Majority Logic Representation and Satisfiability

Luca Amaru, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland

Abstract—Majority logic is a powerful generalization of com-
mon AND/OR logic. Original two-level and multi-level logic
networks can use majority operators as primitive connective, in
place of AND/ORs. In such a way, Boolean functions have novel
means for compact representation and efficient manipulation.
In this paper, we focus on two-level logic representation. We
define a Majority Normal Form (MNF), as an alternative to
traditional Disjunctive Normal Form (DNF) and Conjunctive
Normal Form (CNF). After a brief investigation on the MNF
expressive power, we study the problem of MNF-SATisfiability
(MNF-SAT). We prove that MNF-SAT is NP-complete, as its
CNF-SAT counterpart. However, we show practical restrictions
on MNF formula whose satisfiability can be decided in polynomial
time. We finally propose a simple algorithm to solve MNF-
SAT, based on the intrinsic functionality of two-level majority
logic. Although an automated MNF-SAT solver is still under
construction, manual examples already demonstrate promising
opportunities.

I. INTRODUCTION

Boolean logic is usually defined in terms of primitive AND
(N), OR (V) and INV (') operators. Such formulation acts
in accordance with the natural way logic designers interpret
Boolean functions. For this reason, it emerged as a standard
in the field. However, no evidence is provided that this
formulation, or another, has the most efficient set of primitives
for Boolean logic. In computer science, the efficiency of
Boolean logic applications is measured by different metrics
such as (i) the result quality, for example the performance
of an automatically synthesized digital circuit, (ii) the runtime
and (iii) the memory footprint of a software tool. With the aim
to optimize them, the accordance to a specific logic model is
no longer important. Indeed, the key is the expressive power of
the set of primitives provided to the computer, that determines
the capability to reach better metrics. Recently, majority logic
has shown the opportunity to enhance the efficiency of multi-
level logic optimization [1], [2] and reversible quantum logic
synthesis [3].

In this paper, we extend the intuition provided in [2]
to two-level logic and Boolean satisfiability. We provide
an alternative two-level representation of Boolean functions
based entirely on majority and complementation operators.
We call it Majority Normal Form (MNF), using a similar
notation as for traditional Disjunctive Normal Form (DNF)
and Conjunctive Normal Form (CNF) [4]. The MNF can
represent any Boolean function, therefore being universal, as
CNF and DNF. We investigate then the satisfiability of MNF
formula (MNF-SAT). In its most general definition, MNF-SAT
is NP-complete, as its CNF-SAT counterpart. However, there
exist interesting restrictions of MNF whose satisfiability can
instead be decided in polynomial time. We finally propose

an algorithm to solve MNF-SAT exploiting the nature of
two-level majority logic. Even though an automated solver is
still under construction, manual examples on such algorithm
already demonstrate promising opportunities.

The study of majority logic is also motivated by the advance
of emerging technologies. In the quest for increasing computa-
tional performance per area unit [15], majority/minority logic
gates are natively implemented in different nanotechnologies
[16]-[18]. In this scenario, a logic model based on majority
primitives unlocks the full potential led by nanodevices. In this
paper, we focus on abstract logic applications, to first showcase
the intrinsic power of majority logic.

The remainder of this paper is organized as follows. Section
I provides relevant background and notations. In Section
III, the two-level Majority Normal Form is introduced and
its features investigated. Section IV studies the satisfiability
of MNF formula, from a theoretical perspective. Section V
proposes a simple algorithm to solve MNF-SAT exploiting
the intrinsic functionality of two-level majority logic. Section
VI discusses future research directions. Section VII concludes
the paper.

II. BACKGROUND AND MOTIVATION

This section presents a brief background on two-level logic
representation and Boolean satisfiability. Notations and defi-
nitions used in the rest of this paper are also introduced.

A. Notations and Definitions

In the Boolean domain, all variables belong to B = {0, 1}.
The on-set of a Boolean function is the set of input patterns
evaluating the function to logic 1. Similarly, the off-set of a
Boolean function is the set of input patterns evaluating the
function to logic 0. Literals are variables and complemented
(') variables. Terms are conjunctions (A) of literals. Clauses
are disjunctions (V) of literals. A majority function of n (odd)
literals returns the Boolean value most frequently appearent
among the inputs. In the context of this paper, we refer to
a threshold function as to a majority function with repeated
literals. Note that this is a restriction of the more general
definition of threshold functions [5].

