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Abstract—In this paper, we present biconditional binary deci-
sion diagrams (BBDDs), a novel canonical representation form for
Boolean functions. BBDDs are binary decision diagrams where
the branching condition, and its associated logic expansion, is
biconditional on two variables. Empowered by reduction and
ordering rules, BBDDs are remarkably compact and unique for
a Boolean function. The interest of such representation form in
modern electronic design automation (EDA) is twofold. On the
one hand, BBDDs improve the efficiency of traditional EDA tasks
based on decision diagrams, especially for arithmetic intensive
designs. On the other hand, BBDDs represent the natural and
native design abstraction for emerging technologies where the
circuit primitive is a comparator, rather than a simple switch.
We provide, in this paper, a solid ground for BBDDs by studying
their underlying theory and manipulation properties. Thanks to
an efficient BBDD software package implementation, we validate
1) speed-up in traditional decision diagrams applications with up
to 4.4 gain with respect to other DDs, and 2) improved synthesis
of circuits in emerging technologies, with about 32% shorter
critical path than state-of-art synthesis techniques.

Index Terms—Biconditional connective, canonicity, decision di-
agrams, design methods and tools, nanocircuits.

I. INTRODUCTION

T HE CHOICE of data structure is crucial in computing ap-
plications, especially for the automated design of digital

circuits.When logic functions are concerned, binary decision di-
agrams (BDDs) [1]–[3] are awell-establishedcogent andunique,
i.e., canonical, logic representation form. BDDs are widely used
in electronic design automation (EDA) to accomplish important
tasks, e.g., synthesis [4], verification [5], testing [6], simulation
[7], and others. Valuable extensions [8] and generalizations [9]
of BDDs have been proposed in literature to improve the per-
formance of EDA applications based on decision diagrams. The
corresponding software packages [10], [11] are indeed mature
and supported by a solid theory. However, there are still com-
binational designs, such as multipliers and arithmetic circuits,
that do not fit modern computational capabilities when repre-
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sented by existing canonical decision diagrams [23]. The quest
for new data structures handling such hard circuits, and possibly
pushing further the performance for ordinary circuits, is of para-
mount importance for next-generation digital designs. Further-
more, the rise of emerging technologies carrying new logic prim-
itives demands for novel logic representation forms that fully
exploit a diverse logic expressive power. For instance, control-
lable polarity double-gate (DG) transistors, fabricated in silicon
nanowires [12], carbon nanotubes [13] or graphene [14] tech-
nologies, but also nanorelays [15], intrinsically behave as com-
parators rather than switches. Hence, conventional data struc-
tures are not appropriate to model natively their functionality.
In this paper, we present BBDDs, a novel canonical BDD ex-

tension. While original BDDs are based on the single-variable
Shannon’s expansion, BBDDs employ a two-variable bicondi-
tional expansion, making the branching condition at each de-
cision node dependent on two variables per time. Such feature
improves the logic expressive power of the binary decision di-
agram. Moreover, BBDDs represent also the natural and native
design abstraction for emerging technologies [12]–[15] where
the circuit primitive is a comparator, rather than a switch.
Note that a preliminary version of this work has been pub-

lished in [16], [17]. This work differentiates by providing 1)
formal theory about BBDDs, 2) enhanced BBDD-manipulation
algorithms, 3) extended experimental results and comparisons
with packages for other decision diagrams, and 4) application of
BBDDs to the synthesis and verification of circuits in emerging
technologies.
We validate the benefits deriving from the use of BBDDs in

EDA tasks through an efficient software manipulation package,
available online [18]. Considering the MCNC benchmark suite,
BBDDs are built 1.4 and 1.5 faster than original BDDs
and Kronecker functional decision diagrams (KFDDs) [9],
while having also 1.5 and 1.1 fewer nodes, respectively.
Moreover, we show hard arithmetic circuits that fit computing
capabilities with BBDDs but are not practical with state-of-art
BDDs or KFDDs. Employed in the synthesis of an iterative
decoder design, targeting standard CMOS technology, BBDDs
advantageously pre-structure arithmetic circuits as front-end
to a commercial synthesis tool, enabling to meet tight timing
constraints otherwise beyond the capabilities of traditional
synthesis. The combinatorial verification of the optimized
design is also speeded-up by 11.3% using BBDDs in place of
standard BDDs. Regarding the automated design for emerging
technologies, we similarly employed BBDDs as front-end
to a commercial synthesis tool but then targeting a control-
lable-polarity DG silicon nanowires field effect transistors

2156-3357 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



488 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 4, DECEMBER 2014

Fig. 1. BDD nonterminal node (a) canonical BDD for function (b).

