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Abstract—3D ultrasound imaging is quickly becoming a refer-
ence technique for high-quality, accurate, expressive diagnostic
medical imaging. Unfortunately, its computation requirements
are huge and, today, demand expensive, power-hungry, bulky
processing resources. A key bottleneck is the receive beamforming
operation, which requires the application of many permutations
of fine-grained delays among the digitized received echoes. To
apply these delays in the digital domain, in principle large tables
(billions of coefficients) are needed, and the access bandwidth to
these tables can reach multiple TB/s, meaning that their storage
both on-chip and off-chip is impractical. However, smarter
implementations of the delay generation function, including
forgoing the tables altogether, are possible. In this paper we
explore efficient strategies to compute the delay function that
controls the reconstruction of the image, and present a feasibility
analysis for an FPGA platform.

I. INTRODUCTION

Ultrasound imaging is transitioning towards a new gener-
ation of 3D-capable machines, which improve medical diag-
nostic capabilities [1] by reconstructing a volume per frame -
as opposed to the more commonly known 2D images, usually
along a sagittal or transverse plane across a patient’s body.
Notable products include the Voluson E8 Expert system by
GE Healthcare [2], for obstetrics, and the iE33 xMATRIX
Echocardiography System by Royal Philips N.V. [3] for car-
diology. To reconstruct 3D images, these devices must use
probes with matrix transducers rather than the usual linear
array transducers used for 2D imaging. A matrix transducer
comprises a very large number of vibrating elements in a grid,
for example 9212 in [4], squaring the typical amount of an
array transducer for 2D imaging.

To generate an image, first of all the subject is insonified
by transmitting a sound wave from the ultrasound probe into
the body. At this point, it is necessary to sample at high
frequency (tens of MHz) the amplitude of the acoustic echoes
received by each transducer element. These echo signals must
then be summed together according to delay laws in order to
reconstruct the image. This process is called beamforming. The
overall two-way sound propagation time is sub-millisecond,
and is a function of the desired penetration depth. Therefore, in
principle, multi-kHz frame rates are possible, and have indeed
been demonstrated in 2D imaging [5].

The main challenge of 3D ultrasound imaging is the huge
bandwidth needed for data processing, since the number of
probe elements is about two orders of magnitude higher.
Therefore the frame rates achievable in practice can only reach
tens of Hz [2], and commercial products are correspondingly
expensive and bulky, as are research prototypes like the
SARUS [6] system, running on 320 FPGAs.

In this paper, we focus on one specific part of the beam-
former design, i.e. the delay law computation, which is one of
its key components. As shown in Section II, without special
design techniques, delay tables of many billions of elements
are necessary, which is obviously challenging both in terms of
on-chip embedded memory requirements and off-chip memory
bandwidth. Our goal is to investigate circuit architectures that

bring this design block into the realm of feasibility within
single-chip implementations. The main contribution of this
work is the optimization of the delay computation architecture,
as well as a quantification of its cost, in view of a single-chip
3D beamformer. The architecture’s target is flexible and its
realization can be either on FPGA or ASIC, but within this
paper we will optimize it for an FPGA computation platform.

We will explore two alternative methods to compute delay
values. First, we will revisit an architecture originally pre-
sented in [7], where all delays are computed on-the-fly with an
optimized circuit. This architecture was originally developed
with an ASIC target in mind, and in this paper we will assess
its implementation on an FPGA target. Next, we will show
an approach which relies on a much smaller precomputed
delay table, fit for in-FPGA storage, compounded by a small
circuit that completes the task. Both methods will be shown to
meet the three key challenges of delay computation: accuracy,
compactness, and throughput.

II. DELAY CALCULATION IN 3D ULTRASOUND SYSTEMS

Ultrasound imaging systems can apply focusing at trans-
mit time, at receive time, or both. Transmit-time focusing
consists of exciting transducer elements with such a timing
that the sound field in front of the transducer has specific
intensity maxima, corresponding to constructive interference
areas, while the rest of the field is insonified less intensely.
This approach maximizes the image resolution achievable
in the constructive interference regions, while unfortunately
negatively impacting the resolution elsewhere. An ”unfocused”
wave can also be emitted, whereby each element is excited
at the same time (generating a plane wave) or the excitation
profile is such that the overall acoustic wave seems to have
been emitted by a “virtual source” behind the transducer.
These approaches insonify the whole volume in front of the
probe, allowing for a more sophisticated reconstruction of the
whole 2D or 3D frame.

