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Abstract— A system for wireless power transfer and data
communication of implantable bio-monitoring systems is
presented. The proposed solution uses a servo-controlled
power transmitter moved under the animal moving space.
An x- y movable magnetic coil transmits the required power
with a level able to keep constant the received energy by the
bio-sensor system. The power is transferred via the optimized
remote powering link at 13.56 MHz. The received ac signal
is converted to dc voltage with a passive full-wave integrated
rectifier and the voltage regulator supplies 1.8 V for the
implantable sensor system. The sensor control and readout
circuit measures the current on the bio-sensors and transmit the
data to the transmitter. The sensor data are transmitted to an
external reader by a low-power OOK transmitter and received
by a custom designed receiver at 869 MHz. The results are shown
in a tablet computer in real time continuously. The long-term
characterization of the implantable system is verified by a fully
bio-compatible packaged implant with 30 days measurement.
A complete prototype is also presented to prove the overall
system performance with the experimental in vitro measurement.

Index Terms— Analog circuit design, data communication,
implantable biomedical system, integrated circuits, intelligent
remote powering, servo-controlled x and y rails, power manage-
ment, wireless power transfer, bio-sensors, long term continuous
monitoring, biocompatible packaging, drug monitoring, glucose
monitoring, animal monitoring, animal implant.

I. INTRODUCTION

NOWADAYS, the development of CMOS devices
implanted in animals for studies in translational medicine

is a common practice in several field of medical research [1].
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The development of implantable devices for the telemetry
of animal metabolism by monitoring the animal glycemia
started two decades ago [2]. However, the large majority of
the developments found in literature over these last 20 years
is limited on large animal, like pigs [3] or dogs [4], while
successful research on small animals, like mice or rats,
is mainly focus on brain research [5], or limited to pressure
sensors [6] (e.g., no metabolism), or focused on glucose
monitoring but with the electronics outside the animal
body [7]. On the other hand, the present day VLSI technology
and the most recent advances in bio-sensors development allow
us to push toward multi-panel platforms that may monitor
several endogenous molecules [8] also related to the animal
metabolism, meanwhile the use of nano-structures integrated
in the sensors allow better performance in the sensors [9] till
reaching the ultimate quantum limit in the devices [10]. Along
this line of research, it has been very recently presented a
completely new, fully-implantable and battery-less device [11]
that allows the telemetry of free-moving small mice and
several endogenous and exogenous metabolites, including but
not limited to glucose, lactate, and the drugs; metoxantrone,
etoposide, etodolac.

The reliability of the measurement results changes due to the
measurement conditions. If the animal is anesthetized during
the measurement, the results are affected from this condition
and can vary according to the amount of the anesthesia [12].
Moreover, the measurement under anesthesia can not last
for long duration. However, the long-term monitoring is
essential for many applications and tracking the progression
of the therapy [13]. On the other hand, the animal should
be in a natural living space and move freely to reduce the
stress on the animal which also influences the measurement
results [14], [15].

The implantable systems cannot survive for long duration.
There are several issues such as energy source, packaging,
lifetime of the sensors, etc. to be solved to increase the
lifetime of the implantable system. The most important
limitation for the lifetime is energy source for the implantable
system. The energy can be supplied to the implantable system
by several methods: using transcutaneous cable, battery,
power transfer, etc. Using transcutaneous cable for data and
power transmission degrades the comfort of the animal [16].
In addition, the cable limits the mobility of the animal and
may cause the infections on the animal. Another method
can be using rechargeable battery [17], [18]. However, the
battery has limited charge & discharge cycle and needs to
be replaced at the end of its life time. Moreover, the battery
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Fig. 1. Miniature concept of wireless power transfer and data communication
of the implantable system in a freely moving mouse.

requires more volume and increases the overall weight more if
compared to the other components of the implantable system.
Especially, the mice are small and light-weight animals and
hence the implantable system should be small and light.
Therefore, the implantable system must be batteryless and
powered wirelessly.

