
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015 2103

Layout Technique for Double-Gate Silicon
Nanowire FETs With an Efficient

Sea-of-Tiles Architecture
Shashikanth Bobba, Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract— As we advance into the era of nanotechnology,
semiconductor devices are scaled down to their physical limits,
thereby opening up venues for new transistor channel materi-
als based on nanowires and nanotubes. Transistors based on
nanowires and nanotubes inherently exhibit ambipolar behavior.
While technologists aim to suppress ambipolar behavior of these
transistors, new design methodologies are proposed by exploiting
the phenomenon of controllable polarity. In this paper, we
propose regular layout fabrics, with an emphasis on silicon
nanowires (SiNWs) as the candidate technology. A double-gate
ambipolar SiNW field-effect transistor operates as p-type or
n-type by electrically controlling the polarity of the second
gate. We propose layout techniques to address gate-level routing
congestion, as every transistor has two gates to route. Novel sym-
bolic layouts, which are technology independent, are proposed for
ambipolar circuits. In the second part of this paper, we present
an approach for designing an efficient regular layout called
sea-of-tiles (SoTs). A logic tile is essentially an array of prefabri-
cated transistor-pairs grouped together. We design four logic tiles,
which form the basic building block of the SoT fabric. We run
extensive comparisons of mapping standard benchmarks onto the
SoT fabric to find the optimum tile. This paper shows that SoT
with TileG2 and TileG1h2, on an average, outperforms the one
with TileG1 by 16% and 14% in area utilization, respectively.

Index Terms— Ambipolar, double gate (DG), layout, nanowire,
physical design, tiles.

I. INTRODUCTION

FOLLOWING the trend to 1-D structures, silicon nanowire
field-effect transistors (SiNWFETs) are a promising

extension to the tri-gate FinFETs [1]. The superior perfor-
mance of these 1-D channel devices comes from a high
I ON/I OFF ratio, due to the gate-all-around structure, which
improves the electrostatic control of the channel, thereby
reducing the leakage current of the device. The advantage
of SiNWFETs over other 1-D devices such as carbon nan-
otube transistors is that SiNWs can be fabricated with a
top–down silicon process [2]. In addition, SiNWs can be
built in vertical stacks, thereby giving highly dense array

Manuscript received November 14, 2012; revised June 23, 2013; accepted
August 12, 2013. Date of publication October 8, 2014; date of current version
September 23, 2015. This work was supported by the European Research
Council under Grant ERC-2009-AdG-246810.

The authors are with the Integrated Systems Laboratory, École
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland (e-mail:
shashikanth.bobba@epfl.ch; giovanni.demicheli@epfl.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2358884

Fig. 1. (a) FinFET providing increase in controllable channel area
between the source and drain regions. (b) Vertically-stacked SiNWFET
with multiple parallel nanowire channels, each with gate-all-around control.
(c) DG-SiNWFET with control and PGs.

of nanowire transistors [3]. Fig. 1(a) and (b) shows a pos-
sible extension of a FinFET to SiNWFET device structure
with SiNWs suspended between source and drain pillars.
In addition, SiNWFETs exhibit enhanced electrostatics prop-
erties, such as polarity control, which are electrically hard to
achieve in planar- and FinFETs.

Our methodology takes advantage of the electrostatics of
these devices, which can be fabricated to be ambipolar, i.e., to
exhibit both n-type and p-type characteristics. By engineering
the source and drain contacts and by constructing indepen-
dent double gate (DG) structures, the device polarity can be
electrostatically forced to either n-type or p-type by polarizing
one of the two gates. Fig. 1(c) shows a DG-SiNWFET device
structure with control gate (CG) and polarity gate (PG). The
in-field polarizability of these devices enables the develop-
ment of new logic architectures, which are intrinsically not
implementable in CMOS in a compact form [4]. However, the
routing complexity at the device level increases due to the
presence of an extra gate, the PG [5].

Typical CMOS layout techniques involve transistors
with a single gate. In the traditional approach for CMOS,
compact layouts are realized by optimal transistor chaining
of p-type and n-type transistors [6]–[8]. However, in the case
of ambipolar gates, the polarity of the transistor (p-type or
n-type) changes with the input signals. Motivated by these
observations, we propose compact layout techniques for
DG-SiNWFET. To facilitate this, we propose novel

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

symbolic layouts for ambipolar logic with dumbell–stick
diagrams (DSDs).

Layout regularity is one of the key features required
to increase the yield of ICs at advanced technology
nodes [9]. Hence, design styles based on regular layout
fabrics have the advantage of higher yield as they maximize
the layout manufacturability. Various regular fabrics have
been proposed throughout the evolution of semiconductor
industry, where some recent approaches are discussed
in [10]–[12]. In gate-array fabric style, a sea of prefabricated
transistors is customized to obtain a desired logic gate.
The flexibility of building generic logic gates comes
at a cost of area as well as routing overhead, thereby
increasing the performance gap between application-specific
integrated circuit (ASIC) and gate arrays. With the advent
via programmable gate arrays [11] and logic bricks [12], the
performance gap is reduced. On the other hand, strict design
rules, at 22-nm technology node and beyond, has led to cell
layouts with arrays of gates with a constant gate pitch, which
resemble a sea-of-gates layout style.

In this paper, we design an efficient regular layout brick
(called as tile), which forms the basic building block for
sea-of-tiles (SoT) design methodology. The basic tile for
SoT is optimized for area and regularity. Technology mapping,
with logic synthesis tools, on various tiles helped us in
choosing an efficient tile for realizing SoT. With the optimal
tile as a basic building block for a SoT fabric, we demonstrate
mapping any 3-input NPN-equivalent function [13], [14] as
well as other ambipolar logic circuits.

The main contributions of this paper are as follows.
1) A brief discussion on realizing various types of Boolean

functions realized with controllable-polarity transistors,
which sets the foundation of ambipolar logic circuits for
digital IC design.

2) We address the gate-level routing issues of ambipolar
circuits, with emphasis on DG-SiNWFETs. We pro-
pose compact layout techniques for complex gates with
embedded XOR functions. To facilitate this, we pro-
pose novel symbolic layouts for ambipolar logic with
DSDs.

3) We design an efficient regular layout brick (logic tile),
which forms the basic building block for a SoT design
methodology. We present a few case studies by mapping
various logic functions onto an optimized SoT fabric.

The preliminary version of this paper, presented in [15],
has been extended with a detail study on realizing various
Boolean functions with ambipolar logic. In this paper, we
also present a layout synthesis procedure to generate an
efficient layout of a complex logic function with embedded
XOR operation.