B. Two-level Logic Representation

Traditional two-level logic representation combines terms
and clauses to describe Boolean functions. A Conjunctive
Normal Form (CNF) is a conjunction of clauses. A Disjunctive
Normal Form (DNF) is disjunctions of terms. Both CNF and
DNF are universal logic representation form, i.e., any Boolean
function can be represented by them. For more information
about logic representation forms, we refer the reader to [5].

C. Satisfiability

The Boolean SATisfiability problem (SAT) consists of deter-
mining whether there exists or not an assignment of variables
so that a Boolean formula evaluates to true. SAT is a difficult
problem for CNF formula. Indeed, CNF-SAT was the first
known NP-complete problem [6]. Instead, DNF-SAT is trivial
to solve [7]. Unfortunately, converting a CNF into a DNF,
or viceversa, may require an exponential number of opera-
tions. Some restrictions of CNF-SAT, e.g., 2-SAT, Horn-SAT,
XOR-SAT, etc., can be solved in polynomial time. For more
information about SAT, we refer the reader to [7].

III. TWO-LEVEL MAJORITY REPRESENTATION FORM

In this section, we present a two-level majority logic repre-
sentation form as extension to traditional two-level conjunctive
and disjunctive normal forms.

A. Majority Normal Form Definition and Properties

Both CNF and DNF formula require at least two Boolean
operators, A and V, apart from the complementation. Inter-
estingly enough, the majority includes both A and V into a
unique operator. This feature is formalized in the following.

Property The n-input (odd) majority operator filled with
[n/2] logic zeros collapses into an [n/2]-input A operator.
Conversely, if filled with |n/2] logic ones it collapse into an
[n/2]-input V operator.

Example Consider the function M (a, b, ¢,0,0). Owing to the
majority functionality, to evaluate such function to logic 1 all
variables (a,b,c) must be logic 1. This is because already 2
inputs over 5 are fixed to logic 0, which is close to the majority
threshold. Indeed, if even only one variable among (a, b, c) is
logic 0, the function evaluates to 0. This is equivalent to the
function a A b A ¢. Using a similar reasoning, M (a, b, ¢, 1,1)
is functionally equivalent to a V bV c.

This remarkable property motivates us to define a novel
two-level logic representation form.

Definition A Majority Normal Form (MNF) is a majority of
majorities, where majorities are fed with literals, O or 1.

Example An MNF is M(M/(a,b,1), M(a,b,c,0,¢),d).
Another MNF, for a different Boolean function,
is M(a,0,¢,M(a,b',c),(a’,1,¢)). The expression
M(M(M(a,b,c),d,e),e, f,g,h) is not an MNF as it
contains three levels of majority operators, while MNF is a
two-level representation form.

Following its definition, MNF includes also CNF and DNF.
Property Any CNF (DNF) is structurally equivalent to an
MNF, where the n-input conjunction (disjunction) is a majority
operator filled by |n/2] logic zeros (ones) and by n clauses

(terms) of m-inputs, that are themselves majority operators
filled by |m/2] logic ones (zeros) and m literals.

We give hereafter an example of CNF to MNF translation.

Example The starting CNF is (¢! Vb) A (a’ V) A(aVb). The
A in the CNF is translated as M (—, —,—,0,0). The clauses
are instead translated in the form M(—,—,1). The resulting
MNF is M(M(c,b,1), M(a’,¢c,1), M(a,b,1),0,0).

It is straightforward now to show that CNF and DNF can
be translated into MNF in linear time. However, the inverse
translation of MNF into CNF or DNF can be more complex,
as MNF are intrisically more expressive than CNF and DNF.

The MNF is a universal logic representation form, i.e., any
Boolean function can be represented with it. This comes as
a consequence of the inclusion of universal CNF and DNF.
In addition to the emulation of traditional conjunction and
disjunction operators, a majority operator features other note-
worthy properties. First, majority is a self-dual function [5],
i.e., the complement of a majority equals to the majority with
complemented inputs. The self-dual property also holds when
variables are repeated inside the majority operator (threshold
function). Second, the majority is fully-symmetric, i.e., any
permutation of inputs does not change the function behavior.
In addition, the n-input majority where two inputs are one the
complement of the other, collapses into a (n-2)-input majority.
In order to extend the validity of these properties, it is proper
to define M (a) = a, which is a majority operator of a single
input, equivalent to a logic buffer.