(SiNWFETs) technology [12]. Controllable-polarity DG-SiN-
WFETs behave as binary comparators [12]. Such primitive is
naturally modelled by BBDDs. Experimental results show that
the effectiveness of BBDD pre-structuring for circuits based
on such devices is even higher than for standard CMOS, thus
enabling a superior exploitation of the emerging technology
features.
The remainder of this paper is organized as follows. Section II

first provides a background on BDDs and then discusses the
motivations for the study of BBDDs. In Section III, the formal
theory for BBDDs is introduced, together with efficient ma-
nipulation algorithms. Section IV first shows theoretical size
bounds for notable functions represented with BBDDs and then
compares the performance of our BBDD software package with
other state-of-art packages for BDDs and KFDDs. Section V
presents the application of BBDDs to circuit synthesis and
verification in both traditional and emerging technologies. The
paper is concluded in Section VI.

II. BACKGROUND AND MOTIVATION

This section first provides the background and the basic ter-
minology associated with BDDs and their extensions. Then, it
discusses the motivations to study BBDDs, from both a tradi-
tional EDA and an emerging technology perspectives.

A. Binary Decision Diagrams

BDDs are logic representation structures first introduced by
Lee [1] and Akers [2]. Ordering and reduction techniques for
BDDs were introduced by Bryant in [3] where it was shown
that, with these restrictions, BDDs are a canonical representa-
tion form. Canonical BDDs are often compact and easy to ma-
nipulate. For this reason, they are extensively used in EDA and
computer science. In the following, we assume that the reader
is familiar with basic concepts of Boolean algebra (for a review,
see [19] and [20]) and we review hereafter the basic terminology
used in the rest of the paper.
1) Terminology and Fundamentals: A BDD is a direct

acyclic graph (DAG) representing a Boolean function. A BDD
is uniquely identified by its root, the set of internal nodes, the
set of edges and the 1/0-sink terminal nodes. Each internal
node [Fig. 1(a)] in a BDD is labeled by a Boolean variable
and has two out-edges labeled 0 and 1. Each internal node

also represents the Shannon’s expansion with respect to its
variable

(1)

The 1- and 0-edges connect to positive and negative Shannon’s
cofactors, respectively.
Edges are characterized by a regular/complemented attribute.

Complemented edges indicate to invert the function pointed by
that edge.
We refer hereafter to BDDs as to canonical reduced and or-

dered BDDs [3], that are BDDs where 1) each input variable is
encountered at most once in each root to sink path and in the
same order on all such paths, 2) each internal node represent
a distinct logic function, and 3) only 0-edges can be comple-
mented. Fig. 1(b) shows the BDD for function .
In the rest of this paper, symbols and represent XOR

and XNOR operators, respectively. Symbol represents any
two-operand Boolean operator.
2) Previous BDD Extensions: Despite BDDs are typically

very compact, there are functions for which their representation
is too large to be stored and manipulated. For example, it was
shown in [23] that the BDD for the multiplier of two -bit num-
bers has at least nodes. For this reason, several extensions
of BDDs have been suggested.
One first extension are free BDDs, where the variable order

condition is relaxed allowing polynomial size representation for
the multiplier [21]. However, such relaxation of the order sac-
rifices the canonicity of BDDs, making manipulation of such
structures less efficient. Indeed, canonicity is a desirable prop-
erty that permits operations on BDDs to have an efficient run-
time complexity [3]. Another notable approach trading canon-
icity for compactness is parity-BDDs ( -BDDs) presented in
[24]. In -BDDs, a node can implement either the standard
Shannon’s expansion or the (XOR) operator. Thanks to this
increased flexibility, -BDDs allow certain functions having
exponential size with original BDDs to be instead represented
in polynomial size. Again, the manipulation of -BDDs is not
as efficient as with original BDDs due to the heterogeneity in-
troduced in the diagrams by additional -nodes.
Considering now BDD extensions preserving canonicity,