Receive-time focusing refers to a computational approach
applied to the received echoes, back-scattered within the
insonified volume. The amplitude of the echoes received by
the probe elements is first sampled. The samples from multiple
elements are then summed according to a delay profile that
models the propagation time necessary to travel from a scat-
terer (a reflective point in space) back towards each element
of the probe. Contrary to transmit focus, receive focus can
be applied dynamically: given enough computing power, it is
possible to focus on all points in the volume, using a dedicated
delay profile for each point. Modern ultrasound systems all
use this technique. The crucial requirement is being able to
identify, at runtime, what echo samples should be summed to
focus. The problem’s core can be expressed as follows:

s(S) =

N∑
D=1

w(S)e(D, tp(O,S,D)), ∀S ∈ V (1)
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S is a point in the volume of interest V ; the calculation must
be repeated ∀S ∈ V . The outcome s(S) is a signal that follows
the reflectivity of scatterers at location S, and will eventually
be used to calculate the brightness of the corresponding image
pixel. N is the number of receive elements accessible in the
probe, w is a weighting coefficient beyond this paper’s scope
expressing apodization and attenuation compensation [8], and
e is the amplitude of the echo received by element D ∈
1, · · ·N at the time sample tp. The value of tp represents
the propagation delay that sound waves incur from a given
emission reference O, to the point S, and back to the probe’s
destination element D. This can be formalized as:

tp(O,S,D) =
| �rS − �rO|+ | �rS − �rD|

c
(2)

where c is the speed of sound in the medium, and �rO, �rS , �rD
express those points’ coordinates. This formulation holds for
both 2D and 3D ultrasound imaging. We refer the reader to
Table I to summarize the specifications of our target system.

In the following, we will discuss three key challenges
related to the calculation of propagation delays: accuracy,
compactness of storage, and throughput.

A. Impact of Delay Calculation on Beamforming
The accuracy of delay calculation is essential for high-

resolution beamforming, because the latter relies on fine-
grained time differences to locate the position of body features.
Any imprecision may result in poor focus, image artifacts,
aliasing, etc.

The traditional beamforming approach reconstructs images
by scanlines. An alternate approach, that optimizes the con-
sumption of the data coming from the probe elements and min-
imizes table walking, reconstructs the volume one nappe [9],
i.e. one surface with constant distance from the origin, at a
time. Please refer to Algorithm 1 and Figure 1. The core
of both approaches involves the same basic calculation, and
requires the same delay coefficients. Image quality will be the
same regardless of how delays are obtained at runtime, so long
as delays are equally accurate. In practice, however, different
delay calculation architectures may be generating values at
a faster rate when aimed at a particular order of processing;
co-designing the delay computation logic and the rest of the
beamformer is beneficial. In this paper, we will focus mostly
on the nappe-by-nappe technique, while pointing out where
inefficiencies could arise if paired with a scanline-by-scanline
beamformer.

B. Size of Required Delay Tables
Since tp is used as an index into e, and e is usually sampled

at a frequency that is a multiple of the probe’s center frequency

TABLE I
SYSTEM SPECIFICATIONS

Parameter Symbol Value
Physical
Speed of sound in tissue c 1540 m/s
Transducer Head
Transducer center frequency fc 4 MHz
Transducer bandwidth B 4 MHz
Transducer matrix size ex × ey 100× 100
Wavelength λ c/fc = 0.385 mm
Transducer pitch λ/2
Transducer matrix dimensions d 50λ = 19.25 mm
Beamformer
Imaging Volume (θ × φ× dp) 73°×73°×500λ
Sampling Frequency fs 32 MHz
Focal Points 128× 128× 1000

// Scanline-by-scanline
for θ: −θmax to θmax do

for φ: −φmax to φmax do
for d: 0 to dp do

Beamform(θ, φ, d);
end

end
end
// Nappe-by-nappe
for d: 0 to dp do

for θ: −θmax to θmax do
for φ: −φmax to φmax do

Beamform(θ, φ, d);
end

end
end

Algorithm 1: Pseudocode of beamforming algorithm in two
equivalent flavours.

scanline
nappe

1

3

2

Fig. 1. Focal point calculation order in a nappe-oriented beamformer: first
a depth is chosen, then the points at that depth are calculated. A scanline
also shown for comparison; a scanline-oriented beamformer will reconstruct
points along the whole scanline, then move to the next.