Fig. 1 demonstrates the miniature concept of the wireless
power transfer and the data communication of the implantable
system in a freely moving mouse. The power is transferred
to the implantable system while the animal moves freely inside
the living space without disturbing the animal. Additionally,
the measurement data is transmitted from the implantable
system to an external reader by a second frequency which
does not perturb the wireless power transfer performance and
allows higher data rate.

The electronic system developed in the frame of this article
allows performing in-vitro measurements of Paracetamol
and to transmit the measurement results wirelessly to an
external reader. Moreover, the results are transmitted through
a Bluetooth module from the reader to the tablet computer in
order to display the Paracetamol measurements in real-time.
The implantable bio-system (bio-sensor interface, power
management block, data transmitter) is remotely powered by
a servo-controlled x-y rail system. In addition, a dedicated
data transmission protocol is proposed to transmit the
measurements from the implantable system to the external
reader. Finally, long-term in-vitro characterization of the power
management block in PBS solution has been performed during
30 days to ensure the performance of the circuits. Section II
gives overview about the remotely powered implantable bio-
sensor system. Section III presents the servo-controlled wire-
less power transfer. Section IV describes the short-range data
communication and the Android interface. Section V presents
the packaging and long-term characterization of the implant.
Section VI demonstrates a case study on continuous long-term
monitoring for freely moving rodents which includes the
measured results. Finally, Section VII concludes the paper.

II. REMOTELY POWERED IMPLANTABLE

BIO-SENSOR SYSTEM

The long-term monitoring of vital parameters in the body
is essential. The implantable system must be implanted for
long duration to develop proper personal medicine for the
illness and treat the patient accurately [19]. Fig. 2 shows the
block diagram of the remotely powered implantable bio-sensor
system.

Fig. 2. Block diagram of the remotely powered implantable bio-sensor
system.

In this study, the implantable system will be implanted
in the abdominal region of a mouse. Accordingly, the
distance between the implantable system and the powering
coil becomes around 3 cm due to the housing condition of the
animal. The power need to be transferred to the implantable
system for 30 days for drug monitoring application while
the mouse moves in the living space freely. The overall
weight of the implantable system needs to be less than 10%
of the animal weight. Therefore, the implantable system is
batteryless which reduces the overall weight and size for the
comfort of the animal. The system consists of 3 layers. At the
bottom of the system, an implant coil is placed to induce
AC voltage from the available magnetic field. The middle
layer houses the power management, control & readout of
the bio-sensors, and data communication circuits. The data
needs to be transmitted to an external receiver. A low-power
data transmitter is required since the received power at the
implantable system is limited. The bio-sensors are placed on
the top of system to monitor the glucose and drug amount in
the vicinity.

A. Power Management Circuits

The power is transferred wirelessly to the implantable
system at 13.56 MHz by using an optimized remote powering
link. A passive full-wave rectifier is used to create a
DC voltage from the induced AC voltage on the implant coil.
Two PMOS transistors are used and connected as diode to
rectify the AC signal. The charge-storing technique which
allows to reduce the voltage drop between drain and source
of the transistor (VDS) and improve the power efficiency of
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Fig. 3. Data transmission protocol.

the rectifier is used [20]. The rectifier has 80% of mea-
sured power efficiency for 2 mW load. A low drop-out
voltage regulator follows the rectifier to create a noiseless and
stable 1.8 V voltage supply for the implantable system. Power
Supply Rejection Ratio (PSRR) of the voltage regulator is
more than 60 dB at 27.12 MHz. The reference voltage of
the voltage regulator must have also high PSRR value to
have acceptable overall PSRR on 1.8 V voltage supply. The
reference generation circuit is a CMOS self-biased reference
circuit with a cascode current mirror to improve the PSRR
value [20]. The reference generation circuit creates 0.9 V
reference voltage for the voltage regulator and has PSRR value
of 78.6 dB at low frequencies. The digital circuits require
a proper reset signal to initialize properly when the supply
voltage of the implantable system is insufficient. Therefore,
a Power-on-Reset (PoR) circuit is also implemented. The
PoR circuit enables and disables all the implantable system
at 1.48 V and 1.45 V, respectively.

