Boolean Logic Optimization in Majority-Inverter Graphs

Luca Amard, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland.

Abstract— We present a Boolean logic optimization framework based
on Majority-Inverter Graph (MIG). An MIG is a directed acyclic graph
consisting of three-input majority nodes and regular/complemented edges.
Current MIG optimization is supported by a consistent algebraic frame-
work. However, when algebraic methods cannot improve a result quality,
stronger Boolean methods are needed to attain further optimization. For
this purpose, we propose MIG Boolean methods exploiting the error
masking property of majority operators. Our MIG Boolean methods
insert logic errors that strongly simplify an MIG while being successively
masked by the voting nature of majority nodes. Thanks to the data-
structure/methodology fitness, our MIG Boolean methods run in principle
as fast as algebraic counterparts. Experiments show that our Boolean
methodology combined with state-of-art MIG algebraic techniques en-
able superior optimization quality. For example, when targeting depth
reduction, our MIG optimizer transforms a ripple carry adder into
a carry look-ahead one. Considering the set of IWLS’05 (arithmetic
intensive) benchmarks, our MIG optimizer reduces by 17.98% (26.69%)
the logic network depth while also enhancing size and power activity
metrics, with respect to ABC academic optimizer. Without MIG Boolean
methods, i.e., using MIG algebraic optimization alone, the previous gains
are halved. Employed as front-end to a delay-critical 22-nm ASIC flow
(logic synthesis + physical design) our MIG optimizer reduces the average
delay/area/power by (15.07%, 4.93%, 1.93%), over 27 academic and
industrial benchmarks, as compared to a leading commercial ASIC flow.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Automatic Synthesis, Optimization

General Terms

Algorithms, Design, Performance, Theory.

Keywords

Majority Logic, Boolean Optimization, Logic Synthesis.
I. INTRODUCTION

Nowadays, EDA tools are challenged by design goals at the
frontier of what is achievable in advanced technologies. In this
scenario, recent logic synthesis works considered (slower) Boolean
methods [1]-[5] rather than (faster) algebraic methods [6]-[9] to
obtain superior circuit realizations, in terms of speed, power and
area. Indeed, it is desirable to spend more time in logic synthesis
computation to get a better final design. However, with traditional
tools, there is a limit after which spending more effort in logic
synthesis, for example running complex Boolean methods, does not
improve a circuit quality or even requires too long runtime [10].
To push this limit as far as possible, innovative data structures and
manipulation laws are decisive.

Majority-Inverter Graph (MIG) is a promising data structure for
logic optimization and synthesis recently introduced by [11]. An MIG
is a directed acyclic graph consisting of three-input majority nodes
and regular/complemented edges. MIG manipulation is supported by
a consistent algebraic framework. Algebraic optimization of MIGs
showed strong synthesis results. However, the heuristic and local
(short-sighted) nature of MIG algebraic methods [11] might preclude
global (far-sighted) optimization opportunities.

In this paper, we extend the capabilities of MIG logic optimization
by developing powerful Boolean methods based on majority voting.
Our MIG Boolean methods enforce simplification opportunities by
inserting logic errors successively masked by MIG nodes. Thanks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA Copyright 2015 ACM 978-
1-4503-3520-1/15/06$15.00 http://dx.doi.org/10.1145/2744769.2744806

to the data-structure/methodology fitness, our MIG Boolean methods
have an efficient runtime, i.e., can handle 100k equivalent gates in
less than a minute, on a standard laptop. Our Boolean methods
are simple, yet powerful. Experiments combined with state-of-art
MIG algebraic techniques show tremendous results. For example,
when targeting depth reduction, our MIG optimizer automatically
transforms a ripple carry adder into a carry look-ahead one. Con-
sidering the set of IWLS’05 (arithmetic intensive) benchmarks, our
MIG optimizer reduces by 17.98%(26.69%) the logic network depth
while also enhancing size and power activity metrics, with respect to
ABC tool [13]. Without MIG Boolean methods, using MIG algebraic
optimization alone, only (about) half of the aforementioned gains
appeared in our experiments. Employed as front-end to a delay-
critical 22-nm ASIC flow (logic synthesis + physical design) our MIG
optimizer reduces the average delay/area/power by (15.07%, 4.93%,
1.93%), over 27 academic and industrial benchmarks, as compared
to a leading commercial ASIC flow.