(32 MHz in our example), tp should be calculated with a
very fine grain of about 30 ns. Moreover, the values of tp
must be calculated for each receiving element D and for each
point in space S. This results in many delay values having
to be calculated. A typical 2D system may require a few
million coefficients, which may be stored in a pre-computed
table. However, in a 3D system as discussed in this paper,
to reconstruct a 128 × 128 × 1000 voxel volume, given a
100×100-element transducer, the theoretical number of delay
values to be calculated is about 164×109. Even by exploiting
symmetry, this is obviously both impractical to pre-compute,
due to the storage requirements, and to calculate in realtime.

C. Access Bandwidth to Delay Tables

Another challenge is that delay values need to be available
with high throughput, in order to achieve realtime beam-
forming. The coefficients must be accessed once per frame;
a 3D image requires about 2.5 × 1012 delay values/s for
reconstruction at 15 frames/s. This is obviously well outside
of the capabilities of any realistic off-chip memory interface,
and must be tackled in a smart way.

III. PREVIOUS WORK

Today’s state-of-the-art 3D ultrasound systems perform ana-
log beamforming in the transducer head to reduce the number
of channels that are carried along the cable from a few
thousands to a few hundred [10], [11]. This is achieved by
applying a fixed analog delay to the signals received by groups
of transducer elements, and compounding them in a single
analog signal [10]; this is called “pre-beamforming” and the
output, which exhibits much lower bandwidths, is used for
digital beamforming. The ACUSON SC2000 Volume Imaging
Ultrasound System computes up to 64 beams in parallel, i.e.,
up to 160 MFP/s, using analog beamforming [12].

Analog pre-beamforming, however, limits the image quality,
since applying a fixed delay profile to each element group
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is equivalent to setting a fixed focus for that group. A fully-
digital (or even software [13]) beamformer is desirable because
it has the capability to dynamically set the focus position
during receive. However, it runs into a major computation
and bandwidth challenge due to the large amount of input
signals to be processed individually. To enable high-resolution,
high-frame-rate 3D imaging, multiple scanlines need to be
beamformed from a single insonification using parallel receive
beamforming [14], [12] or ultra-fast imaging [15].

The problem of how to compute delay coefficients to
feed such beamformers at a very high throughput has been
recognized as critical. For example, Sonic Millip3De [16]
implements ultra-fast imaging for 100×100 transducer ele-
ments (of which only 1000 are considered per shot) with a
powerful die-stacked package. Its main bottleneck is that it
requires an external DRAM memory to store beamforming
delay coefficients, and several Gb/s of memory bandwidth.
Other works [17], [6], [9] have shown that a feasible alternative
is to try to compute all delay coefficients on-the-fly on-chip.
Since this computation involves the evaluation of complex
functions like square roots, it is mandatory to identify accurate,
fast and low-area approximation circuits.

In this paper we explore two alternative schemes to tackle
the delay generation problem. We first revisit our previous
works [9], [7] with increased emphasis on the delay ap-
proximation logic and some accuracy improvements. We also
describe an alternative approach, based on storing a small
reference delay table that serves as the basis for runtime delay
calculation; this design stands out for its moderate FPGA
resource occupation. We analyze and compare the merits
of these architectures in terms of accuracy and throughput,
further assessing how feasible a single-FPGA, high-frame-rate
embodiment is.

IV. DELAY CALCULATION AT RUNTIME

A. Working Principle
To remove the need for massive precomputed tables, solving

the compactness challenge, delay values can be computed on-
the-fly. Based on Equation 2, this is the problem to be solved:

tp(O,S,D) =

√
Δx2

SO +Δy2SO +Δz2SO

c
+

+

√
Δx2

SD +Δy2SD +Δz2SD

c
(3)

The second square root must be solved ∀D (100 × 100
elements), ∀S ∈ V (128 × 128 × 1000 points), and at the
given frame rate. This demands massive parallelism, but the
hardware cost of a precise square root computation block is un-
acceptably high for replicating it on this scale. Much work has
been devoted to approximating the square root with simpler
arithmetic functions like additions and multiplications [17],
[16] in view of managing the cost. Note that the first square
root is comparatively much less critical since, unlike D, O is
fixed, at least within each frame, making this term independent
of the number of transceiver elements.

B. Architecture
In [9], [7], we have presented an architecture to compute

the two-way propagation delay efficiently and accurately. We
refer the reader to those papers for more details and present
just a brief summary here (see Figure 2).