B. Control & Readout Circuits

The bio-sensors are connected to a mixed-signal interface IC
that performs sensor actuation and readout. The IC reads out
up to five bio-molecular sensors through different electrochem-
ical detection methods including chronoamperometry (CA)
and cyclic voltammetry (CV). Different voltage profiles are
generated by using a single fully on-chip reconfigurable
waveform generator. The measured sensor current is converted
into voltage and is digitized through a second-order sigma
delta ADC. The IC is realized in 0.18 μm CMOS technology.
Electrical measurements show a linear input current range
of 1650 nA. The IC consumes 0.92 mW from 1.8 V supply
voltage, making it suitable for remotely powered and
implantable applications. More details about the control and
readout circuits can be found in [22] and [23].

C. Data Communication Circuits

The control and readout IC hosts a data preparation unit
that prepares the digitized measured data for transmitting.

Fig. 4. Integration of the implantable bio-sensor system.

The operations in this block are depicted in Fig. 3. It takes
13 bits from the output of the Analog-Digital Converter (ADC)
which corresponds to the sensor current and 9 bits from the
waveform generator which corresponds to the applied voltage
to the sensor. The three most significant bits of the data of
four consequent data gives the 9-bit applied voltage preceded
by a 3-bit starting pattern.

An 8b/10b channel encoding is used in the Tx/Rx unit
to convert the data to achieve DC balancing and avoid
long sequences of the same logic value. Each data stream
includes 22 bits: 20 bits coded data, 1 start bit as “0”, and
1 stop bit as “1”. This data stream modulates the input of a
low-power OOK transmitter. The power amplifier remarkably
increases the overall power consumption of the implantable
system. Therefore, using a power amplifier is avoided since
the communication distance is short, less than 30 cm.
A freely running LC-tank oscillator is implemented as
low-power transmitter [23]. Moreover, the inductance of the
oscillator is designed as transmitting loop antenna to reduce
the number of off-chip components. Therefore, the loop
antenna is optimized for data communication at 869 MHz.
The data transmission from 45 cm communication distance
with up to 1.5 Mbps of data rate is achieved by using the
OOK transmitter which consumes only 320 μW. The measured
Bit Error Rate (BER) is less than 1.5×10−4 for 30 cm
communication distance at 1 Mbps data rate.

D. Bio-Sensors

The sensing platform which allows to monitor biological
parameter of the body is placed on the top of the implantable
system. The microfabrication of the passive sensing platform
was realized with a two-masks process flow. Metalizations are
made in Pt and passivation in Al2O3. Details on the process
flow can be found in [24]. The platform measures 12×11 mm
in order to fit the size of the coil (12×12 mm) and the
wire bonding. The platform hosts an array of four working
electrodes (WEs), sharing a common counter electrode (CE)
and a reference electrode (RE), with the addition of a
temperature sensor and a pH sensor [25].

E. Assembly and Packaging of the Implantable System

The implantable bio-sensor system is composed of 3 layers.
Fig. 4 shows the integration of the implantable bio-sensor
system. The implant coil is placed on the bottom layer
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Fig. 5. Assembled implantable device.