The remainder of this paper is organized as follows. Section II
provides a background on logic optimization and on MIGs. Section
III discusses on the logic flexibility of MIGs, exploiting the intrinsic
voting resilience of majority nodes. Section IV describes our Boolean
optimization methodology based on MIGs. Section V shows the
experimental results for our MIG Boolean optimization employed
either stand-alone or as front-end to a commercial ASIC design flow.
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION
This section gives a background on logic optimization and MIGs.
A. Logic Optimization

Logic optimization methods are usually divided into two groups:
Algebraic methods, which are fast, and Boolean methods, which are
slower but achieve better results [10]. Traditional algebraic methods
treat a logic functions as a polynomial [6], [7]. Algebraic operations
are selectively iterated over the entire logic circuits, until an improve-
ment exists. Basic algebraic operations are extraction, decomposition,
factoring, balancing and substitution [10]. Their efficient runtime
is enabled by weak-division and kernel theory. Instead, Boolean
methods handle the true nature of a logic function using Boolean
identities as well as (global) don’t cares (circuit flexibilities) to
get a better solution [10], [12]. Boolean division and substitution
techniques trade off runtime for better minimization quality. Most
Boolean methods run on expressive data-structures, with ideally
no ambiguity on the representation. Canonical logic representation
forms, such as truth tables and binary decision diagrams, support
efficiently Boolean methods. For example, Boolean decomposition
based on binary decision diagrams can recognize re-structuring
opportunities not visible by algebraic counterparts [3]-[5]. Modern
optimization methodologies, and associated tools, use algebraic and
Boolean methods in conjunction [9], [13], i.e., after a slow but
powerful Boolean method is used fast algebraic methods are repeated
until an improvement exists.

B. Majority-Inverter Graph

A Majority-Inverter Graph (MIG) is a data structure for Boolean
function representation and optimization. An MIG is a logic net-
work consisting of 3-input majority nodes and regular/complemented
edges [11]. Each majority node can be reduced to a conjunction
(AND) or a disjunction (OR) operator by fixing the third input to

0 or to 1, respectively. It follows that any AND/OR-INV graphs
(AOIG) can be emulated by a structurally identical MIG. In Fig. 1,
an example AOIG is depicted with its structurally, and functionally,
identical MIG. However, even better MIG representations appear by

f f
AOIG = MIG

() ()
Y

MIG = MIGopt f

Yo

x1 x0 1 1 x2 x3

x3 x2 x1 x0 x3 x2 x1 1 x0
Fig. 1: Example of MIG representation.

exploiting MIG nodes functionality (majority) rather than reducing

it to AND/OR. Again in Fig. 1, a more compact MIG for the same

example is depicted, having one fewer level of depth and the same

number of nodes. To natively optimize and reach advantageous MIGs,

like the one in Fig. 1, a MIG Boolean algebra is introduced in [11]

and axiomatized (2) by five primitive transformation rules.

Commutativity — Q.C
M(z,y,2) = M(y,z,2) = M(z,y,2)
Majority - Q.M

if(x = y): M(iE,y,Z) ==Y

iftx =y"): M(z,y,2) = 2
Q¢ Associativity - Q2. A (1)
M(x7 u7 M(y7 u? Z)) = M(Z’ u7 M(y7 u7 x))

Distributivity — Q.D

M(z,y, M(u,v,2)) = M(M(z,y,u), M(z,y,v), 2)
Inverter Propagation — Q.1

M'(z,y,2) = M(a',y', ")

Some of these axioms are drawn from median algebra [14], [15]
and others from the properties of the median operator in a distributive
lattice [16]. From a theoretical perspective, it is possible to traverse
the entire MIG representation space just by using a sequence of
transformations drawn from €2 [11]. However, deriving such a global
sequence of €2 is an intractable problem. For this reason, current
MIG optimization heuristics [11] focus on local €2 transformations.
We call the MIG optimization techniques in [11] algebraic, because
they locally use MIG algebra transformations.

In this paper, we propose alternatives to these techniques, focusing
on global properties of MIGs such as voting resilience and don’t
care conditions. Due to their global and general nature, we call our
proposed MIG optimization methods “Boolean”.

III. HARNESSING VOTING RESILIENCE IN MIG

MIGs are hierarchical majority voting systems. One notable prop-
erty of majority voting is the capability to correct various types of
bit-errors. This feature is inherited by MIGs, where error masking
can be exploited for optimization purposes. One way for doing so is
to purposely introduce logic errors that are succesively masked by the
voting resilience in MIG nodes. If such logic errors are advantageous,
in terms of circuit simplifications, better MIG representations appear.

In the immediate following, we present the theoretical grounds for
“safe error insertion” in MIGs, defining what type of errors, and at
what overhead cost, can be introduced. Later on, we propose two
intelligent procedures for “advantageous errors” insertion.

A. Inserting Safe Errors in MIG

Before we enter into the core theory of this work, we briefly review
notations and definitions on logic errors [12], [17].
Definition The logic error between an original function f and its
faulty version g is the Boolean difference f @ g.

In principle, a logic error can be determined for any two (po-
tentially very different) circuits. In practical cases, a logic error is
interpreted as a perturbation A on an original logic circuit f [12].

Notation A logic circuit f affected by an error A is written as f.

For example, considering the function f = (a + b)- ¢, an error A
defined as ”stuck variable b to 0 ” (A: b = 0) leads to fA = ac.
In general, an error flips k entries in the truth table of the affected
function. In the previous example, £ = 1. If k = 0, the error is safe
or permissible, as it does not change the original functionality [17].

To insert safe (permissible) errors in an MIG we consider a root
node w and we triplicate it. In each version of w we introduce
logic errors heavily simplifying the MIG. Then, we connect back
the three faulty versions of w to a top majority node exploiting
the error masking property. Unfortunately, a majority node cannot
mask all types of errors. This limits our choice of permissible
errors. Orthogonal errors, defined' hereafter, fit with our purposes.
Informally, two logic errors are orthogonal if for any input pattern
they cannot happen simultaneously.

