section structure.

In particular, Tang et al. [37] exploits the results of [18] to
derive a model for FinFETs including drain saturation voltage
and quantum-mechanical effects (QME). However, Smit et al.
[32] describes a PSP-based compact model for FinFETs which,
taking advantage of the similarities of its hierarchical structure
with PSP model, is particularly suitable for circuit simulations.

Compact models for gate-all-around MOSFETs, reported in
[33] and [34], present expressions for charge and current in-
cluding fitting parameters to increase accuracy. The study of
SCE in GAA MOSFETs in [35] lead to analytical expressions
for threshold voltage, subthreshold swing and channel length
modulation. Another model presented in [25] has the main
advantage of being easily adapted and applied to double-gate
MOSFETs and FinFETs. Its validity extends to devices with
channel lengths larger than 50 nm in the regime of drift-diffusion
transport. This model was used as the basis for the implementa-
tion of the methodology presented in what follows, for each of
the sections, and endowed with a semi-empirical description of
quantum-mechanical and SCE.

III. STRUCTURE DEFINITION AND OBJECTIVES

To apply the proposed methodology, the device is divided
into a series of slices (Si) for which an electrical model is
available. The overall structure is thus decomposed into a series
of sections and the study is brought back to the analysis of
simpler parts. In the case of Fig. 1(a), for example, a single slice
is represented by a single-gate GAA MOSFET (see Fig. 2(a)).
The constitutive sections don’t need to be identical or to share
the same parameters (they can lack a gate or differ in length). In
Section V, we will show, as an illustrative case, how to modify
the procedure when gateless sections are present and the silicon
channel of the device is uniformly doped.

In the proposed method, the electrical behavior of the single
slice (hereinafter section) is supposed to be known and expressed
through a model. This allows the current flowing in it to be
calculated with a formula which, for GAA MOSFETs, has the
form:

IDS = μ
2πR

L

∫ VD S

0
Q(V )dV (1)

Algorithm 1 Procedure for two sections
1: procedure
2: Estimate Qs2 with Qs2,in � from (11)
3: Calculate Vp1 � from (12)
4: repeat
5: Calculate Qd1 � from (13)
6: Calculate IDS1 � from (15)
7: Calculate Qs2 � from (16)
8: Calculate Vp1 � from (17)
9: until ‖Vp1 − Vp1@previousiteration‖ < ε
10: return Vp1 , IDS1
11: end procedure

where μ is the mobility of carriers, L is the length of the section,
R its radius, Q(V ) and V the density charge and the potential
along the channel, respectively. Between the drain and source
terminals, a potential VDS is applied. The drain current of any
single section Si is then function only of the charge densities
at its source and drain ends and can be thus computed indepen-
dently provided that the potentials VDi and VSi are known.

For the entire structure of Fig. 1, the objective is to analyze the
voltages and current along the device with no constraint on its
parameters: the lengths of the sections L1 , L2 , L3 , the applied
voltages to the gates Vg1 , Vg2 , Vg3 , the radius of the nanowire R
and the oxide thickness tox .

The following hypothesis are necessary: no voltage drop oc-
curs across the contacts between two adjacent sections Si, Si+1 ;
the current flowing in each section is the same (IDSi

= IDS i + 1 ).
The fundamental ideas behind the proposed methodology will
be outlined in the following section.

IV. THE CORE OF THE MULTI-GATE DEVICE MODEL

This section presents the method for calculating the voltages
and currents along a structure constituted by only two physical
sections in order to show the main steps in a simple case.

A. Generalities

Algorithm 1 presents the steps to follow for the analysis of a
two-section structure when the charge model in [25] is adopted
to describe each section. This scheme is in principle almost
independent of the employed charge-based model. A different
choice of model would imply slight modifications in the overall
method, basically requiring to solve the equations (for current,
charge, etc.) outlined in Section IV-C for the new expressions.
The considered two-section device is depicted in Fig. 2(b). Its
electrical behavior is exhaustively described by Vs and Vd , the
potentials at its source and drain terminals, Vp1 the potential at
the interface between the sections, IDS i

the current along the
section Si and Qsi , Qdi the charge densities at source and drain,
respectively. The method consists of estimating the charge den-
sities in the structure and then of calculating the potentials and
currents with successive approximations. A traditional approach
in determining charge and current would proceed by reducing
the number of variables in the equations. However, the strongly
non-linear equations to solve do not usually admit closed-form
solutions and require numerical solutions. Here, we introduce a
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procedure that allows us to accurately estimate the potential Vp1
after few mathematical steps, that will provide the basis to the
calculation of the current. All the steps are discussed in details
in the following section.