The transmit delay can be calculated only once per point S;
the implementation cost becomes therefore negligible. For the
receive delay, the calculation can also be simplified because

ΔzSD depends only on S since D has a constant z being
on the transducer, while ΔxSD and ΔySD depend on both
S and D, but with respect to D can be computed only
once per row/column of the transducer. Therefore, only two
additions and the square root operation have to be evaluated
specifically for each D. The architecture relies on a piecewise
linear approximation of the square root function; to keep the
approximation error below a given δ (chosen to be equal to
±0.25 delay samples in our case) (Figure 2(a)), we found
70 segments to be needed. The next crucial simplification
is to note that the argument of the second square root of
Equation 3 only changes very little when the focal points S are
computed sequentially, either nappe by nappe or scanline after
scanline. The transitions across the approximating segments
being gradual, it is not needed to search for the correct piece
each time, allowing for large reductions in hardware cost.
Figure 2(b) shows that only one multiplier, one adder and a
few LUTs are necessary for the task.

To fulfill the throughput demands of 3D ultrasound imaging,
it was shown in [7] that this unit must be instantiated once per
transducer element (10000 times) with an achievable frame
rate of about 1 fps per 20 MHz of operating frequency.

≥
≥ c1 LUT c0 LUT

LUT LUT Ctrl

α ≈ √
α

c1 c0

(a)

x

√
xI II III

δ

(b)

Fig. 2. Calculation of receive delays. Only two additions and one square-
root evaluation are needed, (a). The square-root function (blue) shown in (b)
is approximated piece-wise linearly such that the error (red, exaggerated) is
below a constant δ of choice.

V. MIXED APPROACH: DELAY TABLES PLUS STEERING

The technique proposed in the previous Section IV avoids
entirely the usage of delay tables, but requires a large number
of multipliers instead. An intermediate approach is to keep
in working memory a relatively small delay table, and to
compute all delay values from this table with very simple
mathematical operations. To simplify the computation further,
we assume a constant origin O across frames. Techniques like
synthetic aperture imaging [15] rely on repositioning O at
every insonification; they can be supported by way of multiple
precalculated delay tables, at extra hardware cost.

A. Working Principle
The main working principle of this approach can be seen

in Figure 3. Let us place the origin O at the center of the
transducer, without loss of generality. Considering the set
of points along a scanline that coincides with the Z axis,
Figure 3(a) represents on XY planes the set of delays that
must be stored for a point at that Z depth. The data structure
is conceptually a 3D matrix with dimensions ex×ey×dp, i.e.
100× 100× 1000 = 10× 106 elements. Some table elements
are in fact unneeded because probe elements have limited
directivity in both emission and reception, and cannot insonify
points steeply off-axis. Additionally, the matrix is symmetrical;
in the best case, the origin is at the center of the transducer, or
anyway vertically aligned with it, and exactly three quarters of
the matrix are redundant, thus only 50×50×1000 = 2.5×106

elements need to be stored.
Let us now consider what happens when trying to re-

construct a point S that is off the considered line of sight
(Figure 3(b)), i.e. on a steered line of sight. No delay values
in the existing table are adequate. However, consider a point
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Fig. 3. (a) Delays must be annotated between each S and each element D of the transducer. The presence of a dot in the figure at (xD, yD, zS) visualizes
that a delay value is needed, just for points S on the Z axis. Some elements of the 3D matrix can be pruned because of limited element directivity, as shown.
Considering symmetry across the X and Y axes, three quarters of this matrix can be further pruned, not shown here. (For simplicity, the figure shows a
16× 16× 500 geometry instead of 100× 100× 1000.) (b) For a point on another line of sight, the delay can be computed from the reference delay table
plus an angle-dependent offset. (c) When considering both θ and φ steering, the required compensation is a plane, whose inclination around the origin is a
function of θ, φ. (d) A section of the compensated delay table for a given steering angle.