Definition Two logic errors A and B on a logic circuit f are said
orthogonal if (f* & f)- (f® & f) =0.

To give an example about orthogonal errors consider the function
f = (a+b)-c. Here, the two errors A: a+b =1and B: ¢ =0
are actually orthogonal. Indeed, by simple logic simplification, we
get (c® f) (0@ f) = (((a+b)e)c+ ((a+b)e)) ((a+b)e) =
((a+b)e) e ((a+b)c) = 0. Instead, the errors A: a+b =1 and B:
¢ =1 are not orthogonal for f.Indeed, for the input pattern (1,1,1)
both A and B happen.

Now consider back a generic MIG root w. Say A, B and C three
pairwise orthogonal errors on w. Being all pairwise orthogonal, a
top majority node M (w*, w?, w®) is capable to mask A, B and C
errors restoring the original functionality of w. This is formalized in
the following theorem.

Theorem 3.1: Say w a generic node in an MIG. Say A, B and C'
three pairwise orthogonal errors on w. Then the following equation
holds: w = M (w?, w?, w®)

Proof: We show that w & M (w™,w?,w®) = 0. First, the
@ (XOR) operator propagates into the majority operator as w &
M(w?, w?, w®) = M(w? & w, w? & w,w” ®w). Recalling that
M(a,b,c) = ab + ac + bc we rewrite the previous expression as
(w* ®w) (w? dw)+ (W Bw)- (W Gw)+ (W Pw)- (W Bw).
As A, B and C are pairwise orthogonal, we have that each term is
0,500+04+0=0.So, w® M(w”,w? w’) =0. QED. |

Note that an MIG w = M (w”,w®,w®) can have up to three
times the size and one more level of depth as compared to the original
w. This means that simplifications enabled by orthogonal errors A, B
and C' must be significant enough to compensate for such overhead.
Note also that our approach resembles triple modular redundancy
but operates differently. Here, we exploit the error masking property
in majority operators to enforce logic simplifications rather than
covering potential hardware failures.

In the following, we present two methods for identifying advanta-
geous triplets of orthogonal errors.

B. Critical Voters Method

A natural way to discover advantageous triplets of orthogonal
errors is to analyze an MIG structure. We want to identify critical
portions of an MIG to be simplified by these errors. To do so, we
focus on nodes that have the highest impact on the final voting
decision, i.e., influencing most a function computation. We call such
nodes critical voters of an MIG. Critical voters can also be primary
input themselves. To determine the critical voters, we rank MIG
nodes based on a criticality metric. The criticality computation goes
as follows. Consider a MIG node, say m. We label all MIG nodes
whose computation depends on m. For all such nodes, we calculate
the impact of m by propagating a unit weight value from m outputs

For the sake of comprehension and conciseness, we present the theoretical
concepts in an intuitive way. A formal treatment is directly derivable.

Critical Voters:
{m2, x1}

x1 (c: 25/27)

x5 x6 x7 x5 x6 x7

x5 x6 x7
Fig. 2: Example of criticality computation and orthogonal errors.

up to the root with an attenuation factor of 1/3 each time a majority
node is encountered. We finally sum up all the values obtained and
call this result criticality of m. Intuitively, MIG nodes with the highest
criticality are critical voters. For the sake of clarity, we give an
example of criticality computation in Fig. 2. Node m5 has criticality
of 0, as it is the root. Node m4 has criticality of 1/3 (a unit weight
propagated to m5 and attenuated by 1/3). Node m3 has criticality
of 1/3 (m4) + (1/3+1)/3 (direct and m4 contribution to m5) which
sums up to 7/9. Node m2 has criticality of 1/3 (m3) + 4/9 (m4) +
7/27 (mb5) which sums up to 28/27. Node m1 has criticality 1/3 +
criticality of m2 attenuated by factor 3 which sums up to about 2/3.
Among the inputs, only =1 has a notable criticality being 1/3 (m3)
+ 1/9 (m4) + (1/3+1/9+1)/3 (m5) which sums up to 25/27. Here the
two elements with highest criticality are m2 and x1.

Given two critical voters a and b and the set of MIG nodes fed
by both a and b, say {ci,c2,...,cn}, an advantageous triplet of
orthogonal errors is: A: a = b, B: ¢1 = a,c2 = a,....,cn, = a
and C: ¢1 = b,ca = b, ..., ¢, = b. Considering back the example in
Fig. 2 the critical voters are « = m2 and b = z1 while ¢; = m3.
Here, the pairwise orthogonal errors are m2 = x1’ (A), m3 = zl
(B) and m3 = m2 (C) as shown in Fig. 2. The actual orthogonality
of A, B and C type of errors is proved in the following.

Theorem 3.2: Say a and b two critical voters in an MIG. Say
{c1, ¢, ..., cn } the set of MIG nodes fed by both a and b in the same
polarity. The following errors are pairwise orthogonal: A: a =V,
B:ci =a,c2=a,..,cn =aand C: ¢c;1 =b,ca =b,...,c,, = 0.