B. Discussion About Convergence

The introduced relaxation method allows us to compute the
solution of a non-linear system starting from an initial estimate.
Its value is then gradually refined by applying repeatedly an
operator until the method converges to a sufficient accuracy.
In our case, we refine the value of the intermediate potential
Vp1 . The refinement process can be described, such that an
operator Ô is applied to Vp1 at step m in order to obtain its value
at step m + 1:

Vp1(m + 1) = ÔVp1(m) (2)

This procedure is iterated until the solution is sufficiently ac-
curate, or equivalently until the error between two successive
approximations becomes smaller then an arbitrary threshold ε:

Err(m) := ‖Vp1(m + 1) − Vp1(m)‖ < ε (3)

This condition can be rewritten in terms of the operator Ô, as:

Err(m) = ‖ÔVp1(m) − Vp1(m)‖ = ‖(Ô − 1)Vp1(m)‖

= ‖(Ô − 1)ÔVp1(m − 1)‖

= ‖Ô(Ô − 1)Vp1(m − 1) + K̂Vp1(m − 1)‖

≤ ‖Ô‖Err(m − 1) + ‖K̂‖‖Vp1(m − 1)‖

(4)

In (4), we expressed the error at step m as a function of the error
at the preceding step and we introduced the non-linear operator
K̂ := [Ô, Ô − 1] defined as the commutator of the two opera-
tors in brackets, with 1 is the identity operator. At this point, a
formal analysis would be required to validate the convergence
of the error. However, such formal proof is difficult due to the
strong non-linearity of the operators involved, as highlighted in
the following sections. Moreover, the nature itself of the opera-
tor Ô depends on several physical parameters (channel lengths,
gate voltages, . . .) which can vary over a large physical domain,
thus making the analytical treatment difficult. Hence, a general
proof for the gradual reduction of the error will not be pro-
posed here. We resort, instead, to present a heuristic reasoning
which justifies the convergence of the approach. In the consid-
ered device structure, the currents flowing through the different
sections are the same, namely IDS1(Vp1(m)) = IDS2(Vp1(m)).
According to the device physics, the two currents are continu-
ous functions of Vp1 , respectively, monotonically increasing and
decreasing. The value of Vp1(m + 1) is computed by evaluating
one of the members of the equation and solving the resulting
expression for a new value of Vp1 . If the value of Vp1 used as
an estimate is larger than its exact solution, then the next value
Vp1(m + 1) will be smaller than the exact solution since only
a smaller potential allow the same current to flow through the
devices. The same consideration holds if the estimate of Vp1 is
larger than the exact solution. Thus, the sequence of values of
Vp1 are alternatively larger and smaller with respect to the exact

value Vp0 . If the initial difference between the initial guess and
the exact solution is not too large, the method will converge
to the exact solution in most cases. For the initial value adopted
in the paper, convergence has been verified by extensive simula-
tion for a large variety of parameters’ choice. In case of missed
convergence, a different initial guess can be used.

C. Closed Form Expressions Derivation

The introduced procedure requires to solve closed form ex-
pression a certain number of times. This number depends on the
accuracy to be met: for greater accuracy, a better estimate of Qs2
is required. Results will show that this number is usually very
small and dependent on the number of sections. In what fol-
lows, the equation for the potential has been written for intrinsic
channel. In Section V-C, the derivation for a doped channel will
be shown.

According to the hypothesis that the current flowing in each
section is the same, we start by imposing the condition IDS1 =
IDS2 . By referring to the formula for the current from the model
in [25], this is equivalent to

μ
2πR

L1

[
2
kT

q
(Qs1 − Qd1) +

Q2
s1 − Q2

d1

2COX

+
kT

q
Q0 log

[
Qd1 + Q0

QS1 + Q0

]]

= μ
2πR

L2

[
2
kT

q
(Qs2 − Qd2) +

Q2
s2 − Q2

d2

2COX

+
kT

q
Q0 log

[
Qd2 + Q0

QS2 + Q0

]]
(5)

where kT/q (henceforth, Vth ) is the volt-equivalent of tem-
perature, where Boltzmann’s constant k must be in units of
J/K and the temperature T is in units of K. The unit of
charge q is 1.6022 × 10−19C. Q0 is a constant with the di-
mension of a charge, whom value is (4εSi

