
806 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Majority-Inverter Graph: A New Paradigm
for Logic Optimization

Luca Amarú, Student Member, IEEE, Pierre-Emmanuel Gaillardon, Member, IEEE,
and Giovanni De Micheli, Fellow, IEEE

Abstract—In this paper, we propose a paradigm shift in rep-
resenting and optimizing logic by using only majority (MAJ)
and inversion (INV) functions as basic operations. We rep-
resent logic functions by majority-inverter graph (MIG): a
directed acyclic graph consisting of three-input majority nodes
and regular/complemented edges. We optimize MIGs via a new
Boolean algebra, based exclusively on majority and inversion
operations, that we formally axiomatize in this paper. As a
complement to MIG algebraic optimization, we develop pow-
erful Boolean methods exploiting global properties of MIGs,
such as bit-error masking. MIG algebraic and Boolean meth-
ods together attain very high optimization quality. Considering
the set of IWLS’05 benchmarks, our MIG optimizer (MIGhty)
enables a 7% depth reduction in LUT-6 circuits mapped by
ABC while also reducing size and power activity, with respect
to similar and-inverter graph (AIG) optimization. Focusing
on arithmetic intensive benchmarks instead, MIGhty enables
a 16% depth reduction in LUT-6 circuits mapped by ABC,
again with respect to similar AIG optimization. Employed as
front-end to a delay-critical 22-nm application-specified inte-
grated circuit flow (logic synthesis + physical design) MIGhty
reduces the average delay/area/power by 13%/4%/3%, respec-
tively, over 31 academic and industrial benchmarks. We also
demonstrate delay/area/power improvements by 10%/10%/5%
for a commercial FPGA flow.

Index Terms—Boolean algebra, design methods and tools,
directed acyclic graphs (DAGs), logic synthesis, majority logic,
optimization.

I. INTRODUCTION

NOWADAYS, electronic design automation (EDA) tools
are challenged by design goals at the frontier of what is

achievable in advanced technologies. In this scenario, extend-
ing the optimization capabilities of logic synthesis tools is of
paramount importance.

In this paper, we propose a paradigm shift in representing
and optimizing logic, by using only majority (MAJ) and inver-
sion (INV) as basic operations. We use the terms inversion
and complementation interchangeably. We focus on majority
functions because they lie at the core of Boolean function
classification [1]. Thanks to that, majority inherits the expres-
sive power from many other function classes. Together with
inversion, majority can express all Boolean functions. Based

Manuscript received February 12, 2015; revised May 13, 2015 and
July 20, 2015; accepted September 11, 2015. Date of publication October
6, 2015; date of current version April 19, 2016. This work was supported by
the European Research Council under Grant ERC-2009-AdG-246810. This
paper was recommended by Associate Editor J. Cortadella.

The authors are with the Integrated Systems Laboratory, Swiss Federal
Institute of Technology Lausanne, Lausanne 1015, Switzerland (e-mail:
luca.amaru@epfl.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2488484

on these primitives, we present in this paper the majority-
inverter graph (MIG), a logic representation structure consist-
ing of three-input majority nodes and regular/complemented
edges. MIGs include any AND/OR/inverter graphs (AOIGs),
containing also the popular and-inverter graphs (AIGs) [2]. To
provide native manipulation of MIGs, we introduce a novel
Boolean algebra, based exclusively on majority and inversion
operations [3]. We define a set of five transformations forming
a sound and complete axiomatic system. Using a sequence of
these primitive axioms, it is possible to manipulate efficiently
an MIG and reach all points in the representation space. We
apply MIG algebra axioms locally, to design fast and effi-
cient MIG algebraic optimization methods. We also exploit
global properties of MIGs to design slower but very effective
MIG Boolean optimization methods [4]. Specifically, we take
advantage of the error masking property of majority operators.
By selectively inserting logic errors in an MIG, successively
masked by majority nodes, we enable strong simplifications in
logic networks. MIG algebraic and Boolean methods together
attain very high optimization quality. For example, when
targeting depth reduction, our MIG optimizer, MIGhty, trans-
forms a ripple carry structure into a carry look-ahead like one.
Considering the set of IWLS’05 benchmarks, MIGhty enables
a 7% depth reduction in LUT-6 circuits mapped by ABC [2]
while also reducing size and power activity, with respect
to similar AIG optimization. Focusing on arithmetic inten-
sive benchmarks, MIGhty enables a 16% depth reduction in
LUT-6 circuits, again with respect to similar AIG optimization.
Employed as front-end to a delay-critical 22-nm application-
specified integrated circuit (ASIC) flow MIGhty reduces the
average delay/area/power by 13%/4%/3%, respectively, over
academic and industrial benchmarks, as compared to a lead-
ing commercial ASIC flow. We demonstrate improvements in
delay/area/power metrics by 10%/10%/5% for a commercial
28-nm FPGA flow.

The remainder of this paper is organized as follows.
Section II gives background on logic representation and opti-
mization. Section III presents MIGs with their properties and
associated Boolean algebra. Section IV proposes MIG alge-
braic optimization methods and Section V describes MIG
Boolean optimization methods. Section VI shows experimen-
tal results for MIG-based optimization and compares them
to the state-of-the-art academic tools. Section VI also shows
results for MIG-based optimization employed as front-end to
commercial ASIC and FPGA design flows. Section VII is the
conclusion.

II. BACKGROUND AND MOTIVATION

This section presents first a background on logic represen-
tation and optimization for logic synthesis. Then, it introduces
the necessary notations and definitions for this paper.

0278-0070 c© 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 807

A. Logic Representation
The (efficient) way logic functions are represented in EDA

tools is key to design efficient hardware. On the one hand,
logic representations aim at having the fewest number of prim-
itive elements (literals, sum-of-product terms, nodes in a logic
network, etc.) in order to: 1) have small memory footprint
and 2) be covered by as few library elements as possible.
On the other hand, logic representation forms must be simple
enough to manipulate. This may require having a larger num-
ber of primitive elements but with simpler manipulation laws.
The choice of a computer data-structure is a tradeoff between
compactness and manipulation easiness.

In the early days of EDA, the standard representation form
for logic was the sum of product (SOP) form, i.e., a disjunc-
tion (OR) of conjuctions (AND) made of literals [5]. This
standard was driven by PLA technology whose functionality
is naturally modeled by an SOP [6]. Other two-level forms,
such as product-of-sums or EX-SOP, have been studied at
that time [17]. Two-level logic is compact for small sized
functions but, beyond that size, it becomes too large to be
efficiently mapped into silicon. Yet, two-level logic has been
supported by efficient heuristic and exact optimization algo-
rithms. With the advent of very large scale integration, the
standard representation for logic moved from SOP to directed
acyclic graphs (DAGs) [7]. In a DAG-based logic representa-
tion, nodes correspond to logic functions (gates) and directed
edges (wires) connect the nodes. Nodes’ functions can be inter-
nally represented by SOPs leveraging the proven efficiency
of two-level optimization. From a global perspective, gen-
eral optimization procedures run on the entire DAG. While
being potentially very compact, DAGs without bounds on the
nodes’ functionality are not easy to optimize. This is because
this kind of representation demands that optimization tech-
niques deal with all possible types and sizes of functions which
is impractical. On top of that, the cumulative memory foot-
print for each functionally unbounded node is potentially very
large. Restricting the permissible node function types allevi-
ates this issue. At the extreme case, one can focus on just
one type of function per node and add complemented/regular
attributes to the edges. Even though in principle, this restriction
increases the representation size, in practice it unlocks better
(smaller) representations because it supports more effective
logic optimization simplifying a DAG. A notable example of
DAG where all the nodes realize the same function is binary
decision diagrams (BDDs) [11]. In BDDs, nodes act as 2:1
multiplexers. With additional restriction on the ordering of
input variables, BDDs are canonical and provide very efficient
manipulation procedures. For this reason, BDDs found appli-
cation in various areas of EDA, such as verification, testing,
optimization, automated reasoning, etc. [5]. However, the price
for such an optimal manipulation efficiency is the BDD size,
which is often too large for direct mapping into silicon. Even
though BDDs are not usually mapped directly into silicon, they
support in various ways logic manipulation tasks in some opti-
mization algorithms [9]. Another DAG where all nodes realize
the same function is the AIG [2], [10] where nodes act as
two-input ANDs. AIGs can be optimized through traditional
Boolean algebra axioms and derived theorems. Iterated over
the whole AIG, local transformations produce very effective
results and scale well with the size of the circuits. This means
that, overall, AIGs can be made remarkably small through
logic optimization. For this reason, AIG is one of the current
representation standards for logic synthesis.

B. Logic Optimization

Logic optimization consists of manipulating a logic rep-
resentation structure in order to minimize some target
metric. Usual optimization targets are size (number of
nodes/elements), depth (maximum number of levels), inter-
connections (number of edges/nets), etc.