R along the reference scanline, at the same distance from the
sound origin (r := | �RO| = | �SO|):

O = (0, 0, 0);R = (0, 0, r);D = (xD, yD, 0) (4)

S = (rcosφsinθ, rsinφ, rcosφcosθ) (5)

The delay for the point S can thus be expressed as a function
of the reference delay table for R:

tp(O,S,D) = tp(O,R,D) +
| �SD| − | �RD|

c
=

=
r

c

√
1 +

x2

D + y2D
r2

− 2xDcosφsinθ + 2yDsinφ

r
+

− r

c

√
1 +

x2

D + y2D
r2

(6)

Using the first-order Taylor expansion of the square root,
which is equivalent to the far-field assumption xD, yD << r,
this yields:

tp(O,S,D) ≈ tp(O,R,D)− xDcosφsinθ + yDsinφ

c
(7)

In concrete terms, this is equivalent to keeping a refer-
ence 3D delay table in memory, which applies directly to
the orthogonal line of sight, and adjusting it with a tilted
plane (Figure 3(c)) every time the considered line of sight
is steered. It could be said that the whole delay table is
itself “steered”. This result is known from literature on 2D
ultrasound imaging [18], although we are not aware of any
work proposing its application for 3D imaging.

The inaccuracy due to the approximation can be theoreti-
cally bounded, e.g. with the Lagrange bound. With calculations
that are omitted for space reasons, we derived a bound of
about 6.7μs on the round-trip delay, or 214 signal samples at
32 MHz. However, these extreme occurrences are infrequent
and located at the edges of the imaging geometry, where they
are eliminated by apodization windows. A practical analysis
is given in Section VI.

B. Architecture

Based on the analysis above, it is possible to perform 3D
imaging with a 2.5×106 element delay table in the best case;
the table needs to be proportionally larger as the sound origin
is displaced from the vertical of the transducer’s center. For
each of the 128 × 128 steered lines of sight, the delay table
must be summed with the correction coefficients of Equation 7.
The latter can be entirely precomputed, for a total of 100 ×
64× 128 + 100× 128 = 832× 103 values (note that cosφ is
symmetrical around 0).

The delay values are used as an index into an echo buffer
containing slightly more than 8000 samples, corresponding to
a 32 MHz sampling of the two-way sound propagation time
(2×500λ). This requires 13-bit precision. Since a sum of three
values is needed to compute the overall delay, the accuracy
can be improved by using a fixed-point representation. Let
us assume for the moment, without loss of generality, a 18-
bit design, which fits well one of Xilinx’s selectable BRAM
bank widths. The reference delays are always positive, thus
they can be stored in 13.5 unsigned format and they can be
sign-extended at the moment of applying the correction. The
correction coefficients, which may be negative, must be stored
with a signed 13.4 representation. Overall, the total storage is
2.5× 106 × 18 bits = 45 Mb plus 832× 103 × 18 bits = 14.3
Mb. This is demanding, but within of the capabilities of high-
end FPGAs; for example, the largest Xilinx Virtex 7 carry up
to 68 Mb of Block RAMs [19].

To conserve area - either for other beamforming functions,
or to be able to choose a smaller FPGA - it is possible to swap
in and out of the FPGA portions of the delay table memory
from an external DRAM. In other words, the on-FPGA delay
table could be a cache of a complete delay table residing off-
chip. Since delay table contents are constant during execution,
this cache would be read-only, and the required bandwidth
would be unidirectional. A nappe-by-nappe beamformer ac-
cesses a constant-depth slice of the delay table intensively
before moving to the next slice; this suggests to divide the
delay matrix in an arbitrary number of chunks, serially loaded
into the same memory space as nappes are swept. For example,
imagine a design that reconstructs the 3D volume in 64
insonifications per volume (256 scanlines/insonification) at 15
Hz, i.e. 960 insonifications/s; the full delay table would need to
be fetched 960 times per second, at a total bandwidth of about
5.3 GB/s. This can be achieved with many modern FPGAs.
A suitable design point could for example comprise just 128
18-bit BRAM banks (each having 1k lines, for a total of 2.3
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Mb) to store a slice of these delay samples; this BRAM could
be managed as a circular buffer, loading new delay samples
as the old ones have been used, with an ample margin of 1k
cycles of latency to fetch new data. Overall, the required on-
chip memory would be reduced from 45 Mb plus 14.3 Mb to
2.3 Mb plus 14.3 Mb. In general, it is possible to see that even
though a precomputed delay table is used, the implementation
can be sufficiently compact to fit in a single FPGA easily.