/R) × (kT/q), and
COX is the oxide capacitance of a cylindrical capacitor given
by εOX/(R log(1 + tox/R). Qdi and Qsi relate to the poten-
tials at the source and drain ends by the charge-control equation
(6), where V = Vsi and V = Vdi for the two cases Qdi and Qsi
respectively:

VGSi − Δϕ − V − kT

q
log

(
8

δR2

)
=

Q

COX

+
kT

q
log

(
Q

Q0

)
+

kT

q
log

(
Q + Q0

Q0

) (6)

where Δϕ is the difference between gate metal and silicon work-
ing functions. No analytical solution for the charge densities and
Vp1 can be found from (5) and (6). However, we can actually
realize that, in our problem, we have:

Vs1 < Vd1 ≡ Vp1 (7)

Vs2 ≡ Vp1 < VDS (8)

These inequalities express the fact that, assuming that the po-
tential on the source of the structure is zero (Vs1 = 0V ) and
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that a positive voltage VDS is imposed to the whole structure
(a negative VDS does not imply modifications due to the sym-
metry), a positive voltage drop occurs on each of the two inner
regions between their drain and source terminals. This is to say
that the drain potential is larger than the source potential on both
inner devices. These considerations made, the monotonic trend
of charge with voltage revealed by (6) yields consequently:

Qd1 < Qs1 (9)

Qd2 < Qs2 (10)

As a first approximation, we can neglect Qd1 and Qd2 in (5) in
order to find an initial estimation of Qs2 and solve the resulting
equation (11). We stress here that this is only an initial estimate
for the charge densities at the drain contacts, which will be
corrected by successive iterations of the procedure. The obtained
approximate initial value of Qs2 is called Qs2,in :

1
2COX L2

Q2
s2,in +

2Vth

L2
Qs2,in

− Q2
s1

2COX L1
− 2VthQs1

L1
= 0 (11)

With the obtention of Qs2,in , Vp1 is easily found by directly
solving the charge-control equation (6) as:

VG2 − Δϕ − Vp1 −
kT

q
log

(
8

δR2

)
=

Qs2,in

COX

+
kT

q
log

(
Qs2,in

Q0

)
+

kT

q
log

(
Qs2,in + Q0

Q0

) (12)

This value of Vp1 is, however, only a rough estimate whose
accuracy needs to be improved. We proceed then and compute
Qd1 through

Qd1 = COX

⎛
⎝−2COXV 2

th

Q0
+

√(
2COXV 2

th

Q0

)2

+ B

⎞
⎠ (13)

B = 4V 2
th log2

(
1 + exp

(
VGS1 − VT + ΔVT − Vp1

2Vth

))

(14)

These relations, taken from [26], give reasonably accurate solu-
tions to (6). The parameters non explicit here, such as VT ,ΔVT

or V0 , can be found in [26]. In particular, VT corresponds to
the threshold voltage and plays a crucial role in describing the
quantum mechanical and SCE in the device, as it will be de-
scribed in the next section. From Qd1 , the current IDS1 in the
first section is given by

IDS1 = μ
2πR

L1

[
2
kT

q
(Qs1 − Qd1) +

Q2
s1 − Q2

d1

2COX

+
kT

q
Q0 log

[
Qd1 + Q0

Qs1 + Q0

]]
(15)

The current must be equal in the two sections. Imposing again
the condition (5), we now get a new equation for Qs2

1
2COX

Q2
s2 + 2VthQs2 −

Ids1L2

2πμR

Q2
s1

2COXL1
− 2VthQd2

− Q2
d2

2COX
+ VthQ0 log

(
Q2

d2 + Q0

Qs2,in + Q0

)
= 0 (16)

Finally, a more accurate estimate of Vp1 can be found by sub-
stituting this new value in

Vp = VG2 − Δϕ − kT

q
log

(
8

δR2

)
− Qs2

Cox

−kT

q
log

(
QS2

Q0

)
− kT

q
log

(
Qs2 + Q0

Q0

)
. (17)

The introduced procedure allows us to describe voltages and
currents in a structure consisting of two different sections by
means of a limited number of computational steps. It does not
require numerical solutions of nonlinear equations, which usu-
ally represent a consequent overhead on the computational ef-
ficiency and time requirements. A fundamental feature of the
proposed method is its iterative nature. Steps can be repeated in
sequence in order to meet the accuracy requirements (see Al-
gorithm 1). Yet, good accuracy of data after only one iteration
(1IT) has been verified for two-sections devices (two iterations
are necessary for three-sections). This will be shown in next
sections.