zero-suppressed BDDs [29] are BDDs with modified reduction
rules (node elimination) targeting efficient manipulation of
sparse sets. transformation BDDs (TBDDs) [32], [34] are
BDDs where the input variables of the decision diagram are
determined by a logic transformation of the original inputs.
When the input transformation is an injective mapping, TBDDs
are canonical representation form [34]. In theory, TBDDs can
represent every logic function with polynomial size given the
perfect input transformation. However, the search for the per-
fect input transformation is an intractable problem. Moreover,
traditional decision diagram manipulation algorithms (e.g.,
variable reordering) are not efficient with general TBDDs due
to the presence of the input transformation [21]. Nevertheless,
helpful and practical TBDDs have been proposed in literature,
such as linear sifting of BDDs [30], [31] and hybrid deci-
sion diagrams (HDDs) [33]. Linear sifting consists of linear
transformations between input variables carried out online
during construction. The linear transformations are kept if
they reduce the size of the BDD or undone in the other case.
On the one hand, this makes the linear transform dependent
itself on the considered BDD and therefore very effective
to reduce its size. On the other hand, different BDDs may
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have different transforms and logic operations between them
become more complicated. More discussion for linear sifting
and comparisons to our proposed BDD extension are given
in Section III-A. HDDs are TBDDs having as transformation
matrix the Kronecker product of different 2 2 matrices. The
entries of such matrices are determined via heuristic algorithms.
HDDs are reported to achieve a remarkable size compression
factor (up to three orders of magnitude) with respect to BDDs
[33] but they suffer similar limitations as linear sifting deriving
from the dependency on the particular, case-dependent, input
transformation employed.
Other canonical extensions of BDDs are based on different

core logic expansions driving the decision diagram. Functional
decision diagrams (FDDs) [8] fall in this category employing
the (positive) Davio’s expansion in place of the Shannon’s one

(2)

Since the Davio expansion is based on the operator, FDDs
provide competitive representations for XOR-intensive func-
tions. Kronecker FDDs (KFDDs) [9] are a canonical evolution
of FDDs that can employ both Davio’s expansions (positive and
negative) and Shannon’s expansion in the same decision dia-
gram provided that all the nodes belonging to the same level
use the same decomposition type. As a consequence, KFDDs
are a superset of both FDDs and BDDs. However, the hetero-
geneity of logic expansion types employable in KFDDs makes
their manipulation slightly more complicated than with standard
BDDs. For problems that are more naturally stated in the dis-
crete domain rather than in terms of binary values, multi-valued
decision diagrams (MDDs) have been proposed [39] as direct
extension of BDDs. MDDs have multiple edges, as many as the
cardinality of the function domain, and multiple sink nodes, as
many as the cardinality of the function codomain. We refer the
reader to [21] for more details about MDDs.
Note that the list of BDD extensions considered above is not

complete. Due to the large number of extensions proposed in
literature, we have discussed only those relevant for the com-
prehension of this work.
In this paper, we present a novel canonical BDD extension

where the branching decisions are biconditional on two vari-
ables per time rather than on only one. The motivation for this
study is twofold. First, from a theoretical perspective, consid-
ering two variables per time enhances the expressive power of
a decision diagram. Second, from an application perspective,
there exist emerging devices better modeled by a two-variable
(biconditional) comparator rather than a single variable switch.
In this context, the proposed BDD extension serves as natural
logic abstraction. A discussion about the technology motivation
for this work is provided hereafter.

B. Emerging Technologies

Many logic representation forms are inspired by the un-
derlying functionality of contemporary digital circuits. Sil-
icon-based metal–oxide–semiconductor field-effect transistors
(MOSFETs) form the elementary blocks for present elec-
tronics. In the digital domain, a silicon transistor behaves as

Fig. 2. Common logic abstraction for emerging devices: controllable polarity
double-gate FETs in silicon nanowires [12], carbon nanotubes [13], graphene
[14] but also six terminal nanorelays [15].