Proof: Starting from an MIG w, we build the three faulty
versions w?, w? and w® as described above. We show that orthog-
onality holds for all 3 pairs. pair (w?, w?) We need to show that
(w* @w)- (w® ®w) = 0. The element w* @w implies ¢ = b, being
the difference between the original and the faulty one with a = b’
(a # b). The element w® & w implies ¢; # a (¢; = a'), being
the difference between the original and the faulty one with ¢; = a.
However, if a = b then ¢; cannot be a’, because ¢; = M (a, b, z) =
M(a,a,z) = a # a’ by construction. Thus, the two elements
cannot be true at the same time making (w” @ w)- (w® ® w) = 0.
pair (w?, w®) This case is symmetric to the previous one. pair
(w®B, w®) We need to show that (w” @ w)- (w” G w) = 0. As we
deduced before, the element w® @ w implies ¢; # a (¢; = a').
Similarly, the element w® @ w implies ¢; # b (¢; = V). By
the transitive property of equality and congruence in the Boolean
domain ¢; # a and ¢; # b implies a = b. However, if a = b,
then ¢; = M(a,b,z) = M(a,a,z) = M(b,b,x) = a = b which
contradicts both ¢; # a and ¢; # b. Thus, the two elements cannot
be true simultaneously making (w” @ w)- (w® @ w) = 0. Q.ED. W

Even though focusing on critical voters is typically a good strategy,
sometimes other approaches can be also convenient. In the following,
we present one of such substitute approaches.

C. Input Partitioning Method

As a complement to critical voters method, we propose a different
way to derive advantageous triplets of orthogonal errors. In this
case, we focus on the inputs rather than looking for internal MIG

nodes. In particular, we search for inputs leading to advantageous
simplifications when faulty. Similarly to the criticality metric in
critical voters, we use here a decision metric, called dictatorship [18],
to select the most profitable inputs. The dictatorship is the ratio of
input patterns over the total (2") for which the output assumes the
same value of the selected input [18]. For example, in the function
f = (a+b)- ¢, the inputs a and b have equal dictatorship of 5/8 while
input ¢ has an higher dictatorship of 7/8. The inputs with highest
dictatorship are the ones where we want to insert logic errors. This
is because they influence most a circuit functionality, and so also its
structure. Considering back the example f = (a + b)- ¢, suppose we
are allowed to introduce a stuck at O error at one input. Appliying
this error to a or b inputs (with low dictatorship) we reduce the
complexity to a single gate (ac or bc). However, if we introduce the
same error on the input ¢ (with high dictatorship) we further reduce
the complexity just to a logic constant (0).

Exact computation of the dictatorship requires exhaustive simula-
tion of an MIG structure, which is likely to be infeasible for practical
functions of interest. Heuristic approaches to estimate dictatorship
involve partial random simulation and graph techniques [18].

After dictatorship computation, we select a proper subset of the pri-
mary inputs. Next, for each selected input, we determine a condition
that causes an error. We require these errors to be orthogonal. Since
we operarte directly on the primary inputs, we divide the Boolean
space into disjoint sub-sets that are natively orthogonal. As we need
three errors, we need to consider at least three inputs to be made
faulty, say =,y and z. A possible division is the following: {z # v,
x =y =2z x =1y = 2z}. The correspoding errors can be A: z =y
for{r £y}, B:z=y whenz =y for{zr=y=2z2}and C: 2 =y
when x = y for {z = y = 2’}. We formally prove that A, B and C
are orthogonal errors hereafter.

Theorem 3.3: Consider the input division into {x # y, z = y =
2,z =y = 2'} in an MIG. Three errors A, B and C' selectively
affecting one subset but not the others are pairwise orthogonal.

Proof: To prove the theorem it is sufficient to show that the
division {x #y, x =y = 2z, x = y = 2’} is actually a partition of
the whole Boolean space, i.e., a union of disjoint (non-overlapping)
subsets. In Table I, all the eight possible {z,y, 2z} combinations are

TABLE [: Input division into 3 pairwise disjoint sub-sets.

sub-set z |y | 2z f
cr=y=2z | 0] 0[]0 fo
r=y=2 [0]0[1] f1

T#£y 0] 1]0]f

cZy [0 T[T [Fs

T#y T7T0[0T7] fa

sy 101 [F
z=y=2 | 1 [1]0] fe
rT=y=2z 1 1 1| fr

shown. The corresponding {z Zy, z =y =z, x = y = 2} sub-
sets are assigned in the left column. We visually see that all sub-sets
are disjoint, i.e., they have no common input pattern. Moreover, all
together, they form the whole Boolean space. Q.E.D. |

So far, we shown how ‘“safe error insertion” in MIGs can be
accomplished by means of different techniques. In the rest of this
paper, we will exploit the logic opportunities deriving from “safe
error insertion” in MIG optimization.