D. QME and SCE

When the dimensions of the sections enter the nanometer
range (<10 nm), QME start affecting the behavior of the de-
vice. Consequently, the charge density should be computed tak-
ing into account the quantum potential confinement inside the
channel. Following [36] and [37], this effect produces a bandgap
opening which can be described with a semi-empirical shift of
the threshold voltage VT in the compact model on which our
procedure relies. The change of VT is:

ΔVT (QME) =
ΔEqm

q

where ΔEqm is the shift of the conduction band due to potential
confinement. Its actual expression depends on the geometry of
the sections and on the assumption made on the shape of the
confining potential.

Analogously, SCE and DIBL are modeled with an extra shift
in the threshold voltage given by:

ΔVT = −2γSCE(VTo − V ) + γDIBLVds

where VTo is the long-channel threshold voltage while the pa-
rameters γSCE and γDIBL are determined trough extrapolation
from simulation results.

V. GENERALIZATIONS OF THE METHOD TO MORE

COMPLEX STRUCTURES

The method illustrated in the preceding section can be ex-
tended to more complex structures. Indeed, our method presents
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Fig. 3. N -section Structure.

features which make it useful to describe a wide variety of
problems. The most important is its independence on the model
adopted for describing each section. In the following, we de-
scribe how to modify it, while maintaining the same model in
each section, when the number of connected devices is arbitrary
(see section A), when devices without gate contact are con-
sidered (see section B) and when doped-channel sections are
present in the structure (see section C). The whole procedure
will be illustrated and schematized. Finally, some considerations
are made about the possibility of adapting the method also to
devices with different geometry with respect to GAA MOSFETs
(subject. D).

A. Arbitrary Number of Gates

The method enables an efficient description of structures with
an arbitrary number of gates as illustrated in Fig. 3. By referring
to the model proposed in [25], the extension of the algorithm
proposed to this general case is almost straightforward (see
Algorithm 2). By supposing that the current flowing in each of
the n devices is the same, we impose that for i = 2, . . . , n:

IDSi = IDS1 .

The choice of current IDS1 in the above equation is arbitrary
and any other current in the device could be adopted. Under
the initial assumption Qdi << Qsi , this leads to the following
equation to a first estimate Qsi,in of Qsi:

1
2COXLi

Q2
si,in +

2Vth

Li
Qsi,in −

Q2
s1

2COXL1
− 2VthQs1

L1
= 0.

(18)
The voltages at the interface of adjacent sections Vpi can then

be described with the charge-control equation:

VGi − Δϕ − Vpi −
kT

q
log

(
8

δR2

)

=
Qsi,in

COX
+

kT

q
log

(
Qsi,in

Q0

)
+

kT

q
log

(
Qsi,in + Q0

Q0

)
.

(19)

The charge densities at the drain, instead, are given by (13) and
(14). The current comes from:

Algorithm 2 Procedure for three sections
1: procedure
2: Estimate Qs2 and Qs3 with Qs2,in and Qs3,in

3: � from (18)
4: repeat
5: Calculate Qd1 and Qd2 � from (13)
6: Calculate IDS1 , IDS2 and IDS3 � from (20)
7: Calculate Qs2 and Qs3 � from (21)
8: Calculate Vp1 and Vp2 � from (22)
9: until Accuracy not met
10: return Vp1 , Vp2 , IDS1
11: end procedure

Fig. 4. Structure with a gateless section.