a two-terminal binary switch driven by a single input signal.
The Shannon’s expansion captures such operation in the form
of a Boolean expression. Based on it, logic representation and
manipulation of digital circuits is efficient and automated.
With the aim to support the exponential growth of digital

electronics in the future, novel elementary blocks are currently
under investigation to overcome the physical limitations of stan-
dard transistors. Deriving from materials, geometries and phys-
ical phenomena different than MOSFETs, many emerging de-
vices are not naturally modeled by traditional logic representa-
tion forms. Therefore, novel CAD methodologies are needed,
which appropriately handle such emerging devices.
We concentrate here on a promising class of emerging devices

that inherently implement a two-input comparator rather than a
simple switch. These innovative devices come in different tech-
nologies, such as silicon nanowires [12], carbon nanotubes [13],
graphene [14], and nanorelays [15]. In the first three approaches,
the basic element is a double-gate controllable-polarity tran-
sistor. It enables online configuration of the device polarity (
or ) by adjusting the voltage at the second gate. Consequently,
in such a double-gate transistor, the on/off state is biconditional
on both gates values. The basic element in the last approach [15]
is instead a six-terminals nanorelays. It can implement complex
switching functions by controlling the voltages at the different
terminals. Following to its geometry and physics, the final elec-
tric way connection in the nanorelay is biconditional on the ter-
minal values[15]. Even though they are based on different tech-
nologies, all the devices in [12]–[15] have the same common
logic abstraction, depicted by Fig. 2.
In this work, we focus on double-gate controllable polarity

SiNWFETs [12] to showcase the impact of novel logic represen-
tation forms in emerging technology synthesis. A device sketch
and fabrication views from [12] are reported in Fig. 3 for the
sake of clarity. While having an enhanced functionality, this de-
vice also presents an implementation overhead deriving from
the second gate. Without a dedicated logic abstraction and syn-
thesis methodology, the full potential of this technology may
remain obscured by the extra fabrication cost. We propose in
this paper a novel logic representation form, based on the bi-
conditional connective, that naturally harnesses the operation of
controllable polarity switches. By using this logic abstraction in
synthesis, the full logic expressive power of double-gate con-
trollable polarity SiNWFETs, but also of devices in [13]–[15], is
unlocked. Section V will show the impact of our representation
form in the synthesis of high-performance SiNWFET circuits.
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Fig. 3. Sketch structure and fabrication images of controllable polarity double-
gate SiNWFETs from [12].

III. BICONDITIONAL BINARY DECISION DIAGRAMS

This section introduces BBDDs. First, it presents the core
logic expansion that drives BBDDs. Then, it gives ordering
and reduction rules that makes reduced and ordered BBDDs
(ROBBDDs) compact and canonical. Finally, it discusses ef-
ficient algorithms for BBDD manipulation and their practical
implementation in a software package.

A. Biconditional Expansion

Logic expansions, also called decompositions, are the driving
core of various types of decision diagrams. In [41], a theo-
retical study concluded that, among all the possible one-vari-
able expansions, only Shannon’s, positive Davio’s and nega-
tive Davio’s types help to reduce the size of decision diagrams.
While this result prevents from introducing more one-variable
decomposition types, new multi-variable decompositions are
still of interest. In this work, we consider a novel logic expan-
sion, called biconditional expansion, examining two variables
per time rather than one, in order to produce novel compact de-
cision diagrams. The biconditional expansion is one of the many
possible two-variable decompositions. Note that other advanta-
geous two-variable decompositions may exist but their study is
out of the scope of this work.
Definition 1: The biconditional expansion is a two-variable

expansion defined , with , as

(3)
with and distinct elements in the support for function .
As per the biconditional expansion in (3), only functions

that have two or more variables can be decomposed. Indeed,
in single variable functions, the terms and
cannot be computed. In such a condition, the biconditional ex-
pansion of a single variable function can reduce to a Shannon’s
expansion by fixing the second variable to logic 1. With
this boundary condition, any Boolean function can be fully
decomposed by biconditional expansions.
Note that a similar concept to biconditional expansion ap-

pears in [30], [31] where linear transformations are applied to
BDDs. The proposed transformation replaces one variable

Fig. 4. BBDD nonterminal node.

with . In the BDD domain, transforms a
Shannon’s expansion around variable into a biconditional ex-
pansion around variables and . We differentiate our work
from linear transformations by the abstraction level at which we
embed the biconditional connective. Linear transformations in
[30], [31] operate as postprocessing of a regular BDD, while we
propose to entirely substitute the Shannon’s expansion with the
biconditional expansion. By changing the core engine driving
the decision diagram new compact representation opportunities
arise. However, a solid theoretical foundation is needed to ex-
ploit such potential. We address this requirement in the rest of
this section.