B. Representation Examples with DNF, CNF and MNF

We provide hereafter some examples of MNF in contrast to
their corresponding CNF and DNF.

Example Boolean function a V (b A ¢). The form a V (b A
¢) is already a DNF. A CNF is (a V b) A (a V ¢). An
MNF is M(a,1,M(0,b,c)). Another, more compact, MNF
is M(a,b,c,a,l).

For the sake of illustration, Fig. 1 depicts the previous
example by means of drawings.

a) f b) f c)f d) f
dh At gt B
b a c b o] boc

Fig. 1. Two-level representation example for the Boolean function a V (bAc)
in forms: a) DNF, b) CNF, ¢) MNF and d) more compact MNF.

Example Boolean function (a Ad')V (a Ab)V (aAe)V (a' A
bAcAd'). This form is already a DNF. A CNF is (aVb)A(aV
AN(aVd)N(DVevd). A compact MNF is M(a,a, b, c,d’).

Example Boolean function (a AbAc)V (aADAd)V (aAbA
e)V(ianeAd)V(anche)V(andAe)V (bAcAd)V (DA
che)V(bAdANe)V (cAdAe). This form is already a DNF.

A CNF can be obtained by just swapping A and V operators.
A compact MNF is M (a,b,c,d,e).

Example Boolean function a © b ® ¢. A DNF is (a A b A
V(@AY AN)V(d AbACL)V (a ANV Ac). A CNF is
(Vv VA (@ VOVE)A(aVE V)N (aVbV) A compact
MNF is M(a, M(a’,b,c), M(a', ¥, c")).

Table I summarizes the sizes of the DNF, CNF and MNF
encountered in the previous examples. The size of a CNF
size is its number of clauses. Similarly, the size of a DNF
is its number of terms. The size of an MNF is the number of
majority operators appearing in the formula. As we can notice,
the MNF is often more compact than CNF and DNF, with a
size ranging from 1 to 4, while the corresponding CNF and
DNF sizes range from 2 to 10. Similar results also emerged
from theoretical studies on circuit complexity [8], [9]. Indeed,
it has been shown in [8] that majority circuits of depth 2
and 3 possess the expressive power to represent arithmetic
functions, such as powering, multiplication, division, addition
etc., in polynomial size. On the other hand, CNF and DNF
already require an exponential size for parity, majority and
addition functions, which instead are polynomial with MNF

[9].

TABLE 1
TwoO-LEVEL LOGIC REPRESENTATION COMPARISON.
Boolean Function DNF | CNF | MNF
Size Size Size
aV (bAc) 2 2 1
(avb)A(aVe)A(avd)AbVvevd) 4 4 1
(Vb A(d Ve)yA(aVDd) 3 3 4
M(a,b,c,d,e) 10 10 1
aPbdc 4 4 3

So far, we have shown that two-level logic can be expressed
in terms of majority operators in place of A and V. This
comes at an advantage in representation size as compared to
traditional CNF and DNF. Moreover, the natural properties of
the majority function permit an uniform and efficient logic
manipulation [2]. Still, further investigation and development
of the topic are needed, as they will be discussed in Section
VI. In the next section, we study the promising application of
MNF formula to Boolean satisfiability.

IV. MAJORITY SATISFIABILITY

Boolean satisfiability, often abbreviated as SAT, is a core
problem of computer science. New approaches to solve SAT,
such as [10], [11], are of paramount interest to a wide class
of computer applications. This is particularly relevant for
Electronic Design Automation (EDA).

SAT is in general trivial for some representation form, such
as DNF or Binary Decision Diagrams (BDDs) [12]. It is
instead a difficult problem for CNF formula. For this reason,
CNF-SAT is still actively studied. New SAT formulations are
of great relevance when their representation can be derived

from CNF in polynomial (preferably linear) time. The satis-
fiability of MNF formula falls in this category as MNF can
be derived from CNF in linear time. This fact motivates us to
study the general complexity of MNF-SAT.