IDSi = μ
2πR

Li

[
2
kT

q
(Qsi − Qdi) +

Q2
si − Q2

di

2COX

+
kT

q
Q0 log

[
Qdi + Q0

Qsi + Q0

]]
(20)

with i = 1, .., n − 1. Given the currents, the charge densities at
source ends Qsi and the values for Vpi are obtained from the
following equations, respectively:

1
2COX

Q2
si + 2VthQsi −

IDS1Li

2πμR

Q2
s1

2COXL1
− 2VthQdi

− Q2
di

2COX
+ VthQ0 log

(
Q2

di + Q0

Qsi,in + Q0

)
= 0 (21)

Vpi = VG(i+1) − Δϕ − kT

q
log

(
8

δR2

)
−

Qs(i+1)

Cox

− kT

q
log

(
QS (i+1)

Q0

)
− kT

q
log

(
Qs(i+1) + Q0

Q0

)
. (22)

The aforementioned procedure is summarized in Algorithm
2, for an illustrative number of sections equal to three. Starting
from an estimate of Qs2 and Qs3 , the procedure iterates four
closed form calculations to attain voltage (Vp1 , Vp2) and current
(Ids) results.

B. Gateless Sections

As stated in Section II-A, not all parts of complex devices are
gated. Fig. 4 shows an example of a structure where an inner
section is not wrapped with a gate. The problem of determining
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Algorithm 3 Procedure for structures with gateless sections
1: procedure
2: Estimate Qs2 with Qs2,in � from (11)
3: Calculate Vp2 � from (22)
4: repeat
5: Calculate Qd2 � from (13)
6: Calculate IDS2 � from (20)
7: Calculate Vp1 � from (23)
8: Calculate Qd1 � from (13)
9: Calculate IDS1 and Qs2 � from (20) and (16)
10: Calculate Vp2 � from (22)
11: until Accuracy not met
12: return Vp1 , Vp2 , IDS1
13: end procedure

the potential along the structure and the resulting current can
be addressed easily through the method already discussed with
only slight modifications. Let us define the parameters related to
a gateless section: LR the length of the section, ND its doping
level and R its radius. No control is actually exerted externally
on the charge density along the gateless section. In the context
of Fig. 4, where the inner part is gateless, this leads to a simple
resistive behavior of the slice:

Vp1 = Vp2 − RIDS2 (23)

where the resistance of the channel is related to the channel
length and doping level by:

R = ρ
LR

A
=

1
qμND

LR

2πR2 (24)

where A is the section of the channel, LR its length and ρ the
channel resistivity. By introduction of this new equation into
the previous methodology, one gets a simple algorithm to de-
rive potentials Vp1 , Vp2 and current IDS . Algorithm 3 describes
schematically the whole iterative process, that is again very
close to the one presented in Section IV-C for a two-sections
structure. The main difference between the two is given by (23)
which is now adopted to compute Vp1 instead of (22).

C. Doped Channel Sections

We now adapt the general procedure to doped channel sec-
tions. The structure is formally identical to the one shown in
Fig. 3 and the change in doping level can be described in the
charge-model of a single section. By referring to the model in
[25], it suffices to reanalyze the entire procedure leading to the
final formulas for current and charge densities along the channel
and to modify the inputs of the problem. The main difference
which arises in the model’s deduction is a new solution of the
Poisson equation for the potential in a perpendicular direction
to the channel length. If NA is defined to be the channel doping
(all the remaining quantities do not vary), the solution becomes,
after a few approximations not reproduced here for the sake of
brevity:

ψ(r) = −δ
NA

4ni

kT

q
R2 + δ

NA

4ni

kT

q
r2 + V

+
kT

q
log

(
−8B

δ(1 + Br2)2

)
. (25)

This is the first step to move forward a charge-control equation.
By imposing the appropriate boundary condition at the channel-
oxide interface [25], one finally arrives to (26) relating the charge
density to the potential along the channel:

VGS − Δϕ − V − kT

q
log

(
8eα/(Vt CO X )

δ NA

ni
R2

)

=
Q − α

COX
+

kT

q
log

(
Q − α

Q0

)
+

kT

q
log

(
Q − α + Q0

Q0

)

(26)

where the only new quantity is α = εSi
NA

2ni

kT
q R, a parameter

related to the device structure and obviously to its channel dop-
ing. By noticing the numerous similarities between this formula
and (6), it is possible to apply slight substitutions to (26) in
order to fall back on the one previously discussed. The change
of variables to be accomplished is:

Q ← Q∗ = Q − α (27)

δ ← δ∗ =
eα/(CO X Vt )

NA/ni
. (28)

This small changes make it easy and effortless to include such a
modification in the general frame of the method for the solution
of structures with doped channels.