PCB to induce the current. The second layer PCB houses
two CMOS ICs and off-chip components such as storage
capacitors. The radiation efficiency of an antenna is
proportional to its effective area. Accordingly, the transmitting
antenna of the data transmitter is optimized and designed as
a loop antenna on the second layer PCB. The bio-sensors
are fabricated on the passive platform. The epoxy adhesive
(EP42HT-2Med system) was used to assembly the passive
platform with the second layer PCB. The interconnections
between the platinum pads of the passive chip and the
gold pads on the PCB were realized with Al wire bonding
and were protected with a glob top protection of 0.3 mm.
A 10 μm layer of Parylene C was deposited by chemical
vapor deposition using a Comelec C-30-S Parylene Deposition
System. Parylene C was used to cover the whole device but
not the electrode array that needs to be in contact with fluids.
A bio-compatible Silicone (NuSil MED-6233) was used to
cover the edges and to fill the spaces between the platform
and the PCB. A 30 days of in-vivo experiment also verifies
the bio-compatibility of the package with the low inflammation
level at the implant site [25]. Fig. 5 shows the photograph of
the assembled implantable device.

The ICs and the sensing platform were designed in
parallel in order to assure a correct integration in term of:
compatibility of the dimensions between the sensing platform
and the antenna; compatibility of the methods for sensor
functionalization with the presence of the electronics and
the antenna in the same device; compatibility of the current
ranges that are produced by the reaction happening at the
sensing platform, with the read-out IC. The latest was
the most challenging issue, because the current ranges
can greatly change according to the electrode size and
the functionalization, e.g. the presence of nano-structured
materials, proteins, mediators, membranes, etc. However,
we solved this problem by finding the right combination of
nano-materials, and proteins for each molecule of interest [25].
Moreover, the integration of the ICs on the PCB is another
important challenge for the system implementation. The
digital block of the read-out IC requires to have 1.8 V voltage
supply with a small ramp-up time. There is a trade-off between
the start-up stabilization of the digital block and the required
duration to achieve reliable measurement. Therefore, the
storage capacitors are chosen carefully. If the large capacitors

are used, the system cannot initialize properly. However, the
large capacitors supply the required power for longer duration.

III. SERVO-CONTROLLED WIRELESS POWER TRANSFER

The animal should move freely inside living space for
the reliability of the measurement and the power must be
transferred to the implantable system while the animal moves
freely. Some previous studies have presented that the power
can be transferred to a batteryless implantable system by using
smart remote powering systems while the animal moves freely
inside the living space [26]–[28]. These systems have an array
of coils under the cage. Accordingly, the systems are based
on tracking the animal inside the living space and turning on
the most appropriate powering coil according to position of
the animal. However, the power transfer efficiency decreases
drastically when the animal moves towards to the edges of the
powering coil. Moreover, the power transfer to the implantable
system interrupts when the animal moves from one powering
coil to other powering coil. In order to avoid the interrupts,
the number of the powering coils can be increased to recover
dead-zones where the power transfer efficiency is less than 1%.
However, adding powering coils on the array creates undesired
coupling between powering coils which degrades the wireless
power transfer efficiency. Therefore, the transmitted power
needs to be increased to keep the received power at the
constant level by the implantable system.

This study proposes a servo-controlled wireless power
transfer system to transfer the power efficiently [29], [30]. The
servo-controlled system can track the animal inside the living
space and moves the powering coil under the animal position.
A permanent magnet is placed in the implantable system.
The magnetic field sensors are used to monitor the animal
position and movement on the powering coil. Accordingly,
servo-controlled x and y rails move the powering coil in order
to keep the coupling between the implantable system and
powering coil at maximum level.

The length of the x and y rails are 200 mm and 350 mm,
respectively [31]. The rails are sufficient to cover all the
bottom of the conventional rodent cages and track the animal
in the cage. In this study, we also used a conventional cage
which has a bottom size of 180 × 340 mm2. Moreover, each
rail has 255 positioning step. Therefore, the animal can be
tracked with the resolution of 1.37 mm. The rails move at the
speed of 30 cm/s where the animal can move at the average
speed of 7 cm/s [15]. Additionally, the response time of the
rails is 5 ms. When the servo-controlled system is initialized,
it takes less than 75 seconds to sweep all the bottom of the cage
and locate the animal in the cage. The movement of the rails
is adaptable according to the animal movement. The speed
and acceleration/deceleration of the rails and the distance to
move are also adjustable. The servo-controlled power transfer
system can be easily customized for the bigger rodent animals
with large-scale cages by changing the rails sizes. However,
the initial localization of the animal will take more time since
the living area will be increased. This duration can be reduced
by replacing a larger magnet in the implantable system.