B. BBDD Structure and Ordering

BBDD are driven by the biconditional expansion. Each non-
terminal node in a BBDD has the branching condition bicondi-
tional on two variables. We call these two variables the primary
variable (PV) and the secondary variable (SV). An example of
a BBDD nonterminal node is provided by Fig. 4. We refer here-
after to and edges in a BBDD node
simply as -edges and -edges, respectively.
To achieve ordered BBDDs (OBBDDs), a variable order must

be imposed for and a rule for the other variables assign-
ment must be provided. We propose the chain variable order
(CVO) to address this task. Given a Boolean function and a
variable order for the support variables
of , the CVO assigns PVs and SVs as

(4)
CVO Example: From , the corresponding

CVO ordering is obtained by the following method. First,
, , and , are assigned.

Then, the final boundary conditions of (4) are applied as
and . The consecutive ordering by couples

( , ) is thus .
The CVO is a key factor enabling unique representation of or-

dered biconditional decision diagrams. For the sake of clarity,
we first consider the effect of the CVO on complete OBBDDs
and then we move to generic reduced BBDDs in the next sub-
section.
Definition 2: A complete OBBDD of variables has

distinct internal nodes, no sharing, and terminal 0-1 nodes.
Lemma 1: For a Boolean function and a variable order ,

there exists only one complete OBBDD ordered with .
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Proof: Say the number of variables in . All complete
OBBDD of variables have an identical internal structure, i.e.,
a full binary tree having internal nodes. The distinc-
tive feature of a complete OBBDD for is the distribution of
terminal 0-1 nodes. We need to show that such distribution is
unique in a complete OBBDD ordered with . Consider
the unique truth table for with elements filled as per .
Note that in a complete OBBDD there are distinct paths by
construction. We link the terminal value reached by each path
to an element of the truth table. We do so by recovering the bi-
nary assignment of generating a path. That binary assignment
is the linking address to the truth table entry. For example, the
terminal value reached by the path ( , , )
corresponds to the truth table entry at the address ( ,

, ). Note that distinct paths in the CVO( ) corre-
sponds to distinct binary assignments of , owing to the isomor-
phism induced by the biconditional expansion. By exhausting
all the paths we are guaranteed to link all entries in the truth
table. This procedure establishes a one-to-one correspondence
between the truth table and the complete OBBDD. Since truth
tables filled as per are unique, also completeOBBDD ordered
with are unique.Q.E.D.
We refer hereafter to OBBDDs as to BBDDs ordered by the

CVO.

C. BBDD Reduction

In order to improve the representation efficiency, OBBDDs
should be reduced according to a set of rules. We present here-
after BBDD reduction rules, and we discuss the uniqueness of
the so obtained ordered and reduced BBDDs.
1) Reduction Rules: The straightforward extension of

OBDD reduction rules [3] to OBBDDs, leads to weak Reduced
OBBDDs (ROBBDDs). This kind of reduction is called weak
due to the partial exploitation of OBBDD reduction opportu-
nities. A weak ROBBDD is an OBBDD respecting the two
following rules:

R1: It contains no two nodes, root of isomorphic sub-
graphs;
R2: It contains no nodes with identical children.

In addition, the OBBDD representation exhibits supplemen-
tary interesting features enabling further reduction opportuni-
ties. First, levels with no nodes (empty levels) may occur in
OBBDDs. An empty level is a level in the decision diagram
created by the Chain Variable Order but containing no nodes
as a result of the augmented functionality of the biconditional
expansion. Such levels must be removed to compact the orig-
inal OBBDD. Second, subgraphs that represent functions of a
single variable degenerates into a single DD node driven by the
Shannon’s expansion followed by the sink terminal node. The
degenerated node functionality is the same as in a traditional
BDD node. Single variable condition is detectable by checking
the cardinality of the support set of the subgraph.
Formally, a strong ROBBDD is an OBBDD respecting R1

and R2 rules, and in addition:
R3: It contains no empty levels;
R4: Subgraphs representing single variable functions de-
generates into a single DD node driven by the Shannon’s
expansion.