Logic optimization methods are closely coupled to the
data structures they run on. In two-level logic representation
(SOP), optimization aims at reducing the number of terms.
ESPRESSO is the main optimization tool for SOP [6]. Its algo-
rithms operate on SOP cubes and manipulate the ON-, OFF-,
and dc-covers iteratively. In its default settings, ESPRESSO
uses fast heuristics and does not guarantee to reach the global
optimum. However, an exact optimization of two level logic
is available (under the name of ESPRESSO-exact) and often
run in a reasonable time. The exact two-level optimization
is based on Quine–McCluskey algorithm [18]. Moving to
DAG logic representation (also called multilevel logic), opti-
mization aims at reducing graph size and depth or other
accepted complexity metrics. There, DAG-based logic opti-
mization methods are divided into two groups: 1) Algebraic
methods, which are fast and 2) Boolean methods, which are
slower but may achieve better results [21]. Traditional alge-
braic methods assume that DAG nodes are represented in
SOP form and treat them as polynomials [7], [19]. Algebraic
operations are selectively iterated over all DAG nodes, until
no improvement is possible. Basic algebraic operations are
extraction, decomposition, factoring, balancing, and substitu-
tion [20], [21]. Their efficient runtime is enabled by theories
of weak-division and kernel extraction. In contrast, Boolean
methods do not treat the functions as polynomials but handle
their true Boolean nature using Boolean identities as well as
(global) don’t cares (circuit flexibilities) to get a better solu-
tion [5], [21], [24]–[26]. Boolean division and substitution
techniques tradeoff runtime for better minimization quality.
Functional decomposition is another Boolean method which
aims at representing the original function by means of simpler
component functions. The first attempts at functional decom-
position [27]–[29] make use of decomposition charts to find
the best component functions. Since the decomposition charts
grow exponentially with the number of variables these tech-
niques are only applicable to small functions. A different, and
more scalable, approach to functional decomposition is based
on the BDD data structure. A particular class of BDD nodes,
called dominator nodes, highlights advantageous functional
decomposition points [9]. BDD decomposition can be applied
recursively and is capable of exploiting optimization oppor-
tunities not visible by algebraic counterparts [9], [22], [23].
Recently, disjoint support decomposition has also been con-
sidered to optimize locally small functions and speedup logic
manipulation [30], [31]. It is worth mentioning that the main
difficulty in developing Boolean algorithms is due to the unre-
stricted space of choices. This makes more difficult to take
good decisions during functional decomposition.

Advanced DAG optimization methodologies, and associ-
ated tools, use both algebraic and Boolean methods. When
DAG nodes are restricted to just one function type the opti-
mization procedure can be made much more effective. This
is because logic transformations are designed specifically to
target the functionality of the chosen node. For example, in
AIGs, logic transformations such as balancing, refactoring,
and general rewriting are very effective. For example, bal-
ancing is based on the associativity axiom from traditional

808 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Boolean algebra [12], [13]. Refactoring operates on an AIG
subgraph which is first collapsed into SOP and then factored
out [19]. General rewriting conceptually includes balancing
and refactoring. Its purpose is to replace AIG subgraphs with
equivalent precomputed AIG implementations that improve
the number of nodes and levels [12]. By applying local, but
powerful, transformations many times during AIG optimiza-
tion it is possible to obtain very good result quality. The
restriction to AIGs makes it easier to assess the intermediate
quality and to develop the algorithms, but in general is more
prone to local minimum. Nevertheless, Boolean methods can
still complement AIG optimization to attain higher quality of
results [2], [24].

In this paper, we present a new representation form, based
on majority and inversion, with its native Boolean algebra. We
show algebraic and Boolean optimization techniques for this
data structure unlocking new points in the design space.

Note that early attempts to majority logic have already
been reported in the 60s [14]–[16], but, due to their inherent
complexity, failed to gain momentum later on in automated
synthesis. We address, in this paper, the unique opportunity
led by majority logic in a contemporary synthesis flow.

C. Notations and Definitions

We provide hereafter notations and definitions on Boolean
algebra and logic networks.

1) Boolean Algebra: In the binary Boolean domain, the
symbol B indicates the set of binary values {0, 1}, the sym-
bols ∧ and ∨ represent the conjunction (AND) and disjunction
(OR) operators, the symbol ′ represents the complementa-
tion (INV) operator and 0/1 are the false/true logic values.
Alternative symbols for ∧ and ∨ are · and +, respectively.
The standard Boolean algebra (originally axiomatized by
Huntington [32]) is a nonempty set (B,∧,∨, ′, 0, 1) sub-
ject to identity, commutativity, distributivity, associativity, and
complement axioms over ∧,∨, and ′ [1]. For the sake of com-
pleteness, we report these basic axioms in (1). Such axioms
will be used later on in this paper for proving theorems.

This axiomatization for Boolean algebra is sound and com-
plete [33]. Informally, it means that logic arguments, or
formulas, proved by axioms in � are valid (soundness) and all
true logic arguments are provable (completeness). We refer the
reader to [33] for a more formal discussion on mathematical
logic. In practical EDA applications, only sound and complete
axiomatizations are of interest.

Other Boolean algebras exist, with different operators and
axiomatizations, such as Robbins algebra, Freges algebra,
Nicods algebra, etc. [33]. Boolean algebras are the basis to
operate on logic networks

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Identity : � · I
x ∨ 0 = x
x ∧ 1 = x
Commutativity : � · C
x ∧ y = y ∧ x
x ∨ y = y ∨ x
Distributivity : � · D
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
Associativity : � · A
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∨ (y ∨ z) = (x ∨ y) ∨ z
Complement : � · Co
x ∨ x′ = 1
x ∧ x′ = 0.

(1)

2) Logic Network: A logic network is a DAG with nodes
corresponding to logic functions and directed edges represent-
ing interconnection between the nodes. The direction of the
edges follows the natural computation from inputs to outputs.
The terms logic network, Boolean network, and logic circuit
are used interchangeably in this paper. A logic network is said
irredundant if no node can be removed without altering the
Boolean function that it represents. A logic network is said
homogeneous if each node represents the same logic function
and has a fixed indegree, i.e., the number of incoming edges
or fan-in. In a homogeneous logic network, edges can have
a regular or complemented attribute. The depth of a node is
the length of the longest path from any primary input vari-
able to the node. The depth of a logic network is the largest
depth among all the nodes. The size of a logic network is the
number of its nodes.

3) Self-Dual Function: A logic function f (x, y, . . . , z) is
said to be self-dual if f = f ′(x′, y′, . . . , z′) [1]. By com-
plementation, an equivalent self-dual formulation is f ′ =
f (x′, y′, . . . , z′).

4) Majority Function: The n-input (n being odd) major-
ity function M returns the logic value assumed by more than
half of the inputs [1]. For example, the three input major-
ity function M(x, y, z) is represented in terms of ∧,∨ by
(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). Also (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
is a valid representation for M(x, y, z). The majority function
is self-dual [1].

III. MAJORITY-INVERTER GRAPHS

In this section, we present MIGs and their representation
properties. Then, we show a new Boolean algebra natively
fitting the MIG data structure. Finally, we discuss the error
masking capabilities of MIGs from an optimization standpoint.

A. MIG Logic Representation

Definition 1: An MIG is a homogeneous logic network with
an indegree equal to 3 and each node representing the major-
ity function. In an MIG, edges are marked by a regular or
complemented attribute.

To determine some basic representation properties of MIGs,
we compare them to the well-known AOIGs (which include
AIGs). In terms of representation expressiveness, the elemen-
tary bricks in MIGs are majority operators while in AOIGs
there are conjunctions (AND) and disjunctions (OR). It is
worth noticing that a majority operator M(x, y, z) behaves as
the conjunction operator AND(x, y) when z = 0 and as the dis-
junction operator OR(x, y) when z = 1. Therefore, majority is
actually a generalization of both conjunction and disjunction.
Recall that M(x, y, z) = xy + xz + yz. This property leads to
the following theorem.

Theorem 1: MIGs ⊃ AOIGs.
Proof: In both AOIGs and MIGs, inverters are represented

by complemented edge markers. An AOIG node is always a
special case of an MIG node, with the third input biased to
logic 0 or 1 to realize an AND or OR, respectively. On the
other hand, an MIG node is never a special case of an AOIG
node, because the functionality of the three input majority
cannot be realized by a unique AND or OR.

As a consequence of the previous theorem, MIGs are at
least as good as AOIGs but potentially much better, in terms of
representation compactness. Indeed, in the worst case, one can
replace node-wise AND/ORs by majorities with the third input
biased to a constant (0/1). However, even a more compact MIG

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 809

Fig. 1. MIG representation for f = x3· (x2 + (x′
1 + x0)′). Complementation

is represented by bubbles on the edges.

representation can be obtained by fully exploiting its node
functionality rather than fixing one input to a logic constant.

Fig. 1 depicts an MIG representation example for f =
x3· (x2 + (x′

1 + x0)
′). The starting point is a traditional AOIG.

Such AOIG has three nodes and three levels of depth, which is
the best representation possible using just AND/ORs. The first
MIG is obtained by a one-to-one replacement of AOIG nodes
by MIG nodes. As shown by Fig. 1, a better MIG representa-
tion is possible by taking advantage of the majority function.
This transformation will be detailed in the rest of this paper.
In this way, one level of depth is saved with the same node
count.

MIGs inherit from AOIGs some important properties, like
universality and AIG inclusion. This is formalized by the
following.

Corollary 1: MIGs ⊃ AIGs.
Proof: MIGs ⊃ AOIGs ⊃ AIGs =⇒ MIGs ⊃ AIGs.
Corollary 2: MIG is an universal representation form.
Proof: MIGs ⊃ AOIGs ⊃ AIGs that are universal represen-

tation forms [10].
So far, we have shown that MIGs extend the represen-

tation capabilities of AOIGs. However, we need a proper
set of manipulation tools to handle MIGs and automatically
reach compact representations. For this purpose, we introduce
hereafter a new Boolean algebra, based on MIG primitives.

B. MIG Boolean Algebra

We present a novel Boolean algebra, defined over the set
(B, M, ′, 0, 1), where M is the majority operator of three vari-
ables and ′ is the complementation operator. The following
five primitive transformation rules, referred to as �, form an
axiomatic system for (B, M, ′, 0, 1). All variables belong to B

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Commutativity : � · C
M(x, y, z) = M(y, x, z) = M(z, y, x)
Majority : � · M{

if(x = y): M(x, x, z) = M(y, y, z) = x = y
if
(
x = y′): M

(
x, x′, z

) = z
Associativity : � · A
M(x, u, M(y, u, z)) = M(z, u, M(y, u, x))
Distributivity : � · D
M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z)
Inverter Propagation : � · I
M′(x, y, z) = M

(
x′, y′, z′).