D. Sections With Different Geometry

The proposed method also applies to problems where devices
with a different geometry are involved. Again, this is performed
by substituting the employed models in the different sections.
An interesting case is the cascade of FinFETs, where the models
from [18] and [37] can be effortlessly adopted in applying the
methodology discussed here, thanks to their evident similarities
with [25] for GAA MOSFETs.

VI. VERIFICATION AND RESULTS

This section focuses on techniques and procedures used to
implement and verify the results of the proposed methodology.
Tests were performed for devices of growing complexity (see
Sections VI-B and VI-C) and under different biasing conditions
(see Section VI-D).

A. Methodology

This methodology was developed in MATLAB [38], mainly
because the focus of the work, at an early stage, was accuracy
and scalability and MATLAB language allows rapid prototyp-
ing. The structure considered in the experiments is shown in
Fig. 3. Most of the results shown are for two and three sec-
tion devices, but data are provided from experiments up to nine
sections. The method was validated through an extensive exper-
imental comparison of results with the exact numerical solution
and with the output from a physics-based software. Specifically,



ANTIDORMI et al.: COMPUTATIONALLY EFFICIENT MULTIPLE-INDEPENDENT-GATE DEVICE MODEL 9

Fig. 5. Comparison of the exact solution of Vp1 with data from the model in
a two-section structure for different values of Vg 2 ; in the inset a zoom of the
region with low Vds is shown.

we have computed the potential at the interface between differ-
ent sections in various multiple-gate structures as a function of
the applied voltages and structural parameters. Data were then
compared with two set of results calculated by TCAD software
Atlas including the computation of QME [39]. The first set was
obtained numerically for the entire structure, while the second
one considers the values obtained just for potentials (Vp1 , Vp2)
from the numerical simulation. This approach was chosen to
better assess the validity of the algorithm that estimates poten-
tials into the structure and the relative importance of this step
into the overall procedure. Simulations in Atlas were performed
under the assumption of a Boltzmann distribution for carriers in
the silicon channel and of highly doped contacts (1023cm−3).
The latter condition guarantees a small voltage drop across the
contacts themselves. Complex structures analyzed present sec-
tions with channel radius between 5 and 10 nm while their oxide
thickness is 1.5 nm. QME, and in particular the potential con-
finement, which are expected to play a role in the device charac-
teristics in this range of geometrical parameters, are taken into
account as described in section IV-D. Analogously, the SCE,
DIBL, sub-threshold swing and mobility degradation are con-
sistently modeled in the charge-model adopted of each section.
The channel lengths of simulated devices range from 60 nm
to 300 nm. These dimensions of channel length are, instead,
sufficiently high for ballistic transport not to take place and
for coherent transport not to become evident. Hence, diffusive
regime of transport is assumed.

B. Two-Section Structure

Fig. 5 shows the potential Vp1 in a two-section device for
different values of gate voltage Vg2 with varying drain-source
voltage. Each section is 300 nm long, has radius R = 6 nm and
oxide thickness tox = 1.5 nm. The gate voltage applied to the
first section is Vg1 = 0.6 V. The graph reveals that our numer-
ical procedure, after only 1IT step, gives accurate outputs if
compared with the exact numerical solution. Indeed, maximum
relative errors of 1.6% are obtained after 1IT. Thus, for a two-
section structure, only 1IT is actually sufficient to get accurate

Fig. 6. Comparison of the exact solution of Vp1 with data from the model in
a two-section structure for different values of L2 ; region with low Vds is shown
in a larger scale in the right box of the figure.

Fig. 7. Comparison of the exact solution of Vp1 with output from TCAD
Atlas: two-section structure for different values of Vg 2 .

results. This is also true if we let other parameters vary in the
same structure, such as in Fig. 6 where the length of section
L2 is varied between 60 nm and 450 nm while L1 is kept at
L1 = 300 nm. We compared also the results with the simula-
tion data from TCAD Atlas.

Figs. 7 and 8 present the data from the simulator correspond-
ing to the plots of Figs. 5 and 6, respectively. Coherence of
values is observable. Worst relative errors of a few percent are
obtained for relatively large VDS polarization combined with
shorter channel. For longer channels, relative errors well below
1% are obtained over the full biasing range.