Many studies show that the rodents spend most of the
time in a horizontal position (on their four feet) [15], [32].
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In addition, the servo-controlled system also takes into account
that the animal stands up on its hind legs to groom and
explore the area. This action takes around 5 s according to the
several videos which are recorded in laboratory environment.
The servo-controlled system detects that the animal stands
up according to the outputs of the magnetic field sensors.
Therefore, the system waits for 5 s to ensure the animal
returns to its previous position. If the delay of 5 s elapsed
and the sensors outputs do not change, the servo-controlled
x and y rails start to move the powering coil to relocate the
animal by checking the nearby, the latest known position of
the animal.

The power transfer efficiency of the magnetically coupled
coils have dependency on the distance. Therefore, the
powering and the implant coils need to be optimized for
maximum power transfer efficiency at 3 cm [20]. The sizes of
the powering and the implant coils are found as 80×80 mm
and 12×12 mm, respectively. A class-E power amplifier is
designed as a coil driver to amplify the remote powering
signal. The class-E is chosen due to its high drain efficiency
and optimized at 13.56 MHz to achieve maximum power
transfer from the optimized remote powering link [20].

IV. SHORT-RANGE DATA COMMUNICATION &
ANDROID INTERFACE

The sensor data is received and processed by an external
reader. The external reader has two main blocks for short
range communication: a custom designed data receiver and
a Bluetooth module.

A. Custom Designed Data Receiver

The OOK transmitter is a LC tank oscillator to reduce
the power consumption. However, the operation frequency of
the transmitter drifts due to the temperature and environment
change. Therefore, a custom designed data receiver is used to
compensate the frequency drifts in the transmitter.

The block diagram of the data receiver is shown as Fig. 2.
The receiver is implemented as superheterodyne receiver
to use filter which has high quality factor to suppress
the redundant signals. A custom dipole receiver antenna
is designed to have better antenna gain at the operation
frequency. A band select filter follows the antenna with a large
bandwidth to compensate the frequency drift. A low-noise
amplifier (LNA) is used to amplify the received RF signal.
A mixer downconverts the received signal to a lower frequency
where the filter has better quality factor than RF frequency.
RF bursts are used to transmit bit “1” in the OOK transmitter
of the implantable system. A logarithmic amplifier changes its
output according to its RF input power level. Accordingly, a
logarithmic amplifier is used to convert the received RF burst
to a corresponding DC voltage which creates the bit “1”. The
log-amp drives a comparator which generates the bit stream
of the received sensor data. Fig. 6 shows the received sensor
data streams of the implantable system.

B. Bluetooth Module & Android Interface

The implantable system has on-board a front-end IC that
provides the 8/10 bit coded information of the current signal

Fig. 6. (a) Received data streams of the implantable system (b) A 8/10 bit
coded digital word of 20 bits.

Fig. 7. Continuous bio-monitoring application on the Android interface.

flowing inside the bio-sensors as a digital word of 20 bits as
shown in Fig. 6. The digital word is generated at the output
of the external data receiver and transmitted to the Bluetooth
module. The Bluetooth module is in charge of analyze, validate
and transmit via Bluetooth the data to the Android interface.
An on-board microcontroller is able to sample each bit of
the digital signal (Data-out), decode it and understand if a
transmission error has occurred. When the data has been
validated, it is transmitted by the well-known UART protocol
to a commercial Bluetooth transceiver as a word of two bytes.
The Bluetooth transceiver helps to communicate with a mobile
device and display the measurement in real-time.