Fig. 5. Function to be represented: ,weakROBBDD
for (a) and strong ROBBDD for (b).

For the sake of simplicity, we refer hereafter to a single vari-
able subgraph degenerated into a single DD node as a BDD
node.
Fig. 5 depicts weak and strong ROBBDDs for the function

. The weak ROBBDD is forced
to allocate four levels (one for each variable) to fully repre-
sent the target function resulting in five internal nodes. On the
other hand, the strongROBBDD exploits reduction ruleR4 col-
lapsing the -branch of the root node into a single BDD
node. Moreover, rule R3 suppresses empty level further com-
pressing the diagram in three levels of depth and three internal
nodes.
2) Canonicity: Weak and strong reduced OBBDDs are

canonical, as per:
Lemma 2: For a given Boolean function and a variable

order , there exists only one weak ROBBDD.
Proof: Weak ROBBDDs are obtained by applying reduc-

tion rules R1 and R2, in any combination, to an OBBDD until
no other R1 or R2 rule can be applied. Without loss of gener-
ality, suppose to start from a completeOBBDD. Any other valid
OBBDD can be reached during the reduction procedure. In [43],
it is shown that the iterative reduction of general decision dia-
grams, based on rules R1 and R2, reaches a unique structure.
Since the initial complete OBBDD is unique, owing to Lemma
1, and the iterative reduction based on rules R1 and R2 leads
to a unique outcome, owing to [43], also weak ROBBDD are
unique for a , i.e., canonical. Q.E.D.
Theorem 1: A strong ROBBDD is a canonical representation

for any Boolean function .
Proof: Strong ROBBDDs can be directly derived by ap-

plying reduction rules R3 and R4, in any combination, to weak
ROBBDDs until no other R3 or R4 rule can be applied.
In order to prove the canonicity of strong ROBBDD, we pro-

ceed by five succeeding logical steps. The final goal is to show
that any sequence of reductions drawn from {R3,R4}, that con-
tinues until no other reduction is possible, reaches a unique
strong ROBBDD structure, preserving the uniqueness property
of the starting weak ROBBDD.
1) Reductions R3 and R4 preserve distinctness. As it holds
for rules R1 and R2, also R3 and R4 preserve distinctness.
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Rule R3 compacts the decision diagram structure without
any ambiguity in the elimination of levels, i.e., when a level
is empty it is uniquely removed. RuleR4 substitutes single
variable functions with a single BDD node (followed by
the sink node). This operation has a specific and unique
outcome since it is combined with rules R1 and R2 (each
node represents a distinct logic function).

2) The set of applicable rules R4 is fixed. In a given weak
ROBBDD, the set of all possible single variable subgraph
collapsing (rule R4) is fixed a priori, i.e., there exists a
specific set of applicable R4 reductions independent of the
reduction sequence employed. Consider a top-down explo-
ration of the starting weak ROBBDD. At each branching
condition, the support sets of the current node children are
checked. If the cardinality of the support set is 1 (single
variable) then this subgraph is reducible byR4. Regardless
of the particular exploration order, the support set of all
subgraphs remains the same. Therefore, the applicability
of rules R4 depends only on the given weak ROBBDD
structure.

3) Rules R4 are independent of rules R3. Rules R3 (empty
levels elimination) cannot preclude the exercise of rulesR4
(single-variable subgraphs collapsing) because they elimi-
nate levels with no nodes, where no rule R4 could apply.

4) Rules R3 can be precluded by rules R4. Rules R4 can pre-
clude the exercise of rules R3 since the collapse of sub-
graphs into a single node can make some levels in the de-
cision diagram empty (see Fig. 5). Nevertheless, each rule
R3 is reachable in a reduction sequence that guarantees to
exhaust all the blocking R4 before its termination.