A. Complexity of Unrestricted MNF-SAT

To classify the complexity of unrestricted MNF-SAT, we
make use of a notable result from mathematical logic pre-
sented in [13]. Informally, the work in [13] investigates the
satisfiability of a Boolean formula built with a finite set S' of
logic connectives, which is a problem referred to as S-SAT.
For example, (A,0)-SAT is the satisfiability problem for a
Boolean formula containing only A and constant 0 operators.
It is demonstrated that a sufficient condition for S-SAT to NP-
complete is the capability to represent the function (zAy’) with
only connectives drawn from S. If (zAy’) is not representable
by an S-formula, then S-SAT is decidable in polynomial time.
The corresponding main theorem is reported verbatim from
[13].

Theorem 4.1: (Lewis’ Theorem) Let S be any finite set of
connectives. Then S-SAT is NP-complete provided that there
is an S-formula equivalent to (z A y'). Otherwise S-SAT is
decidable in polynomial time.

Proof The proof is given in [13].

To decide whether MNF-SAT is NP-complete or not, it is
therefore sufficient to study its ability to express the function
(x A y'). This approach will also be used to classify the
complexity of other SAT problems discussed in the rest of
this paper. As stated, and proved, in the following theorem,
MNF-SAT falls in the NP-complete complexity class.

Theorem 4.2: MNF-SAT is NP-complete.

Proof We can express (xAy') as M (0, z,y’), which is a valid
MNF representation. Then, the NP-completeness follows from
Lewis’ Theorem.

Not surprisingly, MNF-SAT is as complex as CNF-SAT.
Interestingly enough, alternative proofs, showing that MNF-
SAT is a difficult problem, do exist. For example, one can
notice that CNF-SAT (NP-complete [6]) can be reduced in
polynomial time to MNF-SAT, that must then be also NP-
complete [14].

B. Complexity of Some Restricted MNF-SAT

Even though MNF-SAT is in general a difficult problem,
there are restrictions of MNF formula whose satisfiability
can be determined easily. We define hereafter some MNF
restrictions of interest.

Definition MNF, is an MNF where logic 1 is forbidden (also
in the form of 0').

Example A valid MNF, is M (M (a,b,0), M(a,b',c),a). In-
stead, M (M (a,b,1),c,0) is not an MNF as logic 1 appears
inside the formula.

Definition MNF; is an MNF where logic O is forbidden (also
in the form of 1’).

Example A valid MNF; is M (M (a, 1,d), M(a',',¢),1). In-
stead, M (a,1, M(da’,b,0)) is not an MNF; as logic 0 appears
inside the formula.

Definition MNF,,,,.. is an MNF where both logic 1 and logic
0 are forbidden.

Example A valid MNF,,,,,. is M (M (a,b,c), M(a,V,c),a’).
If logic 1 or O appear in the MNF then it is not an MNF .

Note that MNFy > MNF,,,,.. and MNF; D MNF,,,., but
we keep them separated for the sake of reasoning.

Theorem 4.3: MNF,,,,..-SAT is always satisfiable.

Sketch of the Proof In [5], it is proven that a self-dual func-
tion fed with other self-dual functions remains self-dual. This
is the case for MNF,,,., which is indeed always self-dual.
A notable property of self-dual functions is to have an on-set
of size 2”1, where n is the number of variables [5]. This
means that an MNF,,,,.. cannot reach an on-set of size 0 and
therefore be unsatisfiable.

Informally, an MNF, is an MNF,,,. with some inputs
biased to logic 0.

Theorem 4.4: MNF,-SAT is decidable in polynomial time.

Sketch of the Proof Let us assume that an MNF, is an
MNF,,,,.. where logic 0 is an additional variable, but always
fixed to 0. In such an auxiliary MNF,,,,., a greedy strategy
can maximize the number of logic 1 to the final majority
operator, just by setting the input variables to the most frequent
polarity appearance. This can be done in linear time, assuming
variables independence. With a real MNF,,,,., this strategy
would generate a satisfying input assignment. By recalling that
our auxiliary MNF,,,.. has instead a variable fixed always to
0, the input pattern can now be unsatisfying. However, since
we independently maximized the number of ones to the final
majority, if such input assignment plus the fixed logic 0 cannot
evaluate the MNF to 1 no other can do so. Consequently,
M N Fy-SAT is decidable in polynomial time.

Note that there are different cases for which an MNF, can
be unsatisfiable, such as M (0, M(a,c,0), M(a’,b,0)).

Informally, an MNF; is an MNF,,,,.. with some input biased
to logic 1. As MNF,,,. is always satisfiable, adding more
logic 1 to the MNF cannot make it unsatisfiable. It follows
that also MNF; is always satisfiable.