In order to allow a continuous monitoring of the concentra-
tion of the measured substances, an Android application has
been developed. The communication and the data transmission
between the mobile device and the sensor is carried in a
wireless manner exploiting the Bluetooth technology. Starting
from a previous work [33], the application is now improved
by the addition of noise filtering possibilities of real time
data (moving average, median value, IIR filter, etc.). The
application can, therefore, receive and plot a large amount of
data by optimizing space occupation in the external memory of
the device, which could be added on any tablet or smart-phone.
Fig. 7 shows the continuous bio-monitoring application on the
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Fig. 8. Packaging effect on the remote powering performance. (BP: Before
Packaging & AP: After Packaging).

Fig. 9. Test setup for the long-term characterization of the implantable
system.

Fig. 10. Long-term in-vitro characterization results of the implantable system.

Android interface and two consecutive injections of the drug
Paracetamol in the testing solution result in two consecutive
current steps (in chronoamperometry at 650 mV) that are
displayed in real-time on the screen.

V. PACKAGING & LONG-TERM

CHARACTERIZATION OF IMPLANT

For the long-term measurements, the same procedure
was followed as aforementioned for the packaging of the

Fig. 11. Continuous long-term monitoring system for freely moving rodents.

TABLE I

SUMMARY OF REMOTELY POWERED IMPLANTABLE BIO-SENSOR SYSTEM

implantable system, except for the assembly with the passive
sensing-platform, as no electrochemical measurements were
needed. Therefore, we added the packaging only on the PCBs
with the implant coil and the second layer which houses
electronic circuits and off-chip components. Fig. 8 shows the
effect of packaging on the remote powering performance. The
packaging adds more parasitics on the implant coil which
reduces the power transfer efficiency. Therefore, after the
implantable system is packaged, a higher transmit power is
required to achieve same voltage level at the rectifier output.

The implantable system was dip in PBS solution
continuously for 30 days to characterize the system. The
PBS solution is the standard buffer solution that simulates
biological fluids and that has the same pH of human
blood (pH 7.4). In order to verify the packaging for the
long-term characterization of the system, a test setup is used
as shown in Fig. 9.
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TABLE II

PERFORMANCE COMPARISON OF MICRO-BIO-SYSTEMS

The rectifier output, the regulator output voltages and the
supply power of the power amplifier is monitored for 30 days.
Fig. 10. shows the long-term in-vitro characterization results of
the implantable system. The packaging ensures the protection
of the implantable system from the corrosion by the in-vitro
measurement. There is a step-up in the supply power, hence
in the rectifier output voltage as indicated in Fig. 10. The
reason for the step-up is that the temperature has changed in
the laboratory of the test setup after 18 days.

VI. CASE STUDY: CONTINUOUS LONG-TERM

MONITORING FOR FREELY MOVING RODENTS

The performance of the implantable system for continuous
long-term monitoring is measured by the test setup as shown
in Fig. 11. The implantable system is placed in a cage and the
permanent magnet is also installed to track the implantable
system inside the cage.

The servo-controlled wireless power transfer system helps to
locate the batteryless implantable system inside the cage and
moves the powering coil to activate the implantable system
for monitoring of the human metabolites. The metallic parts
of the servo-controlled system are made of aluminum which
is a paramagnetic material as shown in Fig. 11. Accordingly,
the power transfer efficiency is not extremely affected.

The implantable system is moved randomly to emulate the
moving of the animal. The servo-controlled wireless power
transfer system is verified to track the implantable system
and transfer the power to the implantable system efficiently.
The human metabolites are injected on bio-sensors which is
fixed on the implantable system. The current is measured by
the bio-sensors and the measurement data is transmitted from
the implantable system to the external reader. In addition, the
data is processed by the microcontroller and displayed on the
Android interface in real-time.