The remainder of this paper is organized as follows.
Section II provides a background on DG-SINWFET tech-
nology and device operation. Section III discusses ambipolar
logic circuits by realizing various Boolean functions with
controllable-polarity transistors. Section IV introduces novel
layout techniques for ambipolar circuits by mitigating gate-
level routing overhead caused by an extra gate for every
transistor. In Section V, we propose an efficient layout fabric

Fig. 2. Conceptual structure of the ambipolar DG-SiNWFET. (a) 3-D view
of the device. (b) Top view of the device showing one stack of nanowires
forming the channel.

Fig. 3. SEM images of a DG vertically stacked SiNWFET. (a) Before the
gate patterning. (b) After the gate patterning: CG (red), PG (violet), and active
area (green).

called as tile, which forms the basic building block for
SoT design methodology. Finally, the conclusion is drawn
in Section VI.

II. BACKGROUND AND MOTIVATION

This section surveys previous works related to ambipolar
technologies with a main focus on DG-SiNWFET. It also
summarizes various new design techniques, which leverage
ambipolarity at the circuit level.

A. Ambipolar DG-SiNWFET Technology

Various new technologies show an inherent behavior toward
controllable polarity, including SiNWFETs [16], carbon nan-
otube FET [17], and graphene nanoribbons [18]. In this paper,
we focus on SiNWFETs to illustrate the layout technique for
ambipolar logic circuits. The advantage of SiNWFETs over
other 1-D devices such as carbon nanotube transistors is that
SiNWs can be fabricated with a conventional silicon process as
an extension to traditional CMOS technology [2]. In addition,
SiNWs can be built in vertical stacks, thereby giving dense
arrays of nanowire transistors [3].

Fig. 2 shows a DG-SiNWFET device structure with SiNWs
suspended between source and drain pillars. This SiNW is
divided into three sections, which are in turn polarized by
two gate-all-around gate regions. The center gate region works
as in a conventional MOSFET, switching conduction in the
device channel by means of a potential barrier. The side
regions are instead polarized by a PG, which controls the
Schottky barrier thicknesses at the source/drain (S/D) junctions
and selects the majority carrier type, thus forcing the device
to be either n-type or p-type.

A single electron microscope (SEM) image of an array of
vertically stacked SiNWs, suspended between pillars, before
patterning the gates, is shown in Fig. 3(a). Fig. 3(b) shows the
DG-SiNWFET after patterning the control and PGs [5].

BOBBA AND DE MICHELI: LAYOUT TECHNIQUE FOR DG-SiNWFETs WITH AN EFFICIENT SoTs ARCHITECTURE 2105

Fig. 4. DG-SiNWFET. (a) Layout (top view). (b) Symbol of an ambipolar
FET. (c) Configuration as n-type and p-type by setting the PG.

B. Device Operation

A fabrication technique to manufacture programmable
DG-SiNWFETs has been proposed in [5]. Fig. 4(a) and (b)
shows the top view of the DG-SiNWFET and its corresponding
symbol. As the name suggests, the device has two gates
CG and PG. The CG is similar to the regular gate of a
MOSFET, which turns the device ON or OFF. On the other
hand, PG sets the majority carriers of the device channel to
either p-type or n-type. As shown in Fig. 4(c), if the PG is
set to high (logic 1), the device behaves as a n-type transistor,
and by setting the PG to low (logic 0), we obtain a p-type
transistor.

Though we focus on DG-SiNWFETs, the proposed design
methodology holds relevant for other ambipolar FETs
(CNFETs [17] and GNRFETs [18]) with two independent
gates for in-field programmability.

C. Previous Design Approaches

New design methodologies are proposed for exploiting the
controllable polarity, unique to DG devices, which leads to a
very compact realization of XOR function [19]–[21]. In [19],
a reconfigurable logic gate that maps eight different 2-input
logic functions in dynamic logic was presented. In [20],
a library of static ambipolar gates based on generalized
NOR–NAND-AOIs is proposed that efficiently implements
XOR-based functions. Various novel reconfigurable blocks
with embedded XOR blocks have been proposed that leverage
upon embedded XOR functionality [22]. Zukoski et al. [21]
proposed universal logic modules that leverage ambipolar
transistors. In this paper, we abstract the physical design
issues that are common to all the new design methodologies
comprising of DG ambipolar transistors. We also propose a
procedure for constructing the symbolic layout of ambipolar
logic circuits.

III. AMBIPOLAR LOGIC CIRCUITS AND

SYMBOLIC LAYOUTS

In this section, we first propose novel symbolic-layouts for
controllable-polarity logic gates called DSDs. In the second
part, we discuss various logic implementations with ambipolar
DG transistors.

A. Terminology

A controllable polarity transistor, αt , is denoted as a
quadruple (D, CG, PG, and S) signals that αt connects

Fig. 5. (a) Top view of the DG-SiNWFET shown in Fig. 1. (b) Large
transistor. (c) Equivalent DSD. (d) DSD of an inverter with a transistor pair.
(e) Grouping transistor with similar PGs.

to, respectively. The voltage signal applied to the PG deter-
mines the type (p-type or n-type) of transistor. A transistor, αt ,
operates as a p-type device (αtp) by connecting the PG to 0,
and an n-type device (αtn) by connecting the PG to 1.

B. Symbolic Layouts for Ambipolar Logic: DSDs

Similar to the CMOS stick diagrams [23], DSDs denote
ambipolar devices (in our case DG-SiNWFET) with a
simplified layout abstraction to study the cell-routing
complexity. Fig. 5(a) shows the top view of a simple
DG-SiNWFET (Fig. 2). As for FinFETs, a large transistor is
obtained by increasing the number of nanowire-stacks (fins in
the case of FinFET) in parallel, as shown in Fig. 5(b).
In Fig. 5(c), we show the dumbell–stick representation of
the transistor, with suspended silicon nanowires between the
source and drain contacts forming the basic dumbell, and the
CG and the PG constituting the sticks. It has to be noted that
DSDs do not consider the size of the transistor, but just the
topology of the interconnect.

Transistor pairing, shown in Fig. 5(d), is an important
transistor placement technique used for layout area reduction.
By transistor-pairing, CGs of two transistors (connected to the
same signal) are vertically aligned by a single stick segment
to minimize the routing complexity as well as to ensure more
layout regularity. Two transistors, αt1 and αt2, are paired
together if their CGs are connected to the same signal, i.e.,
CG(αt1) = CG(αt2).