IV. BOOLEAN LOGIC OPTIMIZATION IN MIG

In this section, we propose Boolean optimization methods for
MIGs by exploiting safe error insertion schemes. Our optimization
procedures target depth and size reduction in MIGs. At the end of
this section, we showcase our Boolean optimization capabilities for
adder circuits.

f Original MIG

Critical Voters:
{m2, x1}

fm2/x1" fm3/m2 fm3/x1

fmZ/xl’

Last Gasp %3
x3 x4
x4 x1 x5 x6

x5 x6

Top MAJ
Masking Node

fm2/x1

fm3/x1 fmS/x\
|

x1

Alg. Opt.

fm3/x1

~/

Alg. Opt.
fm3/m2 /

Depth gain: 60%
Size gain: 40%

Crmcal path

Depth: 2
Size: 3

Fig. 3: MIG Boolean depth-optimization example based on critical voters errors insertion. Final depth reduction: 60%, size reduction: 40%.

A. Depth-Oriented Boolean Methods

The most intuitive way to exploit the voting resilience in MIGs is
to reduce the number of levels. This is because the opening overhead
of safe error insertion is just one additional level. Such extra level
is usually well recovered during simplification and optimization of
MIG faulty branches. For depth-optimization purposes, the critical
voters method enables very good results. The reason is the following.
Critical voters mostly appear on the critical path and reconverge on
it. Thus, the possibility to insert simplifying errors on critical voters
directly enables a strong reduction in the maximum number of levels.

Sometimes, using an actual MIG root as error insertion root
requires an 3x size overhead whis is unpractical. In these cases,
we bound the critical voters search to sub-MIGs partitioned on a
depth criticality basis. Once the critical voters and a proper error
insertion root have been identified, three faulty sub-MIG versions
are generated as explained in the previous section. On these sub-
MIGs, we want to reduce the logic height. We do so by running
algebraic MIG optimization on them. Note that, in principle, also
MIG Boolean methods can be re-used. This would correspond to
a recursive Boolean optimization. However, it turned out during
experimentation that algebraic optimizations already produce satis-
factority results at the local level. Thus, it makes more sense to apply
Boolean techniques iteratively on the whole MIG structure rather than
recursively on the same logic portion.

At the end of the faulty branches optimization, the new MIG-roots
must be given in input to a top majority voting node to re-establish
the functional correctness. A last gasp of MIG algebraic optimization
is convenient at this point, to take advantage of the simplification
opportunities arosen from the faulty branches integration. The above
described optimization strategy is summarized in Alg. 1.

For the sake of clarity, we comment on Boolean MIG-depth
optimization with a simple example, reported in Fig. 3. First, the
critical voters are searched and indetified, being in this example the
input 1 and the node m2 (from Fig. 2). The proper error insertion

Algorithm 1 MIG Boolean Depth-Optimization Pseudocode

INPUT: MIG o OUTPUT: Optimized MIG a.
while 3 advantageous critical voters in « do
{a, b}=search_critical_voters(cx);// Critical voters a, b searched
c=size_bounded_root(c, a, b);// Proper error insertion root
x?:common_parents(a, a, b);// Nodes fed by both a and b
c —cb/ a’, 3/ First faulty branch
—cx T/a.// Second faulty branch
C=c®1'/:// Third faulty branch
MIG -depth_Alg_Opt(c);// Reduce the faulty branch height
MIG-depth_Alg_Opt(cB):// Reduce the faulty branch height
MIG-de; Eth Alg_ Opt(cc) // Reduce the faulty branch height
=M (c?, c©);// Link the faulty branches
MIG- dcpth_Alg_Opt(c) /I Last Gasp
if depth(c) is not reduced then
revert to previous MIG state;
end if
end while

root in this small example is the MIG root itself. So, three different
versions of the root f are generated with errors f m2/ ””1', fm3/™2 and
f™3/=1 Each faulty branch is handled by fast algebraic optimization
to reduce its depth. The detailed algebraic optimization steps involved
are shown in Fig. 3. The most common operation is €2.M that directly
simplifies the introduced errors. The optimized faulty branches are
then linked together by a top fault-masking majority node. A last
gasp of algebraic optimization on the final MIG structure further
optimizes its depth. In summary, our MIG Boolean optimization
techniques attains a depth reduction of 60% and, at the same time, a
size reduction of 40%. On the other hand, by running just algebraic
optimization on this example a depth reduction of 20% is possible at
a size overhead cost of 50%.

B. Size-Oriented Boolean Methods

The voting resilience in an MIG can be also used to reduce its
size. In this case, the branch triplication overhead imposes tight
simplification requirements deriving from the inserted errors. In order

to do so, we can still focus on critical voters and enforce more strict
selection metrics. However, the benefit deriving from this approach
is limited. A better solution is to change the type of error inserted
and use the input partitioning method. Indeed, the input partitioning
method focuses on the inputs that inflates most an MIG, and introduce
selective simplification on them. The resulting Boolean optimization
procedure is in principle identical to Alg. 1 but with depth techniques
replaced by size techniques and critical voter search replaced by input
partitioning methods. We do not discuss on the implementation details
for MIG Boolean size optimization for the sake of brevity.