The previous studies indicate that 20 mW/cm2 of heat flux
increases the temperature as 1 ◦C of the surrounding tissues
which is defined as the safety precaution limit [34], [35]. The
maximum heat flux which is generated by the powering coil
(assuming the coil driver has 100% power efficiency and 2.4 V
rectifier output voltage is required) can be calculated by:

PCoil

ACoil
= 120 mW

64 cm2 = 1.875 mW/cm2 (1)

where PCoil ACoil are the power dissipated by the powering
coil and the surface area of the coil, respectively. Accordingly,
the heat flux generated by the powering coil is sufficiently low
to fulfill the safety regulations.

Table I summarizes the performance of the remotely
powered implantable bio-sensor system. Furthermore,
Table II compares this work with the recently reported
micro-bio-systems in the literature. This work offers a
batteryless implantable micro-system solution for long-term
bio-monitoring. The micro-system includes both the efficient
power transfer and the low-power data communication
compared to the previous studies. Moreover, the micro-system
weighs 0.92 g which meets the weight requirement for the
animal telemetry applications.

A. Measurement With Paracetamol

The implantable system is tested in-vitro prior to be
validated in-vivo. For the measurement with the drug
Paracetamol, after a cleaning with Acetone and Isopropanol,
the electrodes were used without modifications. Paracetamol
was pursued from Sigma-Aldrich (Switzerland), and dissolved
in Ethanol (≥99.8% purity). Electrodes were tested for
Paracetamol sensitivity with chronoamperometry at +650 mV.
The sensors were covered with 100 μl of a 100 mM phosphate
buffered saline (PBS) solution (pH 7.4), and then
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Fig. 12. Measurement with Paracetamol.

Paracetamol 0.5 mM was injected. After each use, the
chip surface was rinsed in MilliQ water and dried in air.

Paracetamol (Acetamonophen) is a well-known anti-
inflammatory drug. Moreover, paracetamol is also an
electroactive species that can be oxidized at a constant
potential of +650 mV. At this potential Paracetamol is
transformed into its oxidized form, N-acetyl-p-benzoquinone-
imine [40]. The initial current value (background signal)
related to PBS is considered as the baseline, so that the
successive values of current are referred to the baseline value
(�i1 and �i2 in Fig. 12). The net current flowing through the
cell is described by Cottrell’s equation as follow:

i(t) = nF AC
√

D√
π t

(2)

where n is the number of electrons involved in the redox
reaction, F is the Faraday constant, A is the area of the
electrode, CR is the reduced concentration of the species, and
DR is the diffusion coefficient of the species. Current decays
over the time and it reaches an approximative steady-state after
a certain time, which amplitude is proportional to CR [41].
In Fig. 12 the current generated by two successive injections
is depicted. The current decays quite fast (less than 10 s), due
to the miniaturization of the electrode dimensions. Moreover,
two successive injections of the same amount of paracetamol
result in a similar increase of the current with respect to the
baseline.

VII. CONCLUSION

This work has the aim of developing a fully implantable and
remotely powered platform for the real-time monitoring of
human metabolites. The paper presents a system for wireless
power transfer and data communication of bio-sensor systems
implantable in small animals. The batteryless implantable
system is activated by remote powering at 13.56 MHz.
The servo-controlled power transmitter moves under the
animal moving space and transfers the power efficiently
to the implantable system. The implantable system is
composed of the power management, the control & read-out,
the data communication circuits and the bio-sensors.

The overall weight and size of the implantable system are
0.92 g and 0.4 cm3, respectively. The induced AC voltage on
the implant coil is converted to DC voltage with a full-wave
integrated rectifier and the voltage regulator supplies 1.8 V for
the implantable system. The sensor control and read-out circuit
measures the current on the bio-sensors and drives the input
of the OOK transmitter. The sensor data is received by the
custom designed receiver from 30 cm distance at 869 MHz.
The measurement results are displayed on the Android
interface by a tablet computer in real-time continuously.
The long-term characterization of the implantable system is
verified by a fully bio-compatible packaged implant with
30 days measurement. Moreover, the packaging effect on
the remote powering performance is shown. A case-study on
drug monitoring is also presented to prove the overall system
performance with experimental in-vitro measurement.
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