(2)

Axiom � · C defines a commutativity property. Axiom
� · M declares a 2 over 3 decision threshold. Axiom � · A
is an associative law extended to ternary operators. Axiom
� · D establishes a distributive relation over majority opera-
tors. Axiom � · I expresses the interaction between M and
complementation operators. It is worth noticing that � · I does

not require operation type change like De Morgan laws, as it
is well known from self-duality [1].

We prove that (B, M, ′, 0, 1) axiomatized by � is an actual
Boolean algebra by showing that it induces a complemented
distributive lattice [34].

Theorem 2: The set (B, M, ′, 0, 1) subject to axioms in �
is a Boolean algebra.

Proof: The system � embed median algebra axioms [35].
In such scheme, M(0, x, 1) = x follows from � · M. In [36],
it is proved that a median algebra with elements 0 and 1 sat-
isfying M(0, x, 1) = x is a distributive lattice. Moreover, in
our scenario, complementation is well defined and propagates
through the operator M (� · I). Combined with the previous
property on distributivity, this makes our system a comple-
mented distributive lattice. Every complemented distributive
lattice is a Boolean algebra [34].

Note that there are other possible axiomatic systems for
(B, M, ′, 0, 1). For example, one can show that in the presence
of � ·C, � ·A, and � ·M, the rule in � ·D is redundant [37]. In
this paper, we consider � · D as part of the axiomatic system
for the sake of simplicity.

1) Derived Theorems: Several other complex rules, for-
mally called theorems, in (B, M, ′, 0, 1) are derivable from �.
Among the ones we encountered, three rules derived from �
are of particular interest to logic optimization. We refer to
them as � and are described hereafter. In the following, the
symbol zx/y represents a replacement operation, i.e., it replaces
x with y in all its appearance in z:

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Relevance – � · R
M(x, y, z) = M

(
x, y, zx/y′

)

Complementary Associativity – � · C
M

(
x, u, M

(
y, u′, z

)) = M(x, u, M(y, x, z))
Substitution – � · S
M(x, y, z) =
M

(
v, M

(
v′, Mv/u(x, y, z), u

)
, M

(
v′, Mv/u′(x, y, z), u′)).

(3)

The first rule, relevance (� · R), replaces reconvergent
variables with their neighbors. For example, consider the
function f = M(x, y, M(w, z′, M(x, y, z))). Variables x and
y are reconvergent because they appear in both the bot-
tom and the top majority operators. In this case, relevance
(� · R) replaces x with y′ in the bottom majority as f =
M(x, y, M(w, z′, M(y′, y, z))). This representation can be fur-
ther reduced to f = M(x, y, w) by using � · M.

The second rule, complementary associativity (� ·C), deals
with variables appearing in both polarities. Its rule of replace-
ment is M(x, u, M(y, u′, z)) = M(x, u, M(y, x, z)) as depicted
by (3).

The third rule, substitution (� ·S), extends variable replace-
ment to the nonreconvergent case. We refer the reader to
Fig. 2 for an example about substitution (� · S) applied to
a three-input parity function.

Hereafter, we show how � rules can be derived from �.
Theorem 3: � rules are derivable by �.
Proof: We consider each � rule separately.
Relevance (Ψ · R): Let S be the set of all possible input

patterns for M(x, y, z). Let Sx=y (Sx=y′) be the subset of S
such that x = y (x = y′) condition is true. Note that Sx=y ∩
Sx=y′ = ∅ and Sx=y ∪ Sx=y′ = S. According to � · M, variable
z in M(x, y, z) is only relevant for Sx=y′ . Thus, it is possible
to replace x with y′, i.e., (x/y′), in all its appearance in z,
preserving the original functionality.

810 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Complementary Associativity (Ψ · C):
M(x, u, M(u′, y, z)) = M(M(x, u, u′), M(x, u, y), z) (� · D).
M(M(x, u, u′), M(x, u, y), z) = M(x, z, M(x, u, y)) (� · M).
M(x, z, M(x, u, y)) = M(x, u, M(y, x, z)) (� · A).
Substitution (Ψ · S): We set M(x, y, z) = k for brevity.
k = M(v, v′, k) = (� · M).
M(M(u, u′, v), v′, k) = (� · M).
M(M(v′, k, u), M(v′, k, u′), v) = (� · D).
Then, M(v′, k, u) = M(v′, kv/u, u) (� ·R) and M(v′, k, u′) =

M(v′, kv/u′ , u) (� · R).
Recalling that k = M(x, y, z), we finally obtain: M(x, y, z) =

M(v, M(v′, Mv/u(x, y, z), u), M(v′, Mv/u′(x, y, z), u′)).
2) Soundness and Completeness: The set (B, M, ′, 0, 1)

together with axioms � and derivable theorems form our
majority logic system. In a computer implementation of
our majority logic system, the natural data structure for
(B, M, ′, 0, 1) is an MIG and the associated manipulation
tools are � and � transformations. In order to be useful
in practical applications, such as EDA, our majority logic
system needs to satisfy fundamental mathematical proper-
ties such as soundness and completeness [33]. Soundness
means that every argument provable by the axioms in the
system is valid. This guarantees preserving of correctness.
Completeness means that every valid argument has a proof
in the system. This guarantees universal logic reachability.
We show that our majority Boolean algebra is sound and
complete.

Theorem 4: The Boolean algebra (B, M, ′, 0, 1) axioma-
tized by � is sound and complete.

Proof: We first consider soundness. Here, we need to prove
that all axioms in � are valid, i.e., preserve the true behav-
ior (correctness) of a system. Rules � · C and � · M are
valid because they express basic properties (commutativity and
majority decision rule) of the majority operator. Rule � · I is
valid because it derives from the self-duality of the majority
operator. For rules � ·D and � ·A, a simple way to prove their
validity is to build the corresponding truth tables and check
that they are actually the same. It is an easy exercise to verify
that it is true. We consider now completeness. Here, we need
to prove that every valid argument, i.e., (B, M, ′, 0, 1)-formula,
has a proof in the system �. By contradiction, suppose that a
true (B, M, ′, 0, 1)-formula, say α, cannot be proven true using
� rules. Such (B, M, ′, 0, 1)-formula α can always be reduced
by � ·S rules into a (B,∧,∨, ′, 0, 1)-formula. This is because
� ·S can behave as Shannon’s expansion by setting v = 1 and u
to a logic variable. Using � (1), all (B,∧,∨, ′, 0, 1)-formulas
can be proven, including α. However, every (B,∧,∨, ′, 0, 1)-
formula is also contained by (B, M, ′, 0, 1), where ∧ and ∨
are emulated by majority operators. Moreover, rules in � with
one input fixed to 0 and 1 behaves as � rules (1). This means
that also � is capable to prove the reduced (B, M, ′, 0, 1)-
formula α, contradicting our assumption. Thus, our system is
sound and complete.

As a corollary of � soundness, all rules in � are valid.
Corollary 3: � rules are valid in (B, M, ′, 0, 1).
Proof: � rules are derivable by � as shown in Theorem 3.

Then, � rules are sound in (B, M, ′, 0, 1) as shown in
Theorem 4. Rules derivable from sound axioms are valid in
the original domain.

As a corollary of � completeness, any element of a pair
of equivalent (B, M, ′, 0, 1)-formulas, or MIGs, can be trans-
formed one into the other by a sequence of � transformations.
From now on, we use MIGs to refer to functions in the

(B, M, ′, 0, 1) domain. Still, the same arguments are valid
for (B, M, ′, 0, 1)-formulas.

Corollary 4: It is possible to transform any MIG α into
any other logically equivalent MIG β, by a sequence of
transformations in �.

Proof: MIGs are defined over the (B, M, ′, 0, 1) domain.
Following from Theorem 4, all valid arguments over
(B, M, ′, 0, 1) can be proved by a sequence of � rules. A valid
argument is then M(1, M(α, β ′, 0), M(α′, β, 0)) = 0, which
reads “α is never different from β” according to the initial
hypothesis. It follows that the sequence of � rules proving
such argument is also logically transforming α into β.

3) Reachability: To measure the efficiency of a logic sys-
tem, thus of its Boolean algebra, one can study: 1) the ability
to perform a desired task and 2) the number of basic operations
required to perform such a task. In the context of paper, the
task we care about is logic optimization. For the graph size and
graph depth metrics, MIGs can be smaller than AOIGs because
of Theorem 1. However, the complexity of � sequences
required to reach those desirable MIGs is not obvious. In this
regard, we give an insight about the majority logic system effi-
ciency by comparing the number of � rules needed to get an
optimized MIGs with the number of � rules needed to get an
evenly optimized AIGs. This type of efficiency metric is often
referred to as reachability, i.e., the ability to reach a desired
representation form with the smallest number of steps possible.

Theorem 5: For a given optimization goal and an initial
AOIG, the number of � rules needed to reach this goal with
an MIG is smaller, or at most equal, than the number of �
rules needed to reach the same goal with an AOIG.

Proof: Consider the shortest sequence of � rules meeting
the optimization goal with an AOIG. On the MIG side, assume
to start with the initial AOIG replacing node-wise AND/OR
nodes with preconfigured majority nodes. Note that � rules
with one input fixed to 0/1 behave as � rules. So, it is possible
to emulate the same shortest sequence of � rules in AOIGs
with � in MIGs. This is just an upper bound on the shortest
sequence of � rules. Exploiting the full � expresiveness and
MIG compactness, this sequence can be further shortened.