Assuming a target frame rate of 15 Hz, the required through-
put is 2.5 × 1012 delay samples/s calculated in Section II-C.
This means that each of the 128 instantiated BRAMs must be
able to generate about 100 delay samples per clock to meet
specifications at 200 MHz, which is apparently impossible
because each BRAM can only provide one delay sample
per cycle. However, we propose the architecture shown in
Figure 4. It is a memory-centric architecture - i.e., the heart
of this block is an FPGA BRAM bank, and the block is
replicated 128 times. Each such block reads from the BRAM
one delay sample per cycle, then applies to it all permutations
of 8 xD and 16 yD corrections, resulting in delay samples
for 128 points of a nappe. This requires 8 + 16 × 8 = 136
adders per block, of which 128 must also perform rounding to
integer. Collectively, 128 blocks like this, each producing 128
steered delay samples per clock, can reach a peak throughput
of 3.3 Tdelays/s at 200 MHz, meeting specifications. For
best timing results, the system can be arranged so that each
block keeps using the same correction coefficients through
each insonification, entirely removing the coefficients from
the critical timing path. A control block manages the read and
write addresses into the BRAM. To ensure that all BRAMs can
operate in parallel, the delay values loaded in each should be
staggered rather than consecutive, so that a beamformer trying
to fetch delay samples for consecutive nappes can retrieve
them from the 128 BRAMs in parallel.

Fig. 4. Proposed architecture of a delay computation block, centered on a
BRAM bank.

VI. EXPERIMENTAL RESULTS

In this section, we will present implementation results for
the two proposed delay computation architectures. For the sake
of brevity, we will refer to the table-free technique as TABLE-
FREE and to the table-steering technique as TABLESTEER
in the subsequent figures and tables. We will first of all
comment on how accurate the two methods are, which is the
key indicator of the quality of the reconstructed images. We
will then present and compare implementation results on a

high-end Xilinx Virtex 7 device, XC7VX1140T, speed grade
-2, to assess the utilization of resources, and thus ultimately
the feasibility of the implementations. We will also evaluate
the maximum achievable frequency, and thus the throughput,
of the designs, to see how high frame rates can be achieved.

A. Accuracy

The accuracy of the TABLEFREE architecture is entirely
controllable by choosing the grain of the piecewise approx-
imation. As a guideline, we chose in [9], [7] to bound the
maximum absolute error of the square root approximation
such that the error of the delay selection error is ±1 sample.
Setting δ = 0.25, the approximation error can be assumed
to be equally distributed in the interval (− 1

4
, 1

4
). Two square

root approximations (Equation 3) are summed up, leading to a
mean absolute error of ≈ 0.204 and a maximum absolute error
of 0.5. We compared our approximated fixed-point implemen-
tation with an exact computation, quantizing both to an integer
selection index prior to comparison. We recorded a mean
absolute selection error of ≈ 0.2489 and a maximum absolute
selection error of 2; the error increase can be explained
with fixed-point effects. Note that the average inaccuracy can
be arbitrarily reduced with a lower δ and utilizing higher-
precision fixed-point computation, at the cost of increasing
LUT area and arithmetic circuitry. Conversely, resources can
be saved by accepting a less-precise delay calculation.

For what concerns TABLESTEER, the dominant inaccuracy
derives from the algorithmic approximations due to using a
first-order Taylor polynomial to “steer” the reference delay
table. As seen in Section V-A, the theoretical bound on the
inaccuracy of the approximation (214 signal samples) is very
loose. However, with an exhaustive exploration in the volume
of interest, we discovered that the worst inaccuracies are in
practice filtered away by apodization, since they occur at an-
gles beyond the elements’ directivity. The maximum absolute
error we observed in practice was 3.1μs, i.e. 99 signal samples.
Furthermore, fortunately, the far-field approximation’s worst
errors occur only at extremely short distances from the origin
and at the extreme angles of the field of view; both regions
are usually the least critical for image quality. The average
absolute error over the whole volume due to the algorithm
itself was a very moderate 44.641ns, i.e. ≈ 1.4285 signal
samples. A second cause of inaccuracy is the fixed-point sum
of the original delay value with the two correction coefficients,
and subsequent rounding to an integer index to access the data
sample array. It can be derived exactly that in all cases, even
when storing delay values as 13-bit integers, the maximum
difference between the delay value calculated in hardware vs.
a high-precision floating-point computation is of ±1 sample.
Matlab simulation on 10×106 random input values shows that
33% of the echo samples experience this additional inaccuracy
if using 13 bit integers; this fraction is reduced to less than
2% when using a 18-bit (13.5) fixed point representation.