C. Case Study: Adders Optimization

Adders are hard to optimize circuits due to their inherent arithmetic
nature. For this reason, they are good benchmarks to test the capabil-
ities of logic optimization methods and associated tools. We bench
our MIG Boolean depth optimization technique for different types
of adders. We consider two, three and four operands adders, with
bit widths ranging from 32 to 256. Table II shows the optimization
results. Our optimized MIG adders are 4 to 48X shorter than the
original ones. In all cases, the optimized MIG structure resembles a
carry-look ahead design which is known to be the most depth-efficient
for adders. This is a remarkable results as standard synthesis engines
cannot reach this level of automated optimization.

It is worth noticing that, even though very powerful, our Boolean
MIG optimization is still an heuristic. This means that, on average,
we get strong results but there is no guarantee on the degree of
optimality. For example, the 2-operand 64 bit and 256 adders find
early good critical voters enabling powerful depth minimization. On
the other hand, 2-operand 32 bit and 128 adders do not find similar
critical voters obtaining less depth reduction.

Original and our MIG-optimized Verilog files are downloadable at

[19] for the sake of reproducibility.
TABLE II: Adder Optimization Results

Adder type | Inputs | Outputs | Original AIG | Optimized MIG
Size | Depth Size Depth
2-op 32 bit 64 33 352 96 610 12
2-op 64 bit 128 65 704 192 1159 11
2-op 128 bit 256 129 1408 384 14672 19
2-op 256 bit 512 257 2816 768 7650 16
3-op 32 bit 96 32 760 68 1938 16
4-op 64 bit 256 66 1336 136 2212 18

V. EXPERIMENTAL RESULTS

In this section, we test the performance of our MIG Boolean op-
timization methods on academic and industrial benchmarks. We run
pure logic optimization experiments and complete design experiments
on a 22-nm commercial ASIC flow.

A. Methodology

We developed a Majority-Logic manipulation Package (MLP)
consisting of about 8k lines of C code. It embeds state-of art algebraic
MIG optimization techniques [11] and the previously presented MIG
Boolean optimization methods. As a global optimization flow, we
focus on aggressive depth reduction interlaced with size recovery
phases. For this purpose, we run algebraic optimization as long
as improvements exist and then we run Boolean optimization to
unlock further improvements. For our MIG Boolean depth-methods,
we use critical voters search starting from tight selection constraints
(enabling the largest advantage) and then decreasing till (i) a good
pair of critical voters is found or (ii) a minimum threshold is
reached. During size recovery, we employ Boolean methods based on
input partitioning together with algebraic techniques. The MLP reads
Verilog or AIGER format and writes back a Verilog description of
the optimized MIG. We consider IWLS’05 Open Cores benchmarks
and larger arithmetic HDL benchmarks (differential equation solvers,
telecommunication units, sorters, specialized arithmetic units, etc.).
All the input and output (Verilog) files from our experiments can

be downloaded at [19], for the sake of reproducibility. In total, we
optimized, and verified, ~ 0.5 million eq. gates over 27 benchmarks.

For the pure logic optimization experiments, we use as counterpart
tool the ABC academic synthesizer [13], with delay oriented script
if — g;iresyn. For the complete design flow experiments, we
consider a state-of-art 22-nm commercial ASIC flow suite (logic
synthesis + place & route). In this case, our MLP package operates
as a front-end to the flow. As the circuit speed is our main design
goal, we use an ultra-high delay-effort script in the commercial tools.

B. Optimization Results

Table III shows the results for MIG Boolean optimization. For
the IWLS’05 and HDL arithmetic benchmarks, we see a total
improvements in all size, depth and power activity metrics, W.r.t.
to AIG optimized by ABC. Since depth was our main optimization
target, we notice there the largest reduction. Considering the IWLS’05
benchmarks, that are large but not tall, in terms of number of levels,
we see a 17.98% reduction. At the same time, the size and power
are reduced by 12.65% and 10.00%, respectively. Focusing on the
arithmetic HDL benchmarks, we see a better depth reduction. Here,
our MIG Boolean mehtodology enables a 26.69% depth reduction.
At the same time, we reduce size and power by 7.7% and 0.1%.

Table III shows that the runtime of our tool is competitive with that
of ABC tool. This confirms the scalability of our methods, handling
100k equivalent gates in less than a minute, on a standard laptop.

Even though we do not use the same set of benchmarks in [11],
we still want to provide a comparison between algebraic and Boolean
MIG techniques. On average over our INLS+HDL benchmarks, only
about half of the reported improvements were possible just using
algebraic techniques in our tool. However, this still does not directly
relate to the numbers reported in [11]. For the sake of comparison,
we optimize four relevant MCNC benchmarks also appearing in [11]:
my_adder, alu4, clma and s38417. In [11], they have 19, 14, 42 and
22 number of levels, respectively. With our new MLP tool featuring
Boolean optimization we lowered these numbers to 9, 11, 21 and
17, respectively. Also size and power metrics are lowered. These
experiments can be downloaded at [19].

All MIG output Verilog files underwent formal verification exper-
iments (ABC cec and Synopsys Formality) with success.