In Fig. 5(e), we show transistor grouping. Two transis-
tors, αt1 and αt2, belong to the same group if their PGs
are connected to the same voltage, i.e., PG(αt1) = (αt2).
Hence by transistor-grouping, transistors with similar PGs are
grouped together. Transistor grouping is unique to ambipolar
DG devices. In the following section, we show the importance
of grouping transistors for minimizing the routing overhead
introduced by PGs.

C. Unate, Binate, and Mixed Boolean Functions [24]

A function f (x1, x2, . . . , xi , . . . , xn) is positive unate in xi

if for all x j , j �= i

f (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)

≥ f (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn).

2106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

TABLE I

EXAMPLE OF UNATE, BINATE, AND MIXED FUNCTIONS

Similarly, it is negative unate in xi if, for all x j , j �= i

f (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn)

≥ f (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn).

A function f is binate in variable xi if it is neither
positive nor negative unate on variable xi . A function is
(positive/negative) unate if it is either positive or negative unate
for all xi , where i ∈ [1, n]. Similarly, a function is binate if
it is binate for all the variables. A function is mixed, if it
contains both binate and unate variables. Table I gives few
examples of unate, binate, and mixed functions.

There are various flavors of mixed functions, according to
how binate and positive/negative unate variables are combined.
We also consider here a subclass of mixed functions that
is common in design libraries. We call XNUmixed those
functions that are conjunctions/disjunction of XOR/XNOR with
negative unate functions. De Morgan’s law [25] can be used
to map into this class those functions that combine positive
unate functions with XOR/XNOR.

D. Logic Gates Realized With
Controllable-Polarity Transistors

In this section, we describe circuit level implementation of
negative unate, positive unate, binate and XNUmixed logic
functions realized with controllable-polarity transistors.

1) Negative Unate Functions: Negative unate functions are
obtained by biasing the PGs of the pull-up-network (PUN) to
Gnd and pull-down-network (PDN) to Vdd. This is similar
to complementary CMOS style where the PUN and PDN are
comprised of p-FETs and n-FETs, respectively. Fig. 6(a) shows
a 2-input NAND gate. Since the ambipolar transistors are
configurable, just by swapping the Vdd and Gnd terminals,
along with the connection to the PGs, of the NAND

schematic [Fig. 6(a)], we generate a NOR function, as shown
in Fig. 6(b). This technique applies to all the negative unate
function.

2) Positive Unate Functions: In the case of positive
unate functions, various design approaches are considered.
Fig. 6(c) shows an implementation of a 2-input OR gate from
the same schematic of a NAND gate. By interchanging the
voltage applied to the PGs in the PUN and PDN, we obtain
n-type and p-type transistors in the PUN and PDN, respec-
tively. Though this gives a straight forward implementation of
positive unate logic, we have to consider the degraded output
signal (e.g., (A + B)d). By adding a buffer at the output we can
realize full swing at the output. On the other hand, a positive

Fig. 6. Unate logic function. (a) NAND gate. (b) NOR gate implementation by
swapping the Vdd and Gnd of a NAND gate (a). (c) OR gate implementation
by interchanging the voltage of the PGs in the PUN and PDN. (d) AND
(positive unate) gate implemented with NAND (negative unate) gate followed
by inverter. (e) AND gate implemented by applying De Morgan’s rule.

Fig. 7. 2-input logic gates. (a) NAND gate with PGs connected to
Vdd and Gnd. (b) XOR gate with PGs connected to input signals (B or B̄).
(c) XOR gate when the input signal B is assigned to logic 1.

unate function can be obtained by inverting the output of an
equivalent negative unate function. An example of a 2-input
AND gate is shown in Fig. 6(d). In addition, a positive unate
function can be obtained by applying De Morgan’s law to
the function, as shown in Fig. 6(e). Since we prefer not to
use a configuration that degrades output signals and requires
buffer [see Fig. 6(c)], a rule of thumb to implement positive
unate functions is by biasing the PGs of the PUN and PDN
to Gnd and Vdd, respectively [Fig. 6(d) and (e)]. Between
the two configurations of Fig. 6(d) and (e), we can observe
that the implementation in Fig. 6(d) is better as it requires
fewer numbers of inverters (e.g., input inversion has to be
accounted for).

3) Binate Functions: The DG transistors are efficient in
implementing binate functions. An example of a 2-input XOR

gate with only two ambipolar transistors is shown in Fig. 7(a).
When compared with unate logic style, we notice that the
PGs are connected to the input logic signals (e.g., logic
signal B in Fig. 7). From the truth table shown in Fig. 7(a),
we observe that output is degraded when the ambipolar
transistor is configured to be p-type in the PDN and n-type
in the PUN. The degraded output signal can be recovered
by placing a buffer at the output. To obtain full swing at

BOBBA AND DE MICHELI: LAYOUT TECHNIQUE FOR DG-SiNWFETs WITH AN EFFICIENT SoTs ARCHITECTURE 2107

Fig. 8. Partially binate function Y = (A XOR B)C. (a) Ambipolar logic
style, where the PGs of the binate logic are connected to logic inputs (B or B̄)
and PGs of unate variables are connected to Vdd and Gnd. (b) Static CMOS
implementation.

the output, an alternative approach using transmission-gates
(e.g., two parallel transistors) is proposed in [20], where
a 2-input XOR gate can be constructed using only four
ambipolar transistors. An example of a 2-input XOR gate is
shown in Fig. 7(b), where all the PGs are either connected
to logic input B or B̄. For any given configuration, the
output is either pulled-up (or pulled-down) by both n-type
and p-type transistors. Fig. 7(c) shows the case where B is
assigned to logic 1. The transmission gates with complemented
inputs in the PUN and PDN assure a full swing at the
output. When compared with static CMOS implementation of
an XOR2 (which needs 12 transistors), the transmission-gate
XOR2 with ambipolar transistors needs only eight transistors
[transistors shown in Fig. 7(b) along with the two inverters for
generating Ā and B̄].

4) Mixed Functions: Within the mixed function class,
XNUmixed functions can be effectively laid out. As an
example, we show the implementation of function Y =
(A XOR B)C in both static-CMOS logic style [Fig. 8(b)]
and ambipolar logic style [Fig. 8(a)]. From the figure, we
can observe that the number of transistors is reduced by
half with ambipolar logic style when compared with CMOS
implementation. We incorporate transistor pairs only for the
XOR combination of the logic, where the PGs are biased
to input logic signals (B and B̄). For the variables, which
are negative unate (e.g., logic function Y is negative unate
in C), the PGs are connected to the Vdd and Gnd, as shown
in Fig. 8(a).