For a deeper theoretical study on majority logic expresive-
ness, we refer the reader to [38]. In this paper, we use the
mathematical theory presented so far to define a consistent
logic optimization framework. Then, we give experimental
evidence on the benefits predicted by the theory. Results in
Section VI show indeed a depth reduction, over the state-
of-the-art techniques, up to 48× thanks to our majority
logic system. More details on the experiments are given in
Section VI.

Operating on MIGs via the new Boolean algebra is one nat-
ural approach to run logic optimization. Interestingly enough,
other approaches are also possible. In the following, we show
how MIGs can be optimized exploiting other properties of the
majority operator, such as bit-error masking.

C. Inserting Safe Errors in MIG

MIGs are hierarchical majority voting systems. One notable
property of majority voting is the ability to correct different
types of bit-errors. This feature is inherited by MIGs, where
the error masking property can be exploited for logic optimiza-
tion. The idea is to purposely introduce logic errors that are
successively masked by the voting resilience in MIG nodes. If
such errors are advantageous, in terms of logic simplifications,
better MIG representations can be generated.

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 811

In the immediate following, we briefly review hereafter
notations and definitions on logic errors [5], [39]. Then, we
present the theoretical grounds for “safe error insertion” in
MIGs. We define what type of errors, and at what overhead
cost, can be introduced. Note that, in this paper, we use the
word erroneous to highlight the presence of a logic error. Our
notation do not relate to testing or other fields.

Definition 2: The logic error in function f is defined as
the difference between f and its erroneous version g and is
computed as f ⊕ g.

In principle, a logic error can be determined for any two
circuits. In practical cases, a logic error is interpreted as a
perturbation A on an original logic circuit f .

Notation: A logic circuit f affected by error A is written f A.

For example, consider the function f = (a + b)· c. An error
A defined as “fix variable b to 0” (A: b = 0) leads here to
f A = ac. In general, an error flips k entries in the truth table
of the affected function. In the above example, k = 1.

To insert safe (permissible) errors in an MIG we consider
a node w and we triplicate the sub-trees rooted at it. In each
version of w we introduce logic errors heavily simplifying
the MIG. Then, we use the three erroneous versions of w
as inputs to a top majority node exploiting the error mask-
ing property. Unfortunately, a majority node cannot mask
all types of errors. This limits our choice of permissible
errors. Orthogonal errors, defined hereafter, fit our purposes.
Informally, two logic errors are orthogonal if for any input pat-
tern they cannot happen simultaneously. In the majority voting
scenario the orthogonality is important because it guarantees
that no two logic errors happen at the same time which would
corrupt the original functionality.

Definition 3: Two logic errors A and B on a logic circuit f
are said orthogonal if (f A ⊕ f)· (f B ⊕ f) = 0.

To give an example of orthogonal errors consider again the
function f = (a + b)· c. Here, the two errors A: a + b = 1
and B: c = 0 are actually orthogonal. Indeed, by logic
simplification, we get (c ⊕ f)· (0 ⊕ f) = (((a + b)c)′c + ((a +
b)c)c′)· ((a + b)c) = ((a + b)c)′c· ((a + b)c) = 0. Instead, the
errors A: a + b = 1 and B: c = 1 are not orthogonal for f .
This is because the input (1, 1, 1) triggers both errors.

Now consider back a generic MIG root w. Let A, B, and C
be three pairwise orthogonal errors on w. Being all pairwise
orthogonal, a top majority node M(wA, wB, wC) is capable
to mask A, B, and C orthogonal errors restoring the original
functionality of w. This is formalized in the following theorem.

Theorem 6: Let w be a generic node in an MIG. Let A,
B, and C be three pairwise orthogonal errors on w. Then the
following equation holds: w = M(wA, wB, wC).

Proof: The equation w = M(wA, wB, wC) is logically equiv-
alent to w ⊕ M(wA, wB, wC) = 0. The ⊕ (XOR) operator
propagates into the majority operator as w ⊕ M(wA, wB, wC) =
M(wA ⊕ w, wB ⊕ w, wC ⊕ w). Recalling that M(a, b, c) =
ab + ac + bc we rewrite the previous expression as (wA ⊕
w)· (wB ⊕ w) + (wA ⊕ w)· (wC ⊕ w) + (wB ⊕ w)· (wC ⊕ w). As
A, B, and C are pairwise orthogonal, we have that each term
is 0, so 0 + 0 + 0 = 0. So, w ⊕ M(wA, wB, wC) = 0.

Note that an MIG w = M(wA, wB, wC) can have up to three
times the size and one more level of depth as the original w.
This means that simplifications enabled by orthogonal errors
A, B, and C must be significant enough to compensate for
such overhead. Note also that this approach resembles triple
modular redundancy [40] and its approximate variants [41],

Algorithm 1 MIG Algebraic Size-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
�.ML→R(α); �.DR→L(α);
�.A(α); �.C(α);
�.R(α); �.S(α);
�.ML→R(α); �.DR→L(α);

end for

reshape eliminate

but operates differently. Here, we exploit the error masking
property in majority operators to enable logic simplifications
rather than covering potential hardware failures. More details
on how to identify advantageous orthogonal errors in MIGs
will be given in Section V-A together with related Boolean
optimization methods.

In the following sections, we present algorithms for alge-
braic and Boolean optimization of MIGs.

IV. MIG ALGEBRAIC OPTIMIZATION

In this section, we propose algebraic optimization meth-
ods for MIGs. They exploit axioms and derived theorems of
the novel Boolean algebra. Our algebraic optimization pro-
cedures target size, depth, and switching activity reduction
in MIGs.

A. Size-Oriented MIG Algebraic Optimization

To optimize the size of an MIG, we aim at reducing the
number of its nodes. Node reduction can be done, at first
instance, by applying the majority rule. In the MIG Boolean
algebra domain this corresponds to the evaluation of the major-
ity axiom (�·M) from left to right (L → R), as M(x, x, z) = x.
A different node elimination opportunity arises from the dis-
tributivity axiom (� ·D), evaluated from right to left (R → L),
as M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z). By
applying � ·ML→R and � ·DR→L to all MIG nodes, in an arbi-
trary sequence, we can actually eliminate nodes. By repeating
this procedure until no improvement exists, we designed a sim-
ple yet powerful procedure to reduce an MIG size. Embedding
some intelligence in the graph exploration direction, e.g., the
sequence of MIG nodes, immediately improves the optimiza-
tion effectiveness. Note that the applicability of majority and
distributivity depends on the particular MIG structure. Indeed,
there may be MIGs where no direct node elimination is
evident. This is because: 1) the optimal size is reached or
2) we are stuck in a local minimum. In the latter case, we
want to reshape the MIG in order to encode new reduction
opportunities. The rationale driving the reshaping process is
to locally increase the number of common inputs/variables to
MIG nodes. For this purpose, the associativity axioms (� · A
and � · C) allow us to move variables between adjacent lev-
els and the relevance axiom (� · R) to exchange reconvergent
variables. When a more radical transformation is beneficial,
the substitution axiom (� · S) replaces pairs of independent
variables, temporarily inflating the MIG. Once the reshap-
ing process has created new reduction opportunities, majority
(� · ML→R) and distributivity (� · DR→L) are applied again
over the MIG to simplify it. The reshaping and elimination
processes can be iterated over a user-defined number of cycles,
called effort. Such MIG-size algebraic optimization strategy is
summarized in Algorithm 1.

812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Fig. 2. Examples of MIG optimization for size (a), depth (b-c), and switching activity (d).

For the sake of clarity, we comment on the MIG-size
algebraic optimization of a simple example, reported in
Fig. 2(a). The input MIG is equivalent to the formula
M(x, M(x, z′, w), M(x, y, z)), which has no evident simplifica-
tion by majority and distributivity axioms. Consequently, the
reshape process is invoked to locally increase the number of
common inputs. Associativity � · A swaps w and M(x, y, z)
in the original formula obtaining M(x, M(x, z′, M(x, y, z)), w),
when variables x and z are close to the each other.
After that, the relevance � · R modifies the inner formula
M(x, z′, M(x, y, z)), exchanging variable z with x and obtaining
M(x, M(x, z′, M(x, y, x)), w). At this point, the final elimina-
tion process is applied, simplifying the reshaped representa-
tion as M(x, M(x, z′, M(x, y, x)), w) = M(x, M(x, z′, x), w) =
M(x, x, w) = x by using � · ML→R.

B. Depth-Oriented MIG Algebraic Optimization

To optimize the depth of an MIG, we aim at reducing the
length of its critical path. A valid strategy for this purpose
is to move late arrival (critical) variables close to the out-
puts. In order to explain how critical variables can be moved,
while preserving the original functionality, consider the gen-
eral case in which a part of the critical path appears in the
form M(x, y, M(u, v, z)). If the critical variable is x, or y,
no simple move can reduce the depth of M(x, y, M(u, v, z)).
Whereas, if the critical variable belongs to M(u, v, z), say z,
depth reduction is achievable. We focus on the latter case,
with order tz > tu ≥ tv > tx ≥ ty for the variables arrival
time (depth). Such an order can arise from: 1) an unbal-
anced MIG whose inputs have equal arrival times or 2) a
balanced MIG whose inputs have different arrival times. In
both cases, z is the critical variable arriving later than u, v, x, y,

Algorithm 2 MIG Algebraic Depth-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
�.ML→R(α); �.DL→R(α); �.A(α);
�.A(α); �.C(α);
�.R(α); �.S(α);
�.ML→R(α); �.DL→R(α); �.A(α);

end for

reshape push-up

hence the local depth is tz + 2. If we apply the distribu-
tivity axiom � · D from left to right (L → R), we obtain
M(x, y, M(u, v, z)) = M(M(x, y, u), M(x, y, v), z), where z is
pushed one level up, reducing the local depth to tz + 1. Such
technique is applicable to a broad range of cases, as all the
variables appearing in M(x, y, M(u, v, z)) are distinct and inde-
pendent. However, there is a size penalty of one extra node. In
the favorable cases for which associativity axioms (�·A, � ·C)
apply, critical variables can be pushed up with no penalty.
Furthermore, where majority axiom applies �·ML→R, it is pos-
sible to reduce both depth and size. As noted earlier, there exist
cases for which moving critical variables cannot improve the
overall depth. This is because: 1) the optimal depth is reached
or 2) we are stuck in a local minimum. To move away from
a local minimum, the reshape process is useful. The reshape
and critical variable push-up processes can be iterated over a
user-defined number of cycles, called effort. Such MIG-depth
algebraic optimization strategy is summarized in Algorithm 2.