C. ASIC Results

Table IV shows the results for ASIC design (synthesis followed
by place and route) at a commercial 22 nm technology node®. In
total, we see that using our MIG optimizer as front-end to the ASIC
design flow we enable better final circuits, in all area, delay and
power metrics. For the delay, that was our critical design constraint,
we observe an improvement of 15.07%. This improvement is not
as large as the one we saw at the logic optimization level. Indeed,
some of that gain got absorbed by the interconnect overhead during
physical design. However, we still see a coherent trend. Considering
area and power we got reductions of 4.93% and 1.93%, respectively.

In summary, using the MIG Boolean technology we observe
consistent, and global, advantages over a state-of-art commercial
design flow. It is worth noticing that we employed our method just
as a front-end to an existing commercial flow. We foresee even better
results by integrating MIG optimization inside the synthesis engine.

VI. CONCLUSIONS

In this paper, we presented a Boolean logic optimization framework
based on Majority-Inverter Graph (MIG). We proposed MIG opti-
mization methods taking advatantage of the error masking property of
majority operators. By inserting logic errors in an MIG, successively
masked by majority nodes, we strongly simplified logic networks. Our
Boolean methods are simple, yet powerful. Experiments combined
with state-of-art MIG algebraic techniques shown tremendous results.

2Design tools and library names are omitted due to our license agreement.

TABLE III: MIG Boolean Optimization Results

MLP ABC
Open Cores IWLS’05 Size | Depth | Power | MAIJ% [Runtime Size | Depth | Power [Runtime
Benchmark 1/0
DSP 4365/4145 43681 34 30k 15.02 12.54 44644 47 32k 9.21
ac97_ctrl 2267/2262 12006 8 10k 22.14 9.76 14292 11 12k 9.88
aes_core 789/668 20518 19 15k 11.78 10.68 21543 22 14k 8.21
des_area 368/72 4882 24 3k 15.14 0.63 4858 28 2.9k 1.08
des_perf 9042/9038 81070 14 70k 10.09 39.34 88317 17 69k 22.92
ethernet 10710/10728 | 62301 17 35k 20.77 20.28 86656 22 53k 25.99
12¢c 1477142 1049 9 0.8k 15.06 0.21 1136 10 0.8k 0.06
mem_ctr] 1204/1231 9555 17 6k 24.25 0.51 9396 28 Sk 0.26
pei_bridge32 3527/3534 21170 17 15k 36.92 3.88 23461 19 16k 3.22
pci_spoci_ctrl 89/80 793 11 0.4k 22.57 0.05 1291 13 0.7k 0.02
sasc 133/132 661 6 0.6k 15.58 0.22 753 8 0.7k 0.07
simple_spi 148/147 976 8 0.8k 18.65 0.15 1033 10 0.8k 0.07
spi 2747276 4953 19 3k 23.04 1.79 5548 21 3k 1.85
ss_pcm 106/98 436 6 0.4k 14.91 0.05 400 7 0.3k 0.01
systemcaes 930/819 10599 27 8k 31.11 11.21 12532 31 10k 5.05
systemcdes 314/258 2936 19 2.4k 13.11 3.62 3147 21 2.4k 1.95
tv80 379/410 8076 31 Sk 40.20 8.95 9494 36 6k 322
usb_funct 1894/1879 14926 18 12k 25.05 12.62 15644 20 13k 9.34
usb_phy 113/111 439 6 0.4k 10.25 0.04 478 7 0.4k 0.11
[IWLS’05 total [301027 [310 [2I7.80k | 372.39 (19.59%) | 136.99 [344623 [378 [242.00k [10245 |
Arithmetic HDL Size Depth Power MAI% Runtime Size Depth Power Runtime
MUL32 64/64 9027 37 7.4k 12.38 3.39 8630 43 7.2k 1.80
sqrt32 32/16 1923 170 1.7k 26.00 1.20 1959 203 1.5k 1.55
diffeql 355/289 33398 184 28k 21.49 123.55 33632 303 26k 18.91
divl6 32/32 2972 113 2.5k 33.63 6.39 5016 137 3.6k 221
hamming 200/7 2034 59 1.7k 10.72 18.99 2717 75 1.6k 2.31
MAC32 96/65 10529 40 8.5k 12.00 5.53 10320 70 8k 7.65
metric_comp 288/208 18529 75 12k 15.39 22.43 20821 112 13k 10.22
revx 20/25 7625 146 5.5k 15.63 12.33 10135 181 6.5k 19.45
[Arithmetic total [85997 | 824 [6730k | 146.70 (18.33%) | 19381 [93230 [1124 | 6740k | 64.10 |