IV. LAYOUT TECHNIQUE FOR AMBIPOLAR

LOGIC GATES

One of the caveats of ambipolar design style is the
increase in the intracell routing complexity. Since every tran-
sistor has two gates to connect to the logic signals, care
should be taken to mitigate the gate-level routing complex-
ity. In this section, we propose a novel layout technique
for ambipolar design style. In addition to transistor pairing,
we also leverage on transistor grouping, thereby obtaining
layouts that are compact, regular, and easy to route. We start
with simple examples of 2-input logic gates and then pro-
pose a generic procedure for arbitrary complex XNUmixed
gates.

A. Layout Techniques for a 2-Input Unate and
Binate Functions

From Section III, we have seen that negative unate logic
gates (e.g., NAND, NOR, INV,...) can be obtained by biasing
the PGs of the PUN to Gnd and PDN to Vdd. Hence, all the
transistors in the PUN (and PDN) can be grouped together
(i.e., PGs of the stacked transistors are connected together),
thereby forming one PG for each PUN and PDN. With fixed
biasing for the PGs, CMOS layout techniques with optimal
transistor chaining [7], [8] can be employed to obtain area-
efficient layout. The transistors are placed in two parallel rows
where all transistors in the PUN are in one row, while all the
transistors in the PDN are in the other. The main objective
is to place transistors in such a way that the gate signals are
aligned and D/S regions of adjacent transistors are abutted.
Fig. 9(a) shows an example of a 2-input NAND gate with an
Euler path approach [6]. From the Euler path, the optimal
transistor alignment chain is obtained.

On the other hand, for positive unate logic gates (e.g., AND,
OR, BUF,...), one of the techniques shown in Fig. 6(c)–(e) can
be employed. In all the three cases, we can observe that the
transistors in the PUN and PDN can be grouped together and
tied to either Vdd or Gnd. The layout technique for unate logic
gates is similar to CMOS style.

The main application of ambipolar devices is in imple-
menting binate logic functions. From Section III, we have
seen that a 2-input XOR gate can be constructed using
only four transistors. Fig. 9(b) shows an example of a
2-input XOR gate along with the two possible dumbell–stick
representations. In case-1, we illustrate CMOS style layout
where the transistors in PUN and PDN network are paired
by realizing Euler paths in the respective networks. It has
to be noted that the PGs in the PUN (and PDN) cannot be
grouped, unlike in the case of unate logic gates. Since the
adjacent transistors cannot be grouped, extra routing effort
is needed to connect PGs together [case-1 of Fig. 9(b)].
An efficient implementation is shown in the case-2 of Fig. 9(b),
where polarity gates are grouped together irrespective of the
transistor being a part of PUN or PDN. The circuit is no more
seen as PUN and PDN, but partitioned based on the signals
assigned to the PGs. From the DSD, we can observe that the
PUN and PDN are placed next to each other. Unlike CMOS,
DG-SiNWFET technology does not impose any process chal-
lenges (which lead to design rules) when placing p-type next
to n-type transistors.

B. Layout Techniques for XNUmixed Function

Several novel circuit designs and architectures have been
proposed that leverage upon ambipolar logic with embedded
XOR functionality [20]–[22]. De Marchi et al. [22] have
presented the idea of regular logic fabrics and evaluated
various complex gates (combination of AND–XOR–OR–INV)
based on the number of subfunctions each gate can implement.
A key observation is that 2-input XOR/XNOR gates form
the main building block of most logic cells, especially used
in data-path design and within arithmetic building blocks.
Recall that XNUmixed functions are conjunctions/disjunction
of XOR/XNOR with negative unate functions.

2108 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

Fig. 9. DSD for 2-input logic gates. (a) NAND gate with the PGs grouped together in the pull-up (pull-down) and connected to GND (VDD). (b) XOR
gate—(case-1) conventional approach by placing the transistors in the pull-up (pull-down) together so that they share the diffusion contacts (case-2) efficient
layout technique where the transistors are grouped together, irrespective if they are located in the pull-up or pull-down networks, as well as share the same
diffusion contacts.

Fig. 10. Transistor ordering for XNUmixed logic function. (a) Binate logic
part placed close to Vdd and Gnd terminals. (b) Binate logic part placed close
to the output (Y).

From the example of XOR2 [Fig. 9(b)], we observe that
efficient layouts can be obtained by placing the transistors
together with similar PGs. To facilitate grouping, a specific
transistor ordering is needed for XNUmixed logic functions.
Fig. 10 shows two different transistor arrangements for the
function Y = (A XOR B)C . In Fig. 10(a), the binate logic part
(A XOR B) is realized close to the Gnd and Vdd terminals,
whereas, in Fig. 10(b) it is realized close to the output (Y)
terminal. From the DSDs of the two cases, we can infer
that the circuit implementation in Fig. 10(b) is efficient when
compared with the one in Fig. 10(a), as it reduces the routing
needed by the PGs. As a rule of thumb, in the case of
XNUmixed logic gates, placing the binate logic close to the
output node leads to efficient layout.

C. Procedure for Generating Layout of
a XNUmixed Logic Gate

In this section, we present a generic procedure to generate
layout for XNUmixed functions. Our objective is to achieve a
regular layout with:

1) transistor pairs aligned to give the least number of
breaks in the active regions, which lead to realizing

compact layouts (like in CMOS and nMOS
logic);

2) the least number of transistor groups, to reduce intracell
routing complexity.

It has to be noted that if we refer to the first goal only,
procedures for CMOS layout [6], [7] are widely applicable.
In particular, the algorithm in [7] gives near-optimum solu-
tion with short computing time. In our case, it is important
to address both aforementioned goals, and thus we adapt
Hwang’s algorithm, which we summarize below and exemplify
in action. We refer the reader to [7] for details.

Our procedure, to meet both objectives, consists of six steps:
1) reordering; 2) grouping; 3) pairing; 4) generating unate- and
binate-bipartite graphs; 5) chaining; and 6) DSD construction.
Input to the procedure is a XNUmixed circuit schematic with a
complementary logic style (i.e., equal number of transistors in
the pull-up and pull-down network with dual topology graphs).

The first step is transistor reordering, with the binate inputs
placed close to the output node as explained in Fig. 10.
By means of transistor grouping, various subgraphs are formed
by clustering the transistors sharing similar PGs. We model
the circuit schematic as a list of graphs G = {GPG−1,
GPG−2,…GPG−i , . . .}, where GPG−i = (V , E), in which
V represent the nodes (S/D contacts of the transistors) and
E represent the edges (CG of αt) of all the transistors
whose PG is connected to i . Applying transistor grouping
to circuit schematic shown in Fig. 11(a), we obtain G =
{GPG−v, GPG−g, GPG−B, GPG−B̄} for the four transistor
groups with PGs connected to Vdd, Gnd, B, and B̄ , respec-
tively. As an example, we list the graph related to the tran-
sistors whose PGs are connected to B, GPG−B = {[A, Ā],
[(a3, a4), (b2, b1)]}.