B. FPGA Implementation Results

We report here post-placement results on the FPGA target,
achieved with the Vivado 2014.1 software by Xilinx. For
TABLEFREE, since a high-performance design would not fit
into a single FPGA, we normalize the results so as to present
the resource utilization and performance of the largest design
point that can still fit in a chip.

For TABLESTEER, we parameterize the design to use
14-bit or 18-bit delay representations (TABLESTEER-14b/-
18b), assessing the accuracy vs. area tradeoff. The memory
bandwidth is estimated based just on the volume of data to be
fetched, but include no other overheads.
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Architecture LUTs Registers BRAM Clock Offchip DRAM Inaccuracy Throughput Frame Supported
BW (estimated) (|off samples|) Rate Channels

TABLEFREE 100% 23% 0% 167 MHz none avg 0.25, max 2 1.67 Tdelays/s 7.8 fps 42×42
TABLESTEER-14b 91% 25% 25% 200 MHz 4.1 GB/s avg 1.55, max 100 3.3 Tdelays/s 19.7 fps 100×100
TABLESTEER-18b 100% 30% 25% 200 MHz 5.3 GB/s avg 1.44, max 100 3.3 Tdelays/s 19.7 fps 100×100

TABLE II
VIRTEX 7 XC7VX1140T-2 SYNTHESIS RESULTS

Several things can be observed in this table. First, TABLE-
FREE was optimized for an ASIC implementation and leans
heavily on the usage of logic rather than memories. Without
specific optimizations, it requires too many slices for a single-
FPGA realization; an ideal design point filling the whole
FPGA with delay generation logic would produce a delay
throughput sufficient for a transducer with only 42 × 42
elements. Additionally TABLEFREE is able to run at only
half the frequency of its initial ASIC target, limited by the
multiplier in the square root approximation, leading to a frame
rate of 7.8 fps instead of 15. However, note that at the already
at today’s 20nm node, 3D-stacked Virtex UltraScale chips [20]
feature twice the LUT count of the Virtex 7 family. Thus, we
project that, with additional tuning, in the upcoming 16-nm
Virtex family, 10-15 frames per second should be possible in
a single FPGA with support for 100× 100 elements.

TABLEFREE however has some major advantages. It does
not occupy any BRAM space, and it does not require any off-
FPGA bandwidth because all necessary coefficients are on-
chip. This makes it compatible with integration in the same
chip of other portions of the beamformer architecure, or of
other post-beamforming functionality.

TABLESTEER was optimized from the start for an FPGA
implementation, and therefore makes a more balanced use of
the resources of the Virtex chip. As a result, it is possible to fit
the delay generation logic necessary to achieve a frame rate of
almost 20 fps for 3D ultrasound in a single device. By tuning
the precision of the fixed-point representation, it is possible to
change slightly the accuracy/resource tradeoff.

Of course, a key price to pay is a loss of accuracy in
the beamforming process, but mostly limited to the edges
of the imaging volume. Another limitation of TABLESTEER
is that it requires a significant amount of off-chip bandwidth
to load delay values from an external storage. Although this
bandwidth can be managed, it may compete with other image
processing functions in the complete system. The off-chip traf-
fic can be eliminated only by storing the whole reference delay
table on-chip, at a steep BRAM cost. Finally, TABLESTEER
is less accommodating toward non-centered sound origins
and non-orthogonal wave emission; these are common in
synthetic aperture imaging. To support these modes, an off-
chip repository of delay tables may be needed.

VII. CONCLUSIONS

We have shown two radically different approaches to calcu-
lating delay values for realtime 3D ultrasound beamforming.
Both derive from the need to minimize the storage space
required by delay tables in a conventional beamformer; the
challenge is solved very differently, by eliminating the tables
altogether and computing everything on-the-fly in TABLE-
FREE, and by using a small reference table in TABLESTEER.
The two approaches have different targets, namely an ASIC
implementation and an FPGA one, respectively. In this paper,
we compared both on an FPGA backend; as expected, the
FPGA-targeted TABLESTEER architecture proved a better fit
to the available resources, but the table-free architecture is
projected to also provide good performance in next year’s gen-
eration of FPGAs. On the other hand, TABLEFREE guarantees

better image quality, leaves off-chip memory bandwidth com-
pletely available to other portions of the imaging toolchain,
and is more flexible in view of advanced imaging modes.

As a next step, we plan on studying both architectures within
a full on-FPGA beamformer, evaluating the resource trade-
offs with other portions of the beamformer, and investigating
further, low-level optimizations to better fit the FPGA fabric.
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