TABLE IV: MIG 22-nm ASIC Design Results

Benchmark MLP+ASIC flow ASIC flow
pm?/ns/pW pm?/ns/uW
MUL32 1841.76/0.52/1.82 1958.81/0.57/1.79
diffeql 3992.49/2.85/4.57 3908.15/3.38/4.50
hamming 361.50/0.87/0.56 395.00/0.98/0.59
divie 720.45/1.56/0.27 950.07/1.83/0.35
sqrt32 505.78/1.97/0.50 455.95/2.20/0.48
DSP 7123.410.47/2.45 7119.60/0.49/2.51
ac97_ctrl 2295.09/0.10/0.53 2398.90/0.12/0.55
aes_core 4597.55/0.23/1.54 5272.32/0.25/1.55
des_area 956.04/0.32/0.54 1084.60/0.36/0.53
des_perf 147790.03/0.18/9.75 15211.80/0.20/9.76
ethernet 11235.40/0.18/1.31 10950.19/0.23/1.39
i2¢c 210.13/0.10/0.04 210.04/0.11/0.04
mem_ctrl 1418.22/0.26/0.24 1418.22/0.34/0.25
pci_bridge32 3209.76/0.25/0.68 3250.08/0.27/0.70
pei_spoci_ctrl 159.34/0.16/0.08 177.47/0.16/0.09
sasc 125.12/0.08/0.02 139.98/0.10/0.02
simple_spi 176.34/0.12/0.04 163.72/0.15/0.04
spi 623.16/0.24/0.21 550.95/0.30/0.18
ss_pcm 85.33/0.08/0.02 89.23/0.08/0.02
systemcaes 1380.07/0.31/0.54 1322.87/0.37/0.51
systemcdes 665.01/0.26/0.39 731.71/0.30/0.43
tv80 1342.52/0.39/0.34 1295.10/0.49/0.37
usb_funct 2388.53/0.25/0.69 2359.15/0.26/0.68
usb_phy 111.15/0.05/0.02 115.73/0.07/0.02
MAC32 2287.50/0.48/1.74 2502.68/0.61/1.92
metric_comp 3975.97/1.18/1.21 4606.42/1.41/1.41
revx 1506.39/1.92/1.76 1931.07/2.48/1.81

[Total

[67085.01/15.38/31.86 | 70569.81/18.11/32.49 |

For example, when targeting depth reduction, our MIG optimizer
transformed ripple carry adders into a carry look-ahead ones. Over
IWLS’05 and arithmetic HDL benchmarks, we reduced the logic
network depth by 17.98% and 26.69%, respectively, while also
improving size and power metrics. Employed as a front-end to a
delay-critical 22-nm ASIC flow (logic synthesis + physical design)

our MIG optimizer reduced the average delay/area/power by (15.07%,

4.93%, 1.93%), over 27 academic and industrial benchmarks, as

compared to a leading commercial ASIC flow.
ACKNOWLEDGEMENTS

This research was supported by ERC-2009-AdG-246810.

REFERENCES

[1] A. Mishchenko, et al., Using simulation and satisfiability to compute
Sexibilities in Boolean networks IEEE TCAD 25.5 (2006): 743-755.

[2] A. Mishchenko, et al., Scalable don’t-care-based logic optimization and
resynthesis, ACM TRETS 4.4 (2011): 34.

[3] C. Yang, et al., BDS: A BDD-based logic optimization system, IEEE
TCAD 21.7 (2002): 866-876.

[4] N. Vemuri, et al., BDD-based logic synthesis for LUT-based FPGAs,
ACM TODAES 7.4 (2002): 501-525.

[5] L. Amard, et al., BDS-MAJ: a BDD-based logic synthesis tool exploiting
majority logic decomposition, Proc. DAC’13.

[6] R.K. Brayton, et al., The Decomposition and Factorization of Boolean
Expressions, Proc. ISCAS’82.

[7] R.K. Brayton, et al., Factoring logic functions, IBM Journal of Research
and Development 31.2 (1987): 187-198.

[8] R.K. Brayton, et al., MIS: A multiple-level logic optimization system,
IEEE TCAD 6.6 (1987): 1062-1081.

[9] E. Sentovich, et al., SIS: A System for Sequential Circuit Synthesis, ERL,
Dept. EECS, Univ. California, Berkeley, UCB/ERL M92/41, 1992.

[10] R.K. Brayton, Multilevel logic synthesis, Proc. IEEE78.2(1990):264-300.

[11] L. Amari, et al., Majority-Inverter Graph: A Novel Data-Structure and
Algorithms for Efficient Logic Optimization, Proc. DAC’14.

[12] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, New York, 1994.

[13] ABC synthesis tool - http://www.eecs.berkeley.edu/~alanmi/abc/.

[14] John R. Isbell, Median algebra, Trans. Amer. Math. Soc., 319-362, 1980.

[15] D. Knuth, The Art of Computer Programming, Volume 4A, Part 1, New
Jersey: Addison-Wesley, 2011

[16] G. Birkhoff, Lattice Theory, Amer. Math. Soc., New York, 1967

[17] S. Muroga, et al., The transduction method-design of logic networks
based on permissible functions, IEEE TCOMP, 38.10 (1989): 1404-1424.

[18] M. Parnas, et al., Proclaiming dictators and juntas or testing boolean
formulae, Combinatorial Optimization, Springer, 2001. 273-285.

[19] Majority-Inverter Graphs circuits available at http:/Isi.epfl.ch/MIG