Corollary 4.5: MNF,;-SAT is always satisfiable.

Proof Suppose that by moving from MNF,,,,.. to MNF; we
can decrease the on-set of size from 2"~ to 0, and therefore be
unsatisfiable. The only additional element available to MNFy,
as compared to MNF,,,.c, is the logic 1. Clearly, an additional
logic 1 is not possibly causing any decrease in monotone

increasing functions. Hence, the on-set size cannot reach 0.
It follows that MNF; formula are always satisfiable.

Whenever an MNF can be restricted to MNF,,,,,.. or MNFq,
its satisfiability is guaranteed, without need to check. If instead
an MNF can be restricted only to MNFj its satisfiability can
be determined efficiently, i.e., in polynomial time. We do not
focus on algorithms to solve MNF,-SAT, but we propose in the
following section a general methodolody applicable to solve
MNF-SAT.

V. ALGORITHM TO SOLVE MNF-SAT

In order to automatically solve MNF-SAT instances, an
algorithm is needed. We provide a core decide algorithm, with
linear time complexity with respect to the MNF size. It exploits
the intrinsic nature of MNF formula and can be embedded in
a traditional Decide - Deduce - Resolve SAT solving approach
[7]. We start from a one-level majority case and then we move
to the two-level MNF case. Note that a recent work [19]
considered the satisfiability of two-level (general) threshold
circuits. It is proposed to reduce it to a vector domination
problem. We differentiate from [19] by (i) focusing on MNF
formula and (ii) developing a native solving methodology.

A. One-level Majority-SAT

In the case of a one-level majority function, the satisfia-
bility check can be accomplished exactly in linear time by
direct variable assignment (solely decide task). Informally,
considering a single majority operator, a greedy strategy can
maximize the number of logic 1 in an input pattern. If neither
the pattern with the maximum number of logic 1 can evaluate
a majority to 1, then no other input pattern can do so. An
automated method for this task is depicted by Algorithm 1 and
explained as follows. Each variable is processed in sequence,

Algorithm 1 One-level Majority SAT

INPUT: Inputs z7' of a majority operator
OUTPUT: Assignment of 7 (if SAT this assignment evalu-
ates to true, otherwise unSAT)

for (i=1; i<n_vars; i++) do
if x; appears more often complemented then

Ty = 0;
else
z; =1;
end if
end for
if M (z7) evaluates to 1 then
return SAT;
else
return unSAT;
end if

in any order. If the considered variable appears more often
complemented than in its standard polarity, it is set to logic
0, otherwise to logic 1. At the end of this procedure, an
assignment for the input variables to the majority operator

is obtained. If this assignment cannot evaluate the majority
operator to true, then it is declared unsatisfiable, otherwise it
is declared satisfiable. An example is provided hereafter.

Example The Boolean formula whose satisfiability we want
to check is M (a,b,a’,a’,b,c', ¢, d,e). To find an assignment
which evaluates to logic 1, variables are considered in the
order (a,b,c,d, e).

Variable a appears more often complemented in the majority
operator, so it assigned to logic 0.

Variable b appears more often uncomplemented in the
majority operator, so it assigned to logic 1.

Variable ¢ appears more often complemented in the majority
operator, so it assigned to logic 0.

Variable d appears more often uncomplemented in the
majority operator, so it assigned to logic 1.

Variable e appears more often uncomplemented in the
majority operator, so it assigned to logic 1.

The final assignment is then (0,1,0,1,1) which evaluates
M(0,1,1,1,1,1,1,1,1) = 1.

We have seen that the satisfiability of a single majority can
be exactly decided in linear time, with respect to the size of
the operator. The proposed greedy strategy is appropriate for
such task. We show now how this procedure can be extended
to handle two-level majority satisfiability.