5) Iterative reduction strategy is order independent. We refer
to an iterative reduction strategy as to a sequence of reduc-
tions drawn from {R3,R4} applied to a weak ROBBDD,
that continues until no other reduction is possible. At each
step of reduction sequence, the existence of a new reduc-
tion R3 or R4 is checked. Following points 2 and 3, all
possible R4 are identifiable and reachable at any time be-
fore the end of the reduction sequence, regardless of the
order employed. Consider now rules R3. Some of them
are not precluded by rules R4. Those are also identifiable
and reachable at any time before the end of the reduction
sequence. The remaining R3 are precluded by some R4.
However, all possible R4, included those blocking some
R3, are guaranteed to be accomplished before the end of
the reduction. Therefore, there always exists a step, in any
reduction sequence, when each rule R3 is reachable as the
blocking R4 are exhausted. Consequently, any iterative re-
duction strategy drawn from {R3,R4} achieves a unique
reduced BBDD structure (strong ROBBDD).

It follows that any combination of reduction rules R3 and
R4 compact a canonical weak ROBBDD into a unique strong
ROBBDD, preserving canonicity. Q.E.D.

D. BBDD Complemented Edges

Being advantageously applied in modern ROBDDs pack-
ages [10], complemented edges indicate to invert the function
pointed by an edge. The canonicity is preserved when the

complement attribute is allowed only at 0-edges (only logic 1
terminal node available). Reduction rules R1 and R2 continue
to be valid with complemented edges [21]. Similarly, we ex-
tend ROBBDDs to use complemented edges only at -edges,
with also only logic 1 terminal node available, to maintain
canonicity.
Theorem 2: ROBBDDs with complemented edges allowed

only at -edges are canonical.
Proof: Reduction rules R1 and R2 support complemented

edges at the else branch of canonical decision diagrams [21].
In BBDDs, the else branch is naturally the -edge, as the
biconditional connective is true (then branch) with the -edge.
We can therefore extend the proof of Lemma 2 to use comple-
mented edges at -edges and to remove the logic 0 terminal
node. It follows that weak ROBBDDs with complented edges
at -edges are canonical. The incremental reduction to strong
ROBBDDs does not require any knowledge or action about
edges. Indeed, the proof of Theorem 1 maintains its validity
with complemented edges. Consequently, strong ROBBDDs
with complemented edges at -edges are canonical. Q.E.D.
For the sake of simplicity, we refer hereafter to BBDDs as to

canonical ROBBDDs with complemented edges, unless speci-
fied otherwise.

E. BBDD Manipulation

So far, we showed that, under ordering and reduction rules,
BBDDs are unique and potentially very compact. In order to
exploit such features in real-life tools, a practical theory for the
construction and manipulation of BBDDs is needed.We address
this requirement by presenting an efficient manipulation theory
for BBDDs with a practical software implementation, available
online at [18].
Rationale for Construction and Manipulation of BBDDs:

DDs are usually built starting from a netlist of Boolean opera-
tions. A common strategy employed for the construction task
is to build bottom-up the DD for each element in the netlist,
as a result of logic operations between DDs computed in the
previous steps. In this context, the core of the construction task
is an efficient Boolean operation algorithm between DDs. In
order to make such approach effective in practice, other tasks
are also critical, such as memory organization and re-ordering
of variables. With BBDDs, we follow the same construction
and manipulation rationale, but with specialized techniques
taking care of the biconditional expansion.
Considerations to Design an Efficient BBDD Package:

Nowadays, one fundamental reason to keep decision diagrams
small is not just to successfully fit them into the memory, that
in a modern server could store up to 1 billion nodes, but more
to maximize their manipulation performance. Following this
trend, we design the BBDD manipulation algorithms and data
structures aiming to minimize the runtime while keeping under
control the memory footprint. The key concepts unlocking
such target are 1) unique table to store BBDD nodes in a
strong canonical form,1 2) recursive formulation of Boolean
operations in terms of biconditional expansions with relative