Transistor pairing is performed next. In this step transistors
with similar CGs are paired together. For complementary logic
style, each pair consists of a transistor in the PUN and PDN.
This step ensures the control gates are well aligned with
minimum routing resources.

We differentiate from Hwang’s approach by generating
separate bipartite graphs for the unate and binate parts of
the function. The unate and binate logic part of the cir-
cuits can be determined from the transistor-grouping step.
We represent the possible abutments between the dual graphs
as a bipartite graph Gx . An unate–bipartite graph (Gu)

BOBBA AND DE MICHELI: LAYOUT TECHNIQUE FOR DG-SiNWFETs WITH AN EFFICIENT SoTs ARCHITECTURE 2109

Fig. 11. Logic-to-layout procedure. (a) Complex logic function. (b) Separate bipartite graph representation for binate and unate part of the logic. (c) Search
tree of unate-bipartite graph in (b) along with the matrix representation of the nodes of the tree.

corresponds to the dual subgraphs GPG−v and GPG−g,
whereas, a binate–bipartite graphs (Gb) corresponds to the
dual subgraphs GPG−B, and GPG−(B̄). In the bipartite graph,
nodes with only one transistor contribute to the list of essential
abutments (e.g., nodes a3 and b1 of the graphs Gu and Gb).
The main objective of this step is to find a unique transistor
chain for the PUN and PDN with minimum number of breaks
in the adjacent PGs and the diffusion area.

A pseudocode description of the proposed procedure is
shown in Fig. 12. In the algorithm, Bb and Bu represents the
set of essential abutments of the bipartite graphs Gb and Gu ,
respectively. Since the XOR2 part of the logic constitutes
mainly for Gb, finding the essential abutments (Bb) is simple,
as shown in Fig. 11(b). Once we have the set of essential
abutments from the binate logic part of the circuits, we
continue to find the essential edges from the remaining part
of the circuit. Optimal transistor chaining is obtained by a

Fig. 12. Procedure for layout generation of ambipolar complex logic gate.

depth-first search on Gu , while Bu is set to Bb. Fig. 11(c)
shows how the procedure works on the example circuit. The
search process starts from the root, where Gu1 = Gu and
B1 = {a3, b1, e(Ā)A}. From Gu [Fig. 11(b)], we see b1 as

2110 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

Fig. 13. (a) Graphical representation of transistor chains derived from Fig. 11(c). (b) DSD of the circuit.

an essential edge, hence we form an edge set, which consists
of e43

EG and its mutually exclusive member, e33
EG. Traversing to

the left branch of the search tree node, Gu1, we add e43
EG to

Bu1 to form a new set Bu2. Similarly, Gu2 is derived from
Gu1 by removing edge set corresponding to e43

EG. The matrix
representations of Gui and Bui at various nodes of the search
tree are shown in Fig. 11(c). The leaves of the search represent
possible transistor chains (Si).

A graphical representation of the optimum transistor chain
for the example is shown in Fig. 13(a). It can be noticed that,
unlike in CMOS layouts, the Euler path spans both the PUN
and PDN for obtaining minimum number of breaks in the
diffusion region as well as PGs. Fig. 13(b) shows the DSD of
the circuit.

D. Relevant Examples

We show here symbolic layouts for DG-SiNWFETs inspired
by the literature. Fig. 14(a) shows an efficient reconfig-
urable logic block (F1) with ambipolar transistors, which can
implement 12 different subfunctions [22]. Once the DSD is
extracted from optimal transistor ordering, the final layout
of the circuit is done by considering the sizing of the tran-
sistors for uniform delay caused by the transistors in the
PUN and PDN.

In Fig. 14(b), we show the carry-out logic implemen-
tation with ambipolar logic. An equivalent implementation
with conventional static CMOS logic requires 22 transis-
tors, whereas with ambipolar logic we need 16 transistors
(10 shown in the figure along with 3 inverters). By applying
the layout procedure we obtain four transistor chains,
thereby leading to a break in the diffusion region of
the DSD.

V. SEA-OF-TILES

Regular layout fabrics have an advantage of higher yield
as they maximize the layout manufacturability at advanced
technology nodes [9]. Various regular fabrics have been pro-
posed throughout the evolution of semiconductor industry,
where some recent approaches are discussed in [10]–[12].

Fig. 14. Examples of complex gates with ambipolar logic. (a) Reconfigurable
logic block [3]. (b) Carry out (Cout) function of a full-adder.

With the advent via programmable gate arrays [11] and
logic-bricks [12], the performance gap is reduced. On the
other hand, strict design rules, at 22-nm technology node and
beyond, has led to cell layouts with arrays of gates with a
constant gate pitch, which resemble a sea-of-gates layout style.
In this paper, we propose a layout fabric architecture called
SoTs, for DG-SiNW FETs. In this section, we consider a
SoT comprising of a regular set of tiles, and we investigate
their effectiveness.

Logic tiles for DG transistors are designed by leveraging
both transistor pairing and grouping, thereby leading to an
efficient building block for ambipolar circuits. The layout
techniques presented in Section IV are employed in the
technology-mapping phase, where various logic functions are
physically synthesized onto SoT fabric. By technology map-
ping onto SoT architecture, with different tiles, we investigated
an optimal tile by benchmarking various circuits. We show

BOBBA AND DE MICHELI: LAYOUT TECHNIQUE FOR DG-SiNWFETs WITH AN EFFICIENT SoTs ARCHITECTURE 2111

Fig. 15. DSDs of various logic tiles considered for SoTs. (a) TileG1.
(b) TileG2. (c) TileG1h2. (d) TileG3.

how tiles form the basic building block for various novel
design styles, which are unique to transistors with controllable
polarity [21], [22].

A. Logic Tiles are Building Blocks

We define a logic tile as an array of transistors, which
are paired and grouped together. By grouping the PGs of the
adjacent transistors, we reduce the number of input pins of the
tile. In addition, the technology facilitates in realizing these
tiles with a high yield as the silicon nanowires are fabricated
in groups. In this paper, we limit our study to a maximum of
three transistors in series for noise margin reasons. However,
the proposed design methodology can be employed to tiles
with higher number of series connected transistors.