B. Decide Strategy for MNF-SAT

For two-level MNF, a single decide may not be enough
to determine SAT and it has to be iterated with deduce and
resolve methods [7]. We propose here a decide strategy with
linear time complexity with respect to the input MNF size. The
rationale driving such process is to set each input variable to
the logic value, O or 1, that maximizes the number of logic
1 in input to the final majority operator. A corresponding
automated procedure is depicted by Algorithm 2 and explained
as follows. A specific variable x; is first passed to the

Algorithm 2 MNF-SAT Decide for a single variable
INPUT: Inputs: variable z;, MNF structure
OUTPUT: Assignment for x; most probably to SAT

compute ny, nc;

compute Cp(z;), Cn(z;);

if Cp(z;) < Cp(x;) then

Tj = 0,
else

xT; = 1;
end if

procedure, together with the MNF structure information. Then,
a metric is computed to decide the assignment of such variable
to logic 0 or 1. The main difference with respect to the one-
level majority is indeed the figure of merit used to drive the
variable assignment. The description of a proper metric is
as follows. Say n the number (odd) of inputs of the final
majority in an MNF. Thus, there are n majorities in the
MNF. Say m; the number (odd) of inputs of the ¢-th majority

operator, with ¢ € {1,2,..,n}. Say n,(z;,4) the number of
occurence of variable z; uncomplemented, in the i-th majority
operator. Similarly, say n.(z;,7) the number of occurence of
variable x; complemented, in the i-th majority operator. Using
these informations, two cost metrics Cy,(z;) and Cy,(x;) are
created. Such cost metrics range from 0 to 1 and indicate how
much a positive (Cp,) or negative (C),) polarity assignment
of a variable contribute to set the MNF to logic 1. They are
computed as

Cplx;) = (i1 np(;,1)/ms)/n and

Culzy) = (DI, nel, 1) /mi) /.

According to this rationale, if Cp(z;) < Cy(z;) then
variable x; is assigned to logic 0, or assigned to logic 1
otherwise. At the end of this procedure, a valid assignment
for variable w; is obtained. If iterated over all the variables,
Algorithm 2 determines a global assignment to evaluate the
MNF. Such procedure can be used as core decide task in a
traditional Decide - Deduce - Resolve SAT solving approach
[7]. Note that also the deduce and resolve methods must be
adapted to the MNF nature. Although, new and ad hoc deduce
and resolve techniques are desirable, their study is out of the
scope of the current paper. A simple example for the decide
task, iterated over all the variables, is provided hereafter.

Example We want to determine the satisfiability for the MNF
formula M (M(a,b,c,d,1), M(a,b’',c,d,e"), M(a’,b,0)).
Variables are considered in the order (a,b,c,d,e) and their
cost metrics are computed.

For variable a, Cp(a) = (1/5+1/5+0/3)/3 = 0.13 >
Cr(a) = (0/5+0/5+ 1/3)/3 = 0.11, thus it is assigned to
logic 1.

For variable b, Cp,(b) = (1/5+0/5+1/3)/3 = 0.17 >
Cn(b) =(0/5+1/5+0/3)/3 = 0.06, thus it is assigned to
logic 1.

For variable ¢, Cp(c) = (0/5+0/540/3)/3 =0 < Cp(c) =
(1/54+1/5+40/3)/3 = 0.13, thus it is assigned to logic 0.

For variable d, C\,(d) = (1/5+1/5+0/3)/3 = 0.13 >
Cn(d) = (0/5+0/5+0/3)/3 = 0, thus it is assigned to logic
1.

For variable e, C,(e) = (0/5 4+ 0/5 4+ 0/3)/3 = 0 <
Cn(e) = (0/5+1/5+0/3)/3 = 0.06, thus it is assigned
to logic 0.

The obtained assignment is then (1,1,0,1,0) which
evaluates M (M(1,1,1,1,1), M(1,0,1,1,1), M(0,1,0)) =
M(1,1,0) = 1. The initial MNF formula is already declared
satisfiable.

Even though a single iteration may not be enough to de-
termine the satisfiability of an MNF, the proposed linear time
decide procedure can be used as core engine in a traditional
SAT flow.

In the following section, we discuss the results obtained so
far and highlight future research directions.

VI. DISCUSSION AND FUTURE WORK

Two-level logic representation and satisfiability are two
linked problems that have been widely studied in the past

years. Nevertheless, the research in this field is still active.
New approaches are continuously discovered and embedded
in tools [10], [11], to push further the horizons of logic
applications. The proposed MNF has the potential to enhance
two-level logic representation and related SAT problems.

We demonstrated that any CNF or DNF can be translated
in linear time into an MNF. However, in its unrestricted
form, MNF leads to SAT problems as difficult as with CNF.
Restricted versions of MNF exist, whose satisfiability can
be decided in polynomial time. Advanced logic manipula-
tion techniques capable to transform a general MNF into
a restricted MNF can significantly simplify the MNF-SAT
problem. Also, direct MNF construction from general logic
circuits is of interest.