We comment on the MIG-depth algebraic optimization
using two examples depicted by Fig. 2(b) and (c). The con-
sidered functions are f = x ⊕ y ⊕ z and g = x(y + u· v) with

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 813

initial MIG representations derived from their optimal AOIGs.
In both of them, all inputs have 0 arrival time. No direct push-
up operation is advantageous. The reshape process is invoked
to move away from local minimum. For g = x(y + uv), com-
plementary associativity � · C enforces variable x to appear
in two adjacent levels, while for f = x ⊕ y ⊕ z substitu-
tion � · S replaces x with y, temporarily inflating the MIG.
After this reshaping, the push-up procedure is applicable. For
g = x(y+u· v), associativity �·A exchanges 1′ with M(u, 1′, v)
in the top node, reducing by one level the MIG depth. For
f = x ⊕ y ⊕ z, majority � · ML→R heavily simplifies the
structure and reduces the intermediate MIG depth by four lev-
els. The optimized MIGs have much smaller depth than their
optimal AOIGs counterparts. Note that Algorithm 2 produces
irredundant solutions.

C. Switching Activity-Oriented MIG Algebraic Optimization

To optimize the total switching activity of an MIG, we aim
at reducing: 1) its size and 2) the probability for nodes to
switch from logic 0 to 1, or vice versa. For the size reduction
task, we can run the same MIG-size algebraic optimization
described previously. To minimize the switching probability,
we want that nodes do not change values often, i.e., the prob-
ability of a node to be logic 1 (p1) is close to 0 or 1 [42].
For this purpose, relevance � · R and substitution � · S can
exchange variables with undesirable p1 ∼ 0.5 with more favor-
able variables having p1 ∼ 1 or p1 ∼ 0. In Fig. 2(d), we show
an example where relevance � ·R replaces a variable x having
p1 = 0.5 with a reconvergent variable y having p1 = 0.1, thus
reducing the overall MIG switching activity.

V. MIG BOOLEAN OPTIMIZATION

In this section, we propose Boolean optimization methods
for MIGs. They exploit the safe error insertion schemes pre-
sented in Section III-C. First, we introduce two techniques to
identify advantageous orthogonal errors in MIGs. Second, we
present our Boolean optimization technique targeting depth
and size reduction in MIGs. Note that also other optimization
goals are possible but are not discussed here for brevity.

A. Identifying Advantageous Orthogonal Errors in MIGs

In the following, we present two methods for identifying
advantageous triplets of orthogonal errors in MIGs.

1) Critical Voters Method: A natural way to discover
advantageous triplets of orthogonal errors is to analyze an MIG
structure. We want to identify critical portions of an MIG to
be simplified thanks to these errors. To do so, we focus on
nodes1 that have the highest impact on the final voting deci-
sion, i.e., influencing a Boolean function most. We call such
nodes critical voters of an MIG. Critical voters can also be
primary input themselves. To determine the critical voters, we
rank MIG nodes based on a criticality metric. The criticality
computation goes as follows. Consider an MIG node m. We
label all MIG nodes whose computation depends on m. For all
such nodes, we calculate the impact of m by propagating a unit
weight value from m outputs up to the root with an attenuation
factor of 1/3 each time a majority node is encountered. We
finally sum up all the values obtained and call this result criti-
cality of m. Intuitively, MIG nodes with the highest criticality
are critical voters.

1In the context of the critical voters technique we consider also the primary
inputs to be a special class of nodes with no fan-in.

For the sake of clarity, we give an example of criticality
computation in Fig. 3. Node m5 has criticality of 0, since
it is the root and does not propagate to any node. Node m4
has criticality of 1/3 (a unit weight propagated to m5 and
attenuated by 1/3). Node m3 has criticality of 1/3 (m4) +
(1/3 + 1)/3 (direct and m4 contribution to m5) which sums up
to 7/9. Node m2 has criticality of 1/3 (m3) + 4/9 (m4) + 7/27
(m5) which sums up to 28/27. Node m1 has criticality 1/3 +
criticality of m2 attenuated by factor 3 which sums up to about
2/3. Among the inputs, only x1 has a notable criticality being
1/3 (m3) + 1/9 (m4) + (1/3 + 1/9 + 1)/3 (m5) which sums
up to 25/27. Here the two elements with highest criticality are
m2 and x1.

We first determine two critical voters a and b and a set of
MIG nodes fed directly by both a and b, say {c1, c2, . . . , cn}.
In this context, an advantageous triplet of orthogonal errors
is: A: a = b′, B: c1 = a, c2 = a, . . . , cn = a, and C: c1 = b,
c2 = b, . . . , cn = b. Consider again the example in Fig. 3.
There, the critical voters are a = m2 and b = x1, while c1 =
m3. Thus, the pairwise orthogonal errors are m2 = x1′ (A),
m3 = x1 (B) and m3 = m2 (C), as shown in Fig. 3. The
actual orthogonality of A, B, and C type of errors is proved
in the following theorem.

Theorem 7: Let a and b be two critical voters in an MIG.
Let {c1, c2, . . . , cn} be the set of MIG nodes fed by both
a and b in the same polarity. Then, the following errors are
pairwise orthogonal: A: a = b′, B: c1 = a, c2 = a, . . . , cn = a,
and C: c1 = b, c2 = b, . . . , cn = b.

Proof: Starting from an MIG w, we build the three erroneous
versions wA, wB, and wC as described above. We show that
orthogonality holds for all three pairs. Pair (wA, wB): We need
to show that (wA ⊕ w)· (wB ⊕ w) = 0. The element wA ⊕ w
implies a = b, being the difference between the original and
the erroneous one with a = b′ (a �= b). The element wB ⊕ w
implies ci �= a (ci = a′), being the difference between the
original and the erroneous one with ci = a. However, if a = b
then ci cannot be a′ because ci = M(a, b, x) = M(a, a, x) =
a �= a′ by construction. Thus, the two elements cannot be
true at the same time, making (wA ⊕ w)· (wB ⊕ w) = 0. Pair
(wA, wC): This case is analogous to the previous one. Pair
(wB, wC): We need to show that (wB⊕w)· (wC⊕w) = 0. As we
deduced before, the element wB ⊕ w implies ci �= a (ci = a′).
Similarly, the element wC ⊕w implies ci �= b (ci = b′). By the
transitive property of equality and congruence in the Boolean
domain ci �= a and ci �= b implies a = b. However, if a = b,
then ci = M(a, b, x) = M(a, a, x) = M(b, b, x) = a = b which
contradicts both ci �= a and ci �= b. Thus, wB and wC cannot
be true simultaneously, making (wB ⊕ w)· (wC ⊕ w) = 0.

Even though focusing on critical voters is typically a good
strategy for safe error insertion in MIGs, sometimes other tech-
niques can be also convenient. In the following, we present one
of these alternative techniques.

2) Input Partitioning Method: As a complement to critical
voters method, we propose a different way to derive advanta-
geous triplets of orthogonal errors in MIGs. In this case, we
focus on the inputs rather than looking for internal MIG nodes.
In particular, we search for inputs leading to advantageous
simplifications when erroneous. Analogously to the criticality
metric in critical voters, we use here a decision metric, called
dictatorship [43], to select the most profitable inputs for logic
error insertion. The dictatorship is the ratio of input patterns
over the total (2n) for which the output assumes the same value
as the selected input, in a chosen polarity [43]. For example,

814 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Fig. 3. Example of criticality computation and orthogonal errors.

Fig. 4. MIG Boolean depth-optimization example based on critical voters errors insertion. Final depth reduction: 60%.

in the function f = (a + b)· c, the inputs a and b have equal
dictatorship of 5/8 while input c has an higher dictatorship
of 7/8. The inputs with the highest dictatorship are the ones
where we want to insert logic errors. Indeed, they have the
largest influence on the circuit functionality and its structure.

Exact computation of the dictatorship requires exhaustive
simulation of an MIG structure, which is not feasible for
practical reasons. Heuristic approaches to estimate dictatorship
involve partial random simulation and graph techniques [43].

After exact or heuristic computation of the dictatorship, we
select a subset of the primary inputs with highest dictatorship.

Next, for each selected input, we determine a condition that
causes an error. We require these errors to be orthogonal. Since
we operate directly on the primary inputs, we already divide
the Boolean space into disjoint subsets that are orthogonal.
Because we need at least three errors, we need to consider
at least three inputs to be made erroneous, say x, y, and z.
A possible partition is the following: {x �= y, x = y = z,
x = y = z′}. The corresponding errors are A: x = y for
{x �= y}, B: z = y′ when x = y for {x = y = z}, and C: z = y
when x = y for {x = y = z′}. We formally prove A, B, and C
orthogonality hereafter.

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 815

Theorem 8: Consider the input split {x �= y, x = y = z,
x = y = z′} in an MIG. Three errors A, B, and C selectively
affecting one subset but not the others are pairwise orthogonal.