C. Three-Section Structure

While augmenting the complexity of the structure by cas-
cading more sections, the method preserves its validity and
accuracy. This is shown for a three-section device in Fig. 9,
where the potentials at the interface between the two sections
are represented as a function of the total voltage applied. Data
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Fig. 8. Comparison of the exact solution of Vp1 with output from TCAD
Atlas in a two-section structure for different values of L2 .

Fig. 9. Comparison of the exact solution of Vp1 and Vp2 with data from the
method in a three-section structure.

were obtained by iterating just twice the proposed method. This
led to a discrepancy in results from numerical simulations that
tops to a few tenth of percent across the full range of poten-
tials considered. A direct comparison was also made with Atlas
simulation outputs. Fig. 10 plots the values of Vp2 for different
Vg3 in a structure of three sections with L1 = L3 = 300 nm,
L2 = 150 nm, R = 6 nm, Vg1 = 0.6 V and Vg2 = 0.8 V. Data
largely agree with simulation results, with relative errors of few
percent over the full biasing range (Vg2 from 1 to 2 V), showing
little sensitivity of the methodology to variations in Vg2 .

In Fig. 11, the potential Vp2 with varying VDS for different
values of L3 are shown. Data from Atlas stand close to the
numerical model adopted also for high voltages.

From the values of potentials obtained, the current has been
estimated. Fig. 12 shows the current flowing in a three-section
structure when Vg1 and Vg3 are kept fixed while Vg2 is varied.
Comparison with data from Atlas in linear and logarithmic scale
shows good accuracy over the whole range of applied voltages.
More precisely, the figure reveals how the operating region of the

Fig. 10. Comparison of the exact solution of Vp2 with data from TCAD Atlas
in a three-section structure for different values of Vg 3 .

Fig. 11. Comparison of the exact solution of Vp2 with data from TCAD Atlas
in a three-section structure for different values of L3 .

Fig. 12. Current IDS in a three-section structure where Vg 1 = Vg 3 for dif-
ferent values of Vg 2 . Dotted line: current from the model in linear scale; solid
line: current from the model in logarithmic scale. Points represent data from
simulator Atlas in linear and logarithmic scale.
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Fig. 13. Comparison of values of Vp1 and Vp2 obtained from the method
after three iterations with exact results in a triple structure with Vg 1 = Vg 3 ,
Vg 2 = 0.7 V.

Fig. 14. Comparison of values of Vp1 and Vp2 obtained from the model
after three iterations with exact results in a triple structure with Vg 1 = Vg 3 ,
Vg 2 = 1.2 V.

central section changes when the gate voltage applied is varied.
For small values of Vg2 , the section operates in subthreshold
region since its gate voltage is lower than Vg1 , thus limiting the
overall current flowing into the device. When Vg2 is increased
over Vg1 = 0.6 V, the section exits the subthreshold region and
enters saturation: then the current continues to increase but with
a lower growing rate.

D. Three-Section Structure With Fixed Gate
Voltages at Extremes

Structures with three sections are often used to realize double-
gate devices by fixing the same potential on the two lateral
gates [28], thereby leading to the condition Vg1 = Vg3 . Figs. 13
and 14 show how Vp1 and Vp2 vary with VDS when Vg2 is
kept constant and Vg1 = Vg3 . Exact numerical data and method
output are represented. Using the obtained values for Vp1 and
Vp2 , the current flowing in the series of the sections has been
subsequently evaluated and compared with numerical exact. In
Fig. 15, a plot of relative errors on current value is shown. In
the worst case, the strongly non-linear error tops at 4%.

Fig. 15. Relative errors on IDS in a three-section structure where Vg 1 = Vg 3
for two different values of Vg 2 .

Fig. 16. Relative errors on Vp1 and Vp2 in a three-section structure with a
gateless section with parameters ND = 2 · 1020 cm−3 , LR = 100 nm.

E. Gateless Section Structure

Finally, we present an example of data obtained for a structure
with gateless section. Fig. 16 shows the relative errors of Vp1
and Vp2 as a function of VDS with respect to the exact values of
potential. A maximum error of 1.8% is obtained. This section
is required to correctly model the region of multi-gate devices
with uniform doping level, as detailed in Section II-A. Relative
error tops for very low VDS , with 0.1% at VDS = 1 V.