A TileGn is an array of n transistor-pairs grouped
together. Fig. 15 shows four tiles that we consider for the
SoTs architecture. Any Boolean logic function can be mapped
onto an array of tiles. TileG1 [Fig. 15(a)] is the simplest tile
with only one pair of transistors. Mapping a generic logic
function onto SoT of TileG1, leads to larger layouts with a
large number of diffusion breaks and increases in the number
of interconnections per tile. TileG2 and TileG3 include two and
three transistor pairs, respectively, grouped together. In the
example of carry-out logic gate of a full-adder (Fig. 14),
TileG2 and TileG3 are employed to realize the gate. Similarly
in the case of NAND and XOR (Fig. 9) TileG2 forms the basic
building block. A hybrid tile TileG1h2 is a combination of
TileG1 and TileG2, whose PGs are not connected. This gives
the flexibility of utilizing a part of a tile, when remained
unmapped, by functions with low area utilization. For example,
a NAND2 gate when mapped onto a TileG1h2 [Fig. 15(c)]
requires only the segment of a tile with gates G1 and G2.
The unmapped part of the tile with gate G3 can be employed
either to map an inverter or to increase the drive strength of
the gate.

The TileG2, shown in Fig. 15(b), can be configured to
various logic functions by connecting the nodes (n1–n6) and
gates (g1, g2, G1, and G2) to appropriate inputs. Table II lists
various logic functions that can be realized with a sin-
gle TileG2. However, any complex logic functions can be
obtained by considering an array of TileG2. In Table III,
we report various logic gates that can be configured with
the four tiles we have considered. The number of tiles

TABLE II

VARIOUS LOGIC GATES THAT CAN BE REALIZED

BY CONFIGURING THE TILEG2

TABLE III

VARIOUS LOGIC GATES THAT CAN BE MAPPED BY CONFIGURING

THE CONTACTS AND THE INPUT SIGNALS OF THE

FOUR TILES (#N—NUMBER OF TILES,

AND #UF— UTILIZATION FACTOR)

required for each gate and their respective area utilization is
also presented. It has to be noted that we also consider extra
logic needed for generating inverted inputs. For example the
2-input XOR gate, shown in case-2 of Fig. 9(b), is realized
with one TileG2 as we assume the availability of complimented
input signals. In our technology mapping, we assume single-
rail logic; hence we need to generate the complimented signals
when needed. In the case of XOR gate, we take an extra
TileG2 for generating the two negated input signals (Ā and B̄).
In the case of hybrid tile, TileG1h2, the number of tiles reported
(#N) is a noninteger value as we employ the unmapped part
of the tile to a different logic. For instance in the case of
mapping an inverter (INV) onto a TileG1h2, only the part
of tile with a single transistor pair if employed thereby
yielding 100% active area utilization. The unmapped part of
this tile can be employed to realize other logic functions
(e.g., NAND2 or NOR2).

B. Optimal Tiles With Respect to Active Area

In this paper, we compare four tiles for an efficient imple-
mentation of the SoT architecture. Our main objective is to
find the best tile, which gives highest area utilization for
various benchmarks. Though the techniques presented in this

2112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

Fig. 16. Design flow for finding the best tile for SoT.

paper are linked to the ambipolar SiNWFETs, the concepts can
be extended to all the technologies contending for ambipolar
logic circuits with DGs transistors.

Fig. 16 shows our design flow. As a first step, for every
tile (TileGi) we generate a list of logic gates that can be
mapped onto it (TileGi.lib) and their respective utilization
factor (TileGi.util). Utilization factor takes only the active area
into account. For example NAND2 when mapped onto a TileG1
has a utilization factor of 0.66, whereas when mapped onto
a TileG2 it has a utilization factor of 1. It has to be noted
that the number of logic gates that can be mapped to different
tiles vary. For technology mapping, we used Synopsys design
compiler [26] and ABC [27] synthesis tools to benchmark
various circuits.

Table IV summarizes the results of various benchmark cir-
cuits after technology mapping. We report total area utilization
for each benchmark when mapped onto four different tiles
(TileG1, TileG2, TileG1h2, and TileG3). Technology mapping
only uses the cells that are associated with each tile (shown
in Table III). Both the synthesis tools were run with different
delay constraints. Area utilization for a benchmark circuit is
calculated from the total count of each cell and their respective
utilization factors.

Examining the results for the four logic tiles, on an
average across various benchmark circuits, we see that SoT
with tiles TileG1h2 (and, TileG2) have a higher area effi-
ciency, 16% (4%) and 10% (8%), when compared with SoT
with TileG1 and TileG3, respectively. Though TileG3 and
TileG1h2 have the same number of transistors per tile, the
hybrid tile outperforms TileG3 with 10% improvement in area
efficiency.

C. Case Study: Mapping Various Blocks Onto SoT

Embedded XOR functionality is one of the key features
of ambipolar logic gates. With a transmission-gate transistor
structure [20], a 2-input and a 3-input XOR/XNOR gate can
be constructed using only four transistors. In Fig. 17, we

TABLE IV

NORMALIZED AREA OF VARIOUS BENCHMARKS WHEN MAPPED

ONTO A SoT WITH TILEG1, TILEG2, TILEG1h2, AND TILEG3

USING DESIGN COMPILER [26] AND

ABC SYNTHESIS [27]

Fig. 17. Schematic of a 2-input and 3-input XOR along with the mapping
onto a TileG2.1.

Fig. 18. Full-adder mapped onto a SoTs with the hybrid tile TileG1h2 as
the basic building block.

show how TileG2 can be configured to be XOR2 and XOR3 by
connecting the nodes (n1, n3) and (n2, n4) to the respective
signals shown in the figure. It has to be noted that extra
tiles are needed to generate the complemented input signals.
In Fig. 18, we show DSDs of both the sum (Sum) and carry-
out (Cout) logic of a full-adder, mapped onto a SoT (an array
of n × n) with TileG1h2. The layout synthesis procedure,
explained in Section IV-C, is applied to obtain the optimal
transistor chaining of the Cout logic. Both the Sum and
Cout logic blocks are mapped onto three adjacent tiles of
the n × n array. Tile-(i, j) in the figure refers to the location
of the tile in i th row and j th column. The Sum, which is
a 3-input XOR of inputs A, B, and C, is mapped onto a
Tile-(i + 1, j) of the entire array. The unmapped part of
the Tile-(i + 1, j) can be employed for realizing either an

BOBBA AND DE MICHELI: LAYOUT TECHNIQUE FOR DG-SiNWFETs WITH AN EFFICIENT SoTs ARCHITECTURE 2113

Fig. 19. Reconfigurable fabrics mapped onto SoT with TileG2. (a) Regular
computation fabric [3]. (b) Universal logic module (3,2-ULM) [21].