Regarding the MNF representation properties, it is still
unclear whether a canonical form exists for MNEF, as it does
for CNF (product of maxterms) and DNF (sum of minterms).
The discovery of a canonical MNF can reveal new promising
features of majority logic.

In the context of MNF-SAT algorithms, a detailed study for
MNF oriented deduce and resolve techniques is required. In
this way, a complete MNF-SAT solver can be developed and
its efficiency tested.

In summary, our next efforts are focused on (i) logic
manipulation techniques for MNF, (ii) canonical MNF rep-
resentation, (iii) MNF-oriented deduce and resolve techniques
and (iv) development of an MNF-SAT tool.

VII. CONCLUSIONS

We presented, in this paper, an alternative two-level logic
representation form based solely on majority and complemen-
tation operators. We called it Majority Normal Form (MNF).
MNF is universal and potentially more compact than its
CNF and DNF counterparts. Indeed, MNF includes both CNF
and DNF representations. We studied the problem of MNF-
SATisfiability (MNF-SAT) and we proved that it belongs to the
NP-complete complexity class, as its CNF-SAT counterpart.
However, we showed practical restrictions on MNF formula
whose satisfiability can be decided in polynomial time. We
have finally proposed a simple core procedure to solve MNF-
SAT, based on the intrinsic functionality of two-level majority
logic. Future research directions are oriented in the develop-
ment of a complete MNF-SAT solver tool.

ACKNOWLEDGEMENTS
This research was supported by ERC-2009-AdG-246810.

REFERENCES

[1] L. Amaru, P.-E. Gaillardon, G. De Micheli, BDS-MAJ: A BDD-based
logic synthesis tool exploiting majority logic decomposition, Proc. DAC,
2013.

[2] L. Amaru, P-E. Gaillardon, G. De Micheli, Majority Inverter Graphs,
Proc. DAC, 2014.

[3] G. Yang, W. N.N. Hung, X. Song, M. Perkowski, Majority-based re-
versible logic gates, Theoretical Computer Science, 2005.

[4] H. Pospesel, Introduction to Logic: Propositional Logic, Pearson, 1999.

[5] T. Sasao, Switching Theory for Logic Synthesis, Springer, 1999.

[6] S. Cook, The Complexity of Theorem-Proving Procedures, Proc. ACM
Symposium on Theory of Computing, 1971.

[7]1 A. Biere, M. Heule, H. van Maaren and T. Walsh Handbook of Satisfia-
bility, 10S Press, 2009.

[8] M. Krause, P. Pudlak, On the computational power of depth-2 circuits
with threshold and modulo gates, Theor. Comput. Sci., 174, pp. 137-156,
1997.

[9]1 AA. Sherstov, Separating AC 0 from depth-2 majority circuits, Proc.
STOC, 2007.

[10] N. Een, N. Srensson, MiniSat - A SAT Solver with Conflict-Clause
Minimization, SAT 2005.

[11] N. Een, A. Mishchenko, N. Sorensson, Applying Logic Synthesis for
Speeding Up SAT, SAT 2007.

[12] R.E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Transactions on Computers, C-35: 677-691, 1986.

[13] H. R. Lewis, Satisfiability problems for propositional calculi, Mathe-
matical Systems Theory 13 (1979), pp. 45-53.

[14] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979.

[15] K. Bernstein et al., Device and Architecture Outlook for Beyond CMOS
Switches, Proceedings of the IEEE, 98(12): 2169-2184, 2010.

[16] K. J. Chen, et al., InP-based high-performance logic elements using
resonant-tunneling devices, IEEE Electr. Dev. Lett., 17(3): 127-129, 1996.

[17] P. D. Tougaw, C. S. Lent, Logical devices implemented using quantum
cellular automata, J. Applied Physics, 75(3): 1811-1817, 1994.

[18] M. De Marchi et al., Polarity control in Double-Gate, Gate-All-Around
Vertically Stacked Silicon Nanowire FETs, Proc. IEDM, 2012.

[19] R.Impagliazzo, A Satisfiability Algorithm for Sparse Depth Two Thresh-
old Circuits, Arxiv 2013.