F. Computation Times

A final discussion is worth doing on the timing efficiency
of our model. The experiments have been performed on MIG
devices made of up to nine sections under different biasing con-
ditions, reported for each test. Some results are worth pointing
out for test cases that are particularly significant. For a three sec-
tion structure, relative errors on IDS of less than 4% are shown
in Fig. 15. From a timing perspective, current evaluation for the
mentioned cases required less than 0.2 ms in an interpreted lan-
guage, with given drain and gate voltages. These times result one
order of magnitude shorter than computation times necessary
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Fig. 17. Computation times (in seconds) required to solve complex structures
with different number of devices: with fixed number of iterations of our model
(squares) and with the minimum number of iterations required to get an accuracy
of 3% on potentials (circles).

for a numerical solution where tenths of milliseconds are nec-
essary. The method is, therefore, computationally efficient.

Fig. 17 shows CPU times necessary to solve potentials and
currents in structures with a variable number of devices under a
single bias condition. Both curves reveal a linear trend with the
number of devices connected. We kept the number of iterations
(1IT) of the model constant along the bottom curve (squares)
obtaining an overall proportionality of time and number of sec-
tions, but a variable accuracy (between acc10% to more than
acc40% in the worst case). In the other case, we adopted a vari-
able number of iterations in order to get a particular level of
accuracy (acc3%). 1IT was necessary for a two-section struc-
ture, and three iterations for all the others (3IT). Still the trend
remains linear and the computation times approximately dou-
bles. Similar iterations performed using a spice engine (Eldo)
required more than one order of magnitude in time. Clearly, this
is not affordable in a context where thousand of devices are to
be simulated in the same time.

G. Discussions

Overall, our results indicate that the proposed methodology
suits the need for versatile, accurate and scalable modeling of
MIG devices. Tests were performed by varying the structural
aspects of devices as well as the biasing conditions (see Figs. 5–
11) over large ranges of parameters (e.g., 50 to 400 nm for
section length, 0 to 2 V for potentials). Versatility was also
demonstrated by simulating structures made of up to nine sec-
tions, each section potentially differing from its neighborhood
in different respects (length, diameter, etc.), as previously de-
scribed. Efficiency was shown both in terms of computation
time required and in scalability, due to the linear dependence
of computation time on the number of sections, irrespectively
of the targeted accuracy (see Fig. 17). In addition, note that
the measured performance is underestimated, because an inter-
preted language has been used to implement equations to speed
up development and to focus on accuracy rather than focusing
on performances. Further work will be required to implement

the methodology in optimized compiled code, to attain a fair
comparison with standard numerical simulators.

According to the performed analyses, and in particular those
in Fig. 16, we conclude that relative errors on potentials are
always below 2% in the measurement range. Results for current
show analogous behavior, with only slightly degraded perfor-
mance (4% maximum relative error) for a three sections struc-
ture.

Therefore, it follows that the proposed methodology is well
suited to be applied in circuit simulators where efficiency and
scalability are key enabling features.

VII. CONCLUSION

In this paper, we presented a new iteration-based analytical
model suitable to analyze complex semiconductor structures
with several cascaded devices. Based on the computation of
charge densities and potentials along the structure, it presents a
high degree of versatility: we illustrated its application to a se-
ries of two or more GAA MOSFETs. Nevertheless, no constraint
actually holds on the topology and features of the sections in
the structure. FinFETs-based structures can easily be analyzed
through the methodology presented only with the modification
of the analytical expressions for charge and currents in each
section. Besides, generalizations of the method have been dis-
cussed and the inclusion of gate-less sections with description
of QME and SCE has been presented.

The method has an iterative nature, although only few nu-
merical steps are necessary to compute potentials and currents
in the structure. Computational efficiency of the method is a
key feature. In particular, accuracy of 3% in potentials can be
obtained for up to nine sections in linear time, after just two or
3IT, without nonlinear equations to be solved numerically.

Verification has been demonstrated through extensive simula-
tion on devices with channel lengths ranging from 50 to 450 nm
and radius larger than 1 nm. The comparison of the data obtained
with our model to results from commercial physics-based soft-
ware reveals a good agreement. Similarly, relative errors top at
1.8% on potentials and about 4% on currents with respect to
exact numerical solutions. The method is also timing efficient
leading to accurate values of potentials in a shorter amount of
time than a numerical method would require. Computation times
of one order of magnitude shorter have been found, still main-
taining the aforementioned accuracy and linear proportionality
with the number of devices.
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