Fig. 20. Matching compatibility graph for 3-input Boolean space.

inverter logic gate or can be a part of the neighboring logic
gate. Similarly the Cout is mapped onto two tiles Tile-(i, j)
and Tile-(i, j + 1).

Several novel reconfigurable blocks have been proposed
that leverage upon embedded XOR functionality of ambipo-
lar logic. In Fig. 19, we demonstrate how a computational
fabric (F1) [22] and a universal logic module (3,2-ULM) [21]
can be mapped onto a SoT of TileG2. Inverted inputs, for a
2-input XOR functions, are generated with a single tile
(Tile-(i, j) for 3,2-ULM and Tile-(i, j+2) for F1).

D. Case Study: Mapping 3-Input Boolean
Functions Onto SoTG2

In this section, we present physical synthesis of all 3-input
Boolean functions onto SoT with TileG2. Fig. 20 shows
a matching compatibility graph for 3-input Boolean
space [13]. Each vertex Vi in the graph, is annotated
with one function Fi , which belongs to the corresponding
NPN-equivalence class [14], [28] of Vi . All the functions (Fi),
listed in Table V are representative of a NPN-equivalence

TABLE V

NPN-EQUIVALENT FUNCTIONS, OF A 3-INPUT BOOLEAN SPACE,

IMPLEMENTED IN STATIC CMOS AND AMBIPOLAR LOGIC

STYLES. TYPE OF THE FUNCTION CORRESPONDS TO

UNATE (U), BINATE (B), AND MIXED (XNU)

Fig. 21. Layout synthesis for a 3-input OR gate (F1 equivalent).

class. In other words, all (e.g., 256) 3-input functions can
be obtained from the 13 representative functions (in Fig. 20)
by input complementation and/or permutation and/or output
complementation. The type of the function along with
the number of transistors needed for implementing in
static CMOS and ambipolar logic styles is listed in Table V.
Type of the function refers to it being unate (U), binate (B),
mixed (M) and mixed with embedded XOR/XNOR (XNU).
We compare the transistor count for realizing the functions
with both static CMOS and ambipolar logic implementation.
We do not consider the inverters needed for input and
output negations, as they are similar for both the logic
styles. From the table, we can infer that ambipolar logic
style is favorable for 30% of the total NPN-equivalent
functions, which have embedded XOR/XNOR (F3, F7,
F12, and F13).

Layout synthesis technique, presented in Section IV, is
applied to the functions listed in Table V for mapping
them onto a SoT of TileG2. In the case of unate functions,
the layout technique is similar to CMOS style. As a
generic example for unate functions, we map a 3-input
OR function onto a pair of adjacent tiles (Fig. 21).
Mapping of all the representative functions with embedded
XOR/XNOR (F3, F7, F12, and F13) is shown in
Figs. 9(b) and 22 (for F12).

2114 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 10, OCTOBER 2015

Fig. 22. Layout synthesis for all the 3-input binate functions (F3, F7, and F13).

VI. CONCLUSION

The DG-SiNWFETs, with an extra PG, are promising
contenders for efficient implementation of ambipolar logic.
In this paper, we present an approach for designing an efficient
regular layout fabric called SoT. To mitigate gate-level routing
congestion caused by the extra PG, we propose a modeling
technique based on DSDs and a topologic layout synthe-
sis method for realizing Boolean functions with embedded
XOR/XNOR functionality. By carrying technology mapping on
SoT fabric, we show that tiles TileG1h2 and TileG2, on an
average, outperform the one with TileG1 and TileG3 by 16%
and 10% in area utilization, respectively. Finally, we present
various case studies suggesting TileG1h2 and TileG2 as the
basic building block for future ambipolar logic circuits.

ACKNOWLEDGMENT

The authors would like to thank Prof. Y. Leblebici,
P.-E. Gaillardon, L. G. Amaru, and J. Zhang for their helpful;
discussions. They would also like to thank M. De Marchi and
D. Sacchetto for their insight on DG-SiNWFET technology.

REFERENCES

[1] S. D. Suk et al., “High performance 5 nm radius twin silicon nanowire
MOSFET (TSNWFET): Fabrication on bulk Si wafer, characteristics,
and reliability,” in Proc. IEEE IEDM, Dec. 2005, pp. 717–720.

[2] R. M. Y. Ng, T. Wang, and M. Chan, “A new approach to fabricate
vertically stacked single-crystalline silicon nanowires,” in Proc. IEEE
Conf. EDSSC, Dec. 2007, pp. 133–136.

[3] D. Sacchetto, M. H. Ben-Jamaa, G. De Micheli, and Y. Leblebici,
“Fabrication and characterization of vertically stacked gate-all-around
Si nanowire FET arrays,” in Proc. ESSDERC, Sep. 2009, pp. 245–248.

[4] M. H. Ben Jamaa, D. Atienza, Y. Leblebici, and G. De Micheli,
“Programmable logic circuits based on ambipolar CNFET,” in Proc.
45th ACM/IEEE DAC, Jun. 2008, pp. 339–340.

[5] M. De Marchi et al., “Polarity control in double-gate, gate-all-around
vertically stacked silicon nanowire FETs,” in Proc. IEEE Int. Electron
Devices Meeting (IEDM), Dec. 2012, pp. 8.4.1–8.4.4.

[6] T. Uehara and W. M. Vancleemput, “Optimal layout of CMOS functional
arrays,” IEEE Trans. Comput., vol. C-30, no. 5, pp. 305–312, May 1981.

[7] C.-Y. Hwang, Y.-C. Hsieh, Y.-L. Lin, and Y.-C. Hsu, “A fast transistor-
chaining algorithm for CMOS cell layout,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 9, no. 7, pp. 781–786, Jul. 1990.

[8] R. L. Maziasz and J. P. Hayes, “Layout optimization of static CMOS
functional cells,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 9, no. 7, pp. 708–719, Jul. 1990.

[9] J. Tejas et al., “Maximization of layout printability/manufacturability
by extreme layout regularity,” J. Micro/Nanolithogr., vol. 6, no. 3,
pp. 0310111–0310115, Jul./Sep. 2007.

[10] Y.-W. Lin, M. Marek-Sadowska, and W. Maly, “Transistor-level layout
of high-density regular circuits,” in Proc. ISPD, 2009, pp. 83–90.

[11] Y. Ran and M. Marek-Sadowska, “Designing via-configurable logic
blocks for regular fabric,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 1, pp. 1–14, Jan. 2006.

[12] B. Taylor and L. Pileggi, “Exact combinatorial optimization methods for
physical design of regular logic bricks,” in Proc. 44th ACM/IEEE DAC,
Jun. 2007, pp. 344–349.