Proof: To prove the theorem it is sufficient to show that
the split {x �= y, x = y = z, x = y = z′} is actually a
partition of the whole Boolean space, i.e., a union of disjoint
(nonoverlapping) subsets. It is an easy exercise to enumerate
all the eight possible {x, y, z} input patterns and associate with
each of them the corresponding {x �= y, x = y = z, x =
y = z′} subset. By doing so, one can see that no {x, y, z}
pattern is associated with more than one sub-set, meaning that
all subsets are disjoint. Moreover, all together, they form the
whole Boolean space.

For the sake of clarity, we report an illustrative exam-
ple on the input partitioning method. The function is f =
M(x, M(x, y′, z), M(x′, y, z)). The input split is {x �= y, x =
y = z, x = y = z′} which is affected by errors A, B, and C,
respectively. The first error A imposes x = y leading to
f A = M(x, M(y, y′, z), M(x′, x, z)) which can be further sim-
plified into f A = M(x, z, z) = z by � · M. The second
error B imposes z = y′ when x = y. This is the case for
the bottom level majority operators M(x, y′, z) and M(x′, y, z)
which are transparent when x = y. Therefore, error B leads
to f B = M(x, M(x, y′, y′), M(x′, y, y′)) which can be further
simplified into f B = M(x, y′, x′) = y′ by � · M. The third
error C imposes z = y when x = y holds. Analogously to
error B, error C leads to f C = M(x, M(x, y′, y), M(x′, y, y))
which can be further simplified into f C = M(x, x, y) = x by
� · M. A top majority node finally merges the three functions
into f = M(f A, f B, f C) = M(z, y′, x) which correctly repre-
sents the objective function but has two fewer nodes and one
level less than the original representation.

B. Depth-Oriented MIG Boolean Optimization

The most intuitive way to exploit safe error insertion in
MIGs is to reduce the number of levels. This is because the
initial overhead in w = M(wA, wB, wC), where w is the initial
MIG and wA, wB, wC are the three erroneous versions, is just
one additional level. This extra level is usually amply recov-
ered during simplification and optimization of MIG erroneous
branches. For depth-optimization purposes, the critical voters
method introduced in Section III-C enables very good results.
The reason is the following. Critical voters appear along the
critical path more than once. Thus, the possibility to insert
simplifying errors on critical voters directly enables a strong
reduction in the maximum number of levels. Sometimes, using
an actual MIG root for error insertion requires an unpractical
size overhead. In these cases, we bound the critical voters
search to sub-MIGs partitioned on a depth criticality basis.
Once the critical voters and a proper error insertion root have
been identified, three erroneous sub-MIG versions are gen-
erated as explained in Section III-C. On these sub-MIGs, we
want to reduce the logic height. We do so by running algebraic
MIG optimization on them (Algorithm 2). Note that, in prin-
ciple, also MIG Boolean methods can be reused. This would
correspond to a recursive Boolean optimization. However, it
turned out during experimentation that algebraic optimizations
already produce satisfactory results at the local level. Thus,
it makes more sense to apply Boolean techniques iteratively
on the whole MIG structure rather than recursively on the
same logic portion. At the end of the optimization of erro-
neous branches, the new MIG-roots must be given in input

Algorithm 3 MIG Boolean Depth-Optimization Pseudocode
INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
{a, b}=search_critical_voters(α);// Critical voters a, b searched
c=size_bounded_root(α, a, b);// Proper error insertion root
xn

1=common_parents(α, a, b);// Nodes fed by both a and b

cA=cb/a′
;// First erroneous branch

cB=cxn
1/a;// Second erroneous branch

cC=cxn
1/b;// Third erroneous branch

MIG-depth_Alg_Opt(cA);// Reduce the erroneous branch height
MIG-depth_Alg_Opt(cB);// Reduce the erroneous branch height
MIG-depth_Alg_Opt(cC);// Reduce the erroneous branch height
c=M(cA, cB, cC);// Link the erroneous branches
MIG-depth_Alg_Opt(c); // Last Gasp
if depth(c) is not reduced then

revert to previous MIG state;
end if

end for

to a top majority voting node. This re-establishes the func-
tional correctness. A last gasp of MIG algebraic optimization
is applied at this point, to take advantage of the simplifi-
cation opportunities arose from the integration of erroneous
branches. This Boolean optimization strategy is summarized in
Algorithm 3.

We comment on the MIG Boolean depth optimization with
a simple example, reported in Fig. 4. First, the critical voters
are searched and identified, being in this example the input x1
and the node m2 (from Fig. 3). The proper error insertion root
in this small example is the MIG root itself. So, three different
versions of the root f are generated with errors f m2/x1′

, f m3/m2,
and f m3/x1. Each erroneous branch is handled by fast algebraic
optimization to reduce its depth. The detailed algebraic opti-
mization steps involved are shown in Fig. 4. The most common
operation is �·M that directly simplifies the introduced errors.
The optimized erroneous branches are then linked together by
a top fault-masking majority node. A last gasp of algebraic
optimization on the final MIG structure further optimizes its
depth. In summary, our MIG Boolean optimization techniques
attains a depth reduction of 60%.

C. Size-Oriented MIG Boolean Optimization

Safe error insertion in MIGs can be used for size reduc-
tion. In this case, the branch triplication overhead in w =
M(wA, wB, wC) imposes tight simplification requirements. One
way to handle this situation is to enforce stricter selection
metrics on critical voters. However, the benefits deriving from
this approach are limited. A better solution is to change the
type of error inserted and use the input partitioning method.
Indeed, the input partitioning method can focus on the most
influent inputs of an MIG, and introduces selective simplifi-
cation on them. The resulting Boolean optimization procedure
is similar to Algorithm 2 but with depth techniques replaced
by size techniques, and critical voter search replaced by input
partitioning methods.

VI. EXPERIMENTAL RESULTS

In this section, we test the performance of our MIG opti-
mization techniques on academic and industrial benchmarks.
We run logic optimization experiments (comparing logic net-
works) and complete design experiments (consisting of logic

816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

Algorithm 4 Top-Level MIG-optimization Script
INPUT: MIG α. OUTPUT: Optimized MIG α.

MIG-depth_Alg_Opt(α);// small size overhead
MIG-reshaping(α);// reshuffling
MIG-size_Alg_Opt(α);// no depth overhead
MIG-depth_Bool_Opt(α);// pronounced size overhead
MIG-reshaping(α);// reshuffling
MIG-depth_Alg_Opt(α);// small size overhead
MIG-size_Bool_Opt(α);// small depth overhead
MIG-size_Alg_Opt(α);// no depth overhead
MIG-reshaping(α);// reshuffling
MIG-depth_Alg_Opt(α);// small size overhead
MIG-size_Alg_Opt(α);// no depth overhead

TABLE I
ADDER OPTIMIZATION RESULTS

synthesis and physical design) on commercial ASIC and
FPGA flows. Finally, we give our vision on nanotechnology
design via MIGs.

A. Methodology

We developed a majority-logic manipulation package, called
MIGhty, consisting of about 8k lines of C code. It embeds var-
ious optimization commands based on the theory presented so
far. In this paper, we use a particular MIGhty optimization
strategy targeting strong depth reduction interleaved with size
recovery phases. The top-level optimization script is depicted
by Algorithm 4. This technique starts by reducing the depth
by algebraic methods implying a small size overhead. After
a fast reshaping step, it decreases the size of the MIG by
level-bounded size reduction. At this point, Boolean MIG
depth optimization is invoked to significantly reduce the num-
ber of levels at the price of a temporary MIG size inflation.
Further level reduction opportunities are exploited in an alge-
braic depth reduction step. Then, size recovery is achieved
by Boolean intertwined with algebraic size reduction. A small
depth overhead is possible in this phase due to the size reduc-
tion. Finally, a last gasp of algebraic depth optimization further
compacts the MIG followed by level-bounded algebraic size
reduction. All optimization steps have a runtime complex-
ity linear with respect to the MIG size, i.e., are imposed to
consider each node at least once.

The script in Algorithm 4 is a composite optimization
strategy, similarly to the class of resyn scripts in ABC [2].

MIGhty reads files in Verilog or AIGER format and writes
back a Verilog description of the optimized MIG. In order to
simplify successive mapping steps, MIGhty reduces majority
functions into AND/ORs if no size/depth overhead is implied.
Thus, only the essential majority functions are written. Also,
the number of inversions is minimized by � · I before writing.

We consider IWLS’05 Open Cores benchmarks and larger
arithmetic HDL benchmarks. As a case study, we also con-
sider various adder circuits. All the Verilog files deriving from
our experiments can be downloaded at [44], for the sake of

reproducibility. In all benchmarks, we assumed the input sig-
nals to be available at time 0. In total, we optimized about
half a million equivalent gates over 31 benchmarks.

For the pure logic optimization experiments, we use as ref-
erence tool the ABC academic synthesizer [2], with the delay
oriented script if − g; iresyn. The initial if − g optimization
strongly reduces the AIG depth by using SOP-balancing [51].
The latter iresyn optimization performs fast rewriting passes on
the AIG, reducing mostly the number of nodes but potentially
also the number of levels.

We chose the AIG script if − g; iresyn because its opti-
mization rationale is close to our MIG optimization strategy
and the respective runtimes are comparable. Note that ABC
offers many other optimization scripts. Some of them may give
better results under determinate conditions (benchmark type,
size etc.). As the purpose of this paper is primarily to assess
the potential of MIG optimization with respect to analogous
AIG optimization, we neglect considerations and comparisons
related to other ABC commands.

While comparing size and depth of MIGs versus AIGs
already gives some good intuition on a data structure and opti-
mization effectiveness, we aim at providing results on even
grounds. For this reason, we map both AIG-optimized and
MIG-optimized circuits onto LUT-6. We perform LUT map-
ping using the established ABC script dch−f ; if −m −K 6.

For the complete design experiments, we consider a 22-nm
(28-nm) commercial ASIC (FPGA) flow suite. The commer-
cial flow consists of a logic synthesis step followed by place &
route. In this case, we use the MIG-optimized Verilog file as
input to the commercial tools in place of the original Verilog
file. In other words, the MIGhty package operates as a front-
end to the flows. Indeed, the efficiency of MIG-optimization
helps the commercial tool to design better circuits. With the
final circuit speed being our main design goal, we use an
ultrahigh delay effort script in the commercial tools.

B. Optimization Case Study: Adders

We first test the MIG optimization capabilities for adders,
that are known hard-to-optimize circuits [52]. Results for more
general benchmarks are given in the next section. Table I
shows the adder results. Our optimized MIG adders have 4
to 48× smaller depth than the original AIGs. In all cases, the
optimized MIG structure resembles a carry-look ahead design
which is known to be the most depth-efficient for adders.
Considering LUT mapped results, MIG-optimization enables
significantly less deep circuits, having 1.75 to 14× smaller
depth than LUT-6 circuits mapped from the original AIGs.

C. General Optimization Results

Table II shows general results for MIGhty logic optimization
and LUT-6 mapping. For the IWLS’05 and HDL arithmetic
benchmarks, we see a total improvement in all size, depth, and
switching activity metrics, with respect to AIG optimized by
ABC. The switching activity is computed by the ABC com-
mand ps -p. The same improvement trend holds also for LUT
mapped circuits. Since logic depth was our main optimization
target, we notice there the largest reduction.

Considering the IWLS’05 benchmarks, that are large but
not deep, MIGhty enables about 14% depth reduction. At
the LUT-level, we see about 7% depth reduction. At the
same time, the size and switching activity are reduced by
about 4% and 2%, respectively. At the LUT-level, size

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 817

TABLE II
MIG LOGIC OPTIMIZATION AND LUT-6 MAPPING RESULTS

and switching activity are reduced by about 2% and 1%,
respectively.

Focusing on the arithmetic HDL benchmarks, we see a bet-
ter depth reduction. Here, MIGhty enables about 33% depth
reduction. At the LUT-level, it enables about 16% depth reduc-
tion. At the same time, MIGhty reduces size and switching
activity by 4% and 0.1%. At the LUT-level, this corresponds
to about 1% size reduction and practically the same switching
activity.

The switching activity numbers are not reported in Table II
for space reasons but can be reproduced using the ABC
command ps -p on the files downloadable at [44].

Table II confirms that the runtime of our tool is similar with
that of if − g; iresyn ABC script.

All MIG output Verilog files passed formal verification tests
(ABC cec and synopsys formality) with success.

D. ASIC Results

Table III shows the results for ASIC design (synthesis fol-
lowed by place and route) at a commercial 22-nm technology
node.2 In total, we see that by using MIGhty as front-end
to the ASIC design flow, we obtained better final circuits, in
all relevant metrics including area, delay, and power. For the
delay, which was our critical design constraint, we observe an
improvement of about 13%. This improvement is not as large
as the one we saw at the logic optimization level because some
of the gain got absorbed by the interconnect overhead during
physical design. However, we still see a coherent trend: we
got about 4% and 3% reductions in area and power.

2Design tools and library names cannot be disclosed due to our license.

E. FPGA Results

Table IV shows the results for FPGA design (synthesis fol-
lowed by place and route) on a commercial 28-nm technology
node.2 By employing MIGhty as front-end to the FPGA design
flow, we obtain better final circuits, in LUT count, delay, and
power metrics. For the delay, that was our critical design con-
straint, we observe an improvement of about 10%. Also here,
place and route absorbs part of the advantage predicted at
the logic-level. Regarding LUT number and power, we see
improvements of about 10% and 5%, respectively. Some of
the values reported (marked by∗) are just post synthesis results
because the placement and routing on FPGA failed due to
excessive number of I/Os.

In summary, MIG synthesis technology enables a consistent
advantage over the state-of-the-art commercial design flows.
It is worth noticing that we employed MIG optimization just
as a front-end to an existing commercial flow. We foresee
even better results by integrating MIG optimization inside the
synthesis engine of commercial tools.

F. Nanotechnology Design via MIGs

Due to their ultrascaled dimensions, nanotechnologies often
operate on physics principles that are different from those
of traditional CMOS. For example, logic switches in some
nanotechnologies do not even use electron charge as the
state variable [45]. This brings new logic primitives to the
attention of logic synthesis. In particular, various promising
nanotechnologies realize devices behaving as majority voters.
Specific examples include, but are not limited to, spin-wave
device [46], quantum-dot cellular automata [47], DNA-based

818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 5, MAY 2016

TABLE III
MIG 22-nm ASIC DESIGN RESULTS

TABLE IV
MIG 28-nm FPGA DESIGN RESULTS

logic [48], ReRAM device [49], and ambipolar FET nan-
otechnologies [50]. For these nanotechnologies, MIGs are the
natural and native circuit abstraction for automated design.

MIGs can fully harness the logic advantage over CMOS pro-
vided by these new switches, which is often a pivotal asset in
the corresponding nanotechnologies. Preliminary experiments
already shown superior results for SWD, ambipolar FET, and
ReRAM nanotechnologies [46], [49], [50]. Based on our stud-
ies and results so far, we foresee an even broader impact of
MIGs in nanotechnology design.

VII. CONCLUSION

In this paper, we proposed a paradigm shift in representing
and optimizing logic circuits, by using only MAJ and INV as
basic operations. We presented the MIGs: a DAG consisting of
three-input majority nodes and regular/complemented edges.
We developed algebraic and Boolean optimization techniques
for MIGs and we embedded them into a tool, called MIGhty.
Over the set of IWLS’05 (arithmetic intensive) benchmarks,
MIGhty enabled a 7% (16%) depth reduction in LUT-6 cir-
cuits mapped by ABC while also reducing size and switching
activity, with respect to similar AIG optimization. Employed
as front-end to a delay-critical 22-nm ASIC flow, MIGhty
reduced the average delay/area/power by about 13%/4%/3%,
over 31 benchmarks. We also demonstrated improvements in
delay/area/power by 10%/10%/5% for a commercial 28-nm
FPGA flow.

REFERENCES

[1] T. Sasao, Switching Theory for Logic Synthesis. Boston, MA, USA:
Springer, 1999.

[2] (May 2015). ABC Synthesis Tool. [Online]. Available: http://
www.eecs.berkeley.edu/∼alanmi/abc/

[3] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. DAC, San Francisco, CA, USA, 2014, pp. 1–6.

[4] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Boolean logic opti-
mization in majority-inverter graph,” in Proc. DAC, San Francisco, CA,
USA, 2015, pp. 1–6.

[5] G. De Micheli, Synthesis and Optimization of Digital Circuits.
New York, NY, USA: McGraw-Hill, 1994.

[6] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued mini-
mization for PLA optimization,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 6, no. 5, pp. 727–750, Sep. 1987.

[7] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level logic optimization system,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 6, no. 6,
pp. 1062–1081, Nov. 1987.

[8] E. M. Sentovich et al., “SIS: A system for sequential circuit
synthesis,” Dept. EECS, Univ. California, Berkeley, CA, USA,
Tech. Rep. UCB/ERL M92/41, 1992.

[9] C. Yang and M. Ciesielski, “BDS: A BDD-based logic optimization
system,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 21, no. 7, pp. 866–876, Jul. 2002.

[10] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. CAV, Edinburgh, U.K., 2010, pp. 24–40.

[11] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[12] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewrit-
ing a fresh look at combinational logic synthesis,” in Proc. DAC, Austin,
TX, USA, 2006, pp. 532–535.

[13] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using
a simple circuit structure,” in Proc. IWLS, Vail, CO, USA, 2006,
pp. 15–22.

[14] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric
methods,” IRE Trans. Electron. Comput., vol. EC-11, no. 1, pp. 89–90,
Feb. 1962.

[15] Y. Tohma, “Decompositions of logical functions using majority deci-
sion elements,” IEEE Trans. Electron. Comput., vol. EC-13, no. 6,
pp. 698–705, Dec. 1964.

[16] F. Miyata, “Realization of arbitrary logical functions using majority ele-
ments,” IEEE Trans. Electron. Comput., vol. EC-12, no. 3, pp. 183–191,
Jun. 1963.

[17] N. Song and M. A. Perkowski, “EXORCISM-MV-2: Minimization of
ESOP expressions for MV input incompletely specified functions,” in
Proc. MVL, Sacramento, CA, USA, 1993, pp. 132–137.

[18] E. J. McCluskey, Jr., “Minimization of Boolean functions,” Bell Syst.
Tech. J., vol. 35, no. 6, pp. 1417–1444, Nov. 1956.

[19] R. K. Brayton and C. McMullen, “The decomposition and factorization
of Boolean expressions,” in Proc. ISCAS, 1982, pp. 49–54.

AMARÚ et al.: MAJORITY-INVERTER GRAPH: A NEW PARADIGM FOR LOGIC OPTIMIZATION 819

[20] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level logic optimization system,” IEEE J. Technol.
Comput. Aided Des., vol. 6, no. 6, pp. 1062–1081, Nov. 1987.

[21] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proc. IEEE, vol. 78, no. 2, pp. 264–300,
Feb. 1990.

[22] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based FPGAs,” ACM Trans. Design Autom. Electron. Syst., vol. 7,
no. 4, pp. 501–525, 2002.

[23] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “BDS-MAJ: A
BDD-based logic synthesis tool exploiting majority decomposition,” in
Proc. DAC, Austin, TX, USA, 2013, pp. 1–6.