[13] F. Mailhot, “Technology mapping for VLSI circuits,” Dept. Comput.
Syst. Lab., Stanford Univ., Stanford, CA, USA, Tech. Rep. CSL-TR-94-
646, Dec. 1994.

[14] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic. New York, NY, USA: Academic, 1985.

[15] S. Bobba, M. De Marchi, Y. Leblebici, and G. De Micheli, “Physical
synthesis onto a Sea-of-Tiles with double-gate silicon nanowire transis-
tors,” in Proc. 49th Design Autom. Conf. (DAC), San Francisco, CA,
USA, Jun. 2012, pp. 42–47.

[16] A. Colli, S. Pisana, A. Fasoli, J. Robertson, and A. C. Ferrari, “Electronic
transport in ambipolar silicon nanowires,” Phys. Status Solidi B, vol. 244,
no. 11, pp. 4161–4164, 2007.

[17] Y.-M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, “High-performance
carbon nanotube field-effect transistor with tunable polarities,” IEEE
Trans. Nanotechnol., vol. 4, no. 5, pp. 481–489, Sep. 2005.

[18] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater.,
vol. 6, no. 3, pp. 183–191, 2007.

[19] I. O’Connor, J. Liu, D. Navarro, I. Hassoune, S. Burignat, and F. Gaffiot,
“Ultra-fine grain reconfigurability using CNTFETs,” in Proc. 14th IEEE
ICECS, Dec. 2007, pp. 194–197.

BOBBA AND DE MICHELI: LAYOUT TECHNIQUE FOR DG-SiNWFETs WITH AN EFFICIENT SoTs ARCHITECTURE 2115

[20] M. H. Ben Jamaa, K. Mohanram, and G. De Micheli, “Novel library
of logic gates with ambipolar CNTFETs: Opportunities for multi-level
logic synthesis,” in Proc. IEEE Conf. DATE, Apr. 2009, pp. 622–627.

[21] A. Zukoski, X. Yang, and K. Mohanram, “Universal logic modules
based on double-gate carbon nanotube transistors,” in Proc. 48th
ACM/EDAC/IEEE DAC, Jun. 2011, pp. 884–889.

[22] M. De Marchi, S. Bobba, M. H. Ben Jamaa, and G. De Micheli,
“Synthesis of regular computational fabrics with ambipolar CNTFET
technology,” in Proc. 17th IEEE ICECS, Dec. 2010, pp. 70–73.

[23] C. Mead and L. Convey, Introduction to VLSI Systems. Reading, MA,
USA: Addison-Wesley, 1979.

[24] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and
G. D. Hachtel, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA, USA: Kluwer, 1984.

[25] R. H. Katz, Contemporary Logic Design. Redwood City, CA, USA:
Benjamin Cummings, 1994.

[26] (2000). Synopsys Design Compiler. [Online]. Available: http://www.
synopsys.com/Tools/Implementation/RTLSynthesis/DCGraphical/Pages/
default.aspx

[27] ABC: A System for Sequential Synthesis and Verification. [Online].
Available: http://www.eecs.berkeley.edu/∼alanmi/abc/, accessed 2012.

[28] S. Muroga, Threshold Logic and Its Applications. New York, NY, USA:
Wiley, 1971.

Shashikanth Bobba received the Ph.D. degree in
developing new design methodologies and CAD
tools for emerging nanotechnologies from the École
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland.

He was a Visiting Researcher with Stanford Uni-
versity, Stanford, CA, USA, and CEA-LETI, Greno-
ble, France. He was with Agilent Technologies,
Ghent, Belgium; Ericsson, Gothenburg, Sweden; and
Telecom Italia, Turin, Italy. He is currently the
Chief Technology Officer of 3D-EDA, Monolithic

3-D Inc., where he leads the Research Team developing EDA software for
designing 3-D integrated circuits with monolithic 3-D technology. His research
has led to over 25 international publications in leading conferences/journals,
and holds three patents.

Dr. Bobba was a recipient of the Best Paper Award at the IEEE/ACM
Nanoarch in 2012.

Giovanni De Micheli received the Nuclear Engineer
degree from the Politecnico di Milano, Milan, Italy,
in 1979 and the M.S. and Ph.D. degrees in electrical
engineering and computer science from the Univer-
sity of California at Berkeley, Berkeley, CA, USA,
in 1980 and 1983, respectively.

He was a Professor of Electrical Engineering with
Stanford University, Stanford, CA, USA. He is cur-
rently a Professor and the Director of the Institute
of Electrical Engineering and the Integrated Systems
Centre with the École Polytechnique Fédérale de

Lausanne, Lausanne, Switzerland. He is also a Program Leader of the Nano-
Tera.ch Program. He is interested in heterogeneous platform design, including
electrical components and biosensors, and data processing of biomedical
information. He authored a book entitled Synthesis and Optimization of Digital
Circuits (New York, NY, USA: McGraw-Hill, 1994), and has coauthored and
coedited eight other books, and over 600 technical articles. His h-index citation
is 84 according to the Google Scholar. His current research interests include
several aspects of design technologies for integrated circuits and systems,
such as synthesis for emerging technologies, networks-on-a-chips, and 3-D
integration.

Prof. De Micheli is a Fellow of the Association for Computing Machinery
and a member of the Academia Europaea. He is also a member of the
Scientific Advisory Board of imec, Leuven, Belgium; CfAED, Dresden,
Germany; and STMicroelectronics, Geneva, Switzerland. He was the Chair of
several conferences, including DATE in 2010, pHealth in 2006, VLSI SOC in
2006, DAC in 2000, and the International Conference on Computer Design
in 1989. He has served IEEE in several capacities, namely, the Division
1 Director from 2008 to 2009, the Co-Founder and the President Elect of
the IEEE Council on Electronic Design Automation from 2005 to 2007,
the President of the IEEE CAS Society in 2003, and the Editor-in-Chief of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS from 1997 to 2001. He was a recipient of the
IEEE Circuits and Systems Society (CAS) Mac Van Valkenburg Award for
contributions to theory, practice, and experimentation in design methods and
tools in 2012, the IEEE Emanuel Piore Award for contributions to computer-
aided synthesis of digital systems in 2003, the Golden Jubilee Medal for
outstanding contributions to the IEEE CAS Society in 2000, the D. Pederson
Award for the Best Paper on the IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS in 1987, and
several best paper awards, including the Design Automation Conference
(DAC) in 1983 and 1993, the Design Automation and Test in Europe (DATE)
in 2005, and Nanoarch in 2010 and 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