[24] A. Mishchenko et al., “Using simulation and satisfiability to compute
flexibilities in Boolean networks,” IEEE J. Technol. Comput.-Aided Des.,
vol. 25, no. 12, pp. 743–755, May 2006.

[25] S.-C. Chang, M. Marek-Sadowska, and K.-T. Cheng, “Perturb and
simplify: Multilevel Boolean network optimizer,” IEEE J. Technol.
Comput.-Aided Des., vol. 15, no. 12, pp. 1494–1504, Dec. 1996.

[26] S.-C. Chang, L. P. P. P. Van Ginneken, and M. Marek-Sadowska,
“Circuit optimization by rewiring,” IEEE Trans. Comput., vol. 48, no. 9,
pp. 962–970, Sep. 1999.

[27] R. L. Ashenhurst, “The decomposition of switching functions,” in
Proc. Int. Symp. Theory Switch., Cambridge, MA, USA, Apr. 1957,
pp. 74–116.

[28] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM
J. Res. Develop., vol. 6, no. 2, pp. 227–238, Apr. 1962.

[29] H. A. Curtis, A New Approach to the Design of Switching Circuits.
Princeton, NJ, USA: Van Nostrand, 1962.

[30] V. Bertacco and M. Damiani, “Disjunctive decomposition of logic
functions,” in Proc. ICCAD, San Jose, CA, USA, 1997, pp. 78–82.

[31] A. Mishchenko and R. Brayton, “Faster logic manipulation for large
designs,” in Proc. IWLS, Austin, TX, USA, 2013.

[32] E. V. Huntington, “Sets of independent postulates for the algebra of
logic,” Trans. Amer. Math. Soc., vol. 5, no. 3, pp. 288–309, Jul. 1904.

[33] B. Jonsson and A. Tarski, “Boolean algebras with operators. Part I,”
Amer. J. Math., vol. 73, no. 4, pp. 891–939, Oct. 1951.

[34] G. Birkhoff, Lattice Theory. New York, NY, USA: Amer. Math.
Soc., 1967.

[35] J. R. Isbell, “Median algebra,” Trans. Amer. Math. Soc., vol. 260, no. 2,
pp. 319–362, Aug. 1980.

[36] G. Birkhoff and S. A. Kiss, “A ternary operation in distributive lattices,”
Bull. Amer. Math. Soc., vol. 53, no. 8, pp. 749–752, 1947.

[37] D. E. Knuth, The Art of Computer Programming, vol. 4A.
Upper Saddle River, NJ, USA: Addison-Wesley, 2011.

[38] M. Krause and P. Pudlák, “On the computational power of depth-2 cir-
cuits with threshold and modulo gates,” Theor. Comput. Sci., vol. 174,
nos. 1–2, pp. 137–156, 1997.

[39] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The transduc-
tion method-design of logic networks based on permissible functions,”
IEEE Trans. Comput., vol. 38, no. 10, pp. 1404–1424, Oct. 1989.

[40] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM J. Res. Develop., vol. 6, no. 2,
pp. 200–209, Apr. 1962.

[41] I. A. C. Gomes et al., “Methodology for achieving best trade-off of
area and fault masking coverage in ATMR,” in Proc. LATW, Fortaleza,
Brazil, 2014, pp. 1–6.

[42] M. Pedram, “Power minimization in IC design: Principles and appli-
cations,” ACM Trans. Design Autom. Electron. Syst. (TODAES), vol. 1,
no. 1, pp. 3–56, 1996.

[43] M. Parnas, D. Ron, and A. Samorodnitsky, “Proclaiming dictators and
juntas or testing Boolean formulae,” in Combinatorial Optimization.
Berlin, Germany: Springer, 2001, pp. 273–285.

[44] (2015). Majority-Inverter Graph Webpage. [Online]. Available:
http://lsi.epfl.ch/MIG

[45] K. Bernstein, R. K. Cavin, W. Porod, A. Seabaugh, and J. Welser,
“Device and architecture outlook for beyond CMOS switches,” Proc.
IEEE, vol. 98, no. 12, pp. 2169–2184, Dec. 2010.

[46] O. Zografos, L. Amarú, P.-E. Gaillardon, P. Raghavan, and
G. De Micheli, “Majority logic synthesis for spin wave technology,”
in Proc. DSD, Verona, Italy, 2014, pp. 691–694.

[47] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quan-
tum cellular automata,” J. Appl. Phys., vol. 75, no. 3, pp. 1811–1817,
1994.

[48] W. Li, Y. Yang, H. Yan, and Y. Liu, “Three-input majority logic gate
and multiple input logic circuit based on DNA strand displacement,”
Nano Lett., vol. 13, no. 6, pp. 2980–2988, 2013.

[49] P.-E. Gaillardon et al., “Computing secrets on a resistive memory array,”
in Proc. DAC, San Francisco, CA, USA, 2015, pp. 7–11.

[50] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Efficient arith-
metic logic gates using double-gate silicon nanowire FETs,” in Proc.
NEWCAS, Paris, France, 2013, pp. 1–4.

[51] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets, “Delay optimiza-
tion using SOP balancing,” in Proc. ICCAD, San Jose, CA, USA, 2011,
pp. 375–382.

[52] J. P. Fishburn, “A depth-decreasing heuristic for combinational logic;
or how to convert a ripple-carry adder into a carry-lookahead adder
or anything in-between,” in Proc. DAC, Orlando, FL, USA, 1990,
pp. 361–364.

Luca Amarú (S’13) received the B.S. degree
in electronic engineering from the Politecnico
di Torino, Turin, Italy, in 2009, and the joint
M.S. degree in electronic engineering from the
Politecnico di Torino and the Politecnico di Milano,
Milano, Italy, in 2011. He is currently pursuing the
Ph.D. degree in computer science with the Swiss
Federal Institute of Technology Lausanne, Lausanne,
Switzerland.

In 2014, he was a Visiting Researcher with
Stanford University, Stanford, CA, USA. His cur-

rent research interests include design automation, logic in computer science,
and beyond CMOS technologies.

Mr. Amarú was a recipient of the Best Presentation Award at the FETCH
2013 Conference and a Best Paper Award Nomination at the ASP-DAC 2013
Conference. He is a Reviewer for several IEEE journals. He served as a TPC
Member for DSD in the 2014 and 2015 conferences.

Pierre-Emmanuel Gaillardon (S’10–M’11)
received the Electrical Engineer degree from
CPE-Lyon, Lyon, France, in 2008, the M.Sc. degree
in electrical engineering from INSA, Lyon, in 2008,
and the Ph.D. degree in electrical engineering from
CEA-LETI, Grenoble, France, and the University
of Lyon, Lyon, in 2011.

He was a Research Associate with the Laboratory
of Intergrated Systems, Swiss Federal Institute of
Technology Lausanne, Lausanne, Switzerland. He
was a Research Assistant with CEA-LETI and a

Visiting Research Associate with Stanford University, Stanford, CA, USA.
Starting in 2016, he will assume an Assistant Professor position with the
Electrical and Computer Engineering Department, University of Utah, Salt
Lake City, UT, USA. His current research interests include development
of reconfigurable logic architectures and circuits exploiting emerging
technologies and novel EDA techniques.

Dr. Gaillardon was a recipient of the C-Innov 2011 Best Thesis Award and
the Nanoarch 2012 Best Paper Award. He is an Associate Editor of the IEEE
TRANSACTIONS ON NANOTECHNOLOGY. He is a Reviewer for several
journals and funding agencies. He has been serving as a TPC Member for
several conferences.

Giovanni De Micheli (M’83–SM’89–F’94) received
the Nuclear Engineer degree from the Politecnico di
Milano, Milano, Italy, in 1979, and the M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from the University of California at
Berkeley, Berkeley, CA, USA, in 1980 and 1983,
respectively.

He is a Professor and the Director of the
Institute of Electrical Engineering and the Integrated
Systems Centre with Swiss Federal Institute of
Technology Lausanne, Lausanne, Switzerland, and

a Program Leader of the Nano-Tera.ch program. He was a Professor of
Electrical Engineering with Stanford University, Stanford, CA, USA. He has
authored the book entitled Synthesis and Optimization of Digital Circuits
(McGraw-Hill, 1994), and co-authored and/or co-edited eight other books
and over 600 technical articles. He has an H-index of over 85 with Google
Scholar. His current research interests include several aspects of design tech-
nologies for integrated circuits and systems, such as synthesis for emerging
technologies, networks on chip, and 3-D integration. He is also interested in
heterogeneous platform design including electrical components and biosen-
sors, as well as in data processing of biomedical information.

Prof. De Micheli was a recipient of the 2012 IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS Mac Van Valkenburg Award for contributions to
theory, practice, and experimentation in design methods and tools, the 2003
IEEE Emanuel Piore Award for contributions to computer-aided synthesis of
digital systems, the Golden Jubilee Medal for outstanding contributions to
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS Society in 2000,
the D. Pederson Award for the best paper in the IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS in
1987, and several best paper awards, including DAC in 1983 and 1993, DATE
in 2005, and Nanoarch in 2010 and 2012. He has served IEEE in several capac-
ities, including the Division 1 Director from 2008 to 2009, the Co-Founder
and the President Elect of the IEEE Council on EDA from 2005 to 2007,
the President of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
Society in 2003, and the Editor-in-Chief of the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
from 1997 to 2001. He has been Chair of several conferences, including
Memocode in 2014, DATE in 2010, pHealth in 2006, VLSI SOC in 2006,
DAC in 2000, and ICCD in 1989. He is a fellow of ACM and a member of
the Academia Europaea and the Scientific Advisory Board of IMEC, CfAED,
and STMicroelectronics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