1A strong canonical form is a form of data pre-conditioning to reduce the
complexity of equivalence test [45].
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computed table, 3) memory management to speed up computa-
tion, and 4) chain variable reordering to minimize the BBDD
size. We discuss in details each point hereafter.
1) Unique Table: BBDD nodes must be stored in an efficient

form, allowing fast lookup and insertion. Thanks to canonicity,
BBDD nodes are uniquely labeled by a tuple {CVO-level,
-child, -attribute, -child}. A unique table maps each

tuple {CVO-level, -child, -attribute, -child} to its corre-
sponding BBDD node via a hash-function. Hence, each BBDD
node has a distinct entry in the unique table pointed by its
hash-function, enabling a strong canonical form representation
for BBDDs.
Exploiting this feature, equivalence test between two BBDD

nodes corresponds to a simple pointer comparison. Thus, lookup
and insertion operations in the unique table are efficient. Before
a new node is added to the BBDD, a lookup checks if its corre-
sponding tuple {CVO-level, -child, -attribute, -child} al-
ready exists in the unique table and, if so, its pointed node is
returned. Otherwise, a new entry for the node is created in the
unique table.
2) Boolean Operations Between BBDDs: The capability to

apply Boolean operations between two BBDDs is essential to
represent and manipulate large combinatorial designs. Conse-
quently, an efficient algorithm to compute , where is
any Boolean function of two operands and are two ex-
isting BBDDs, is the core of our manipulation package. A re-
cursive formulation of , in terms of biconditional expan-
sions, allows us to take advantage of the information stored in
the existing BBDDs and hence reduce the computation com-
plexity of the successive operation. Algorithm 1 shows the out-

line of the recursive implementation for . The input of
the algorithm are the BBDDs for , and the two-operand
Boolean function that has to be computed between them. If
and are identical, or one of them is the sink 1 node, the op-

eration reaches a terminal condition. In this case, the re-
sult is retrieved from a pre-defined list of trivial operations and
returned immediately (Alg.1 ). When a terminal condition is
not encountered, the presence of is first checked in
a computed table, where previously performed operations are
stored in case of later use. In the case of positive outcome, the
result is retrieved from the computed table and returned imme-
diately (Alg.1 ). Otherwise, has to be explicitly com-
puted (Alg.1 ). The top level in the CVO for is deter-
mined as with its referred as to

, respectively, for the sake of simplicity. The root node for
is placed at such level and its children computed recur-

sively. Before proceeding in this way, we need to ensure that the
two-variable biconditional expansion is well defined for both
and , particularly if they are single variable functions. To ad-
dress this case, single variable functions are prolonged down
to through a chain of consecutive BBDD nodes.
This temporarily, and locally, may violate reduction rule R4 to
guarantee consistent - and -edges. However, rule R4 is en-
forced before the end of the algorithm. Provided such handling
strategy, the following recursive formulation, in terms of bicon-
ditional expansions, is key to efficiently compute the children
for

(5)

The term represents the -child for the root of
while the term represents the -child. In

, the Boolean operation needs to be updated ac-
cording to the regular/complemented attributes appearing in the
edges connecting to and . After the recursive calls
for and return their results, re-
duction ruleR4 is applied. Finally, the tuple {top-level, -child,
-attribute, -child} is found or added in the unique table and

its result updated in the computed table.
Observe that the maximum number of recursions in (5) is

determined by all possible combination of nodes between the
BBDDs for and . Assuming constant time lookup in the
unique and computed tables, it follows that the time complexity
for Algorithm 1 is , where and are the number
of nodes of the BBDDs of and , respectively.
3) Memory Management: The software implementation of

data-structures for unique and computed tables is essential to
control the memory footprint but also to speed-up computation.
In traditional logic manipulation packages [10], the unique and
computed tables are implemented by a hash-table and a cache,
respectively. We follow this approach in the BBDD package,
but we add some specific additional technique. Informally, we
minimize the access time to stored nodes and operations by dy-
namically changing the data-structure size and hashing function,
on the basis of a quality metric.
The core hashing-function for all BBDD tables is the Cantor

pairing function between two integer numbers [44]

(6)
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Fig. 6. Variable swap involving the CVO levels ( , ), ( , ), and ( , ). Effect on nodes
at level (a) (b) and (c).

which is a bijection from to and hence a per-
fect hashing function [44]. In order to fit the memory capacity
of computers, modulo operations are applied after the Cantor
pairing function allowing collisions to occur. To limit the fre-
quency of collisions, a first modulo operation is performed with
a large prime number , e.g., , for statistical
reasons. Then, a final modulo operation resizes the result to the
current size of the table.
Hashing functions for unique and computed tables are ob-

taining by nested Cantor pairings between the tuple elements
with successive modulo operations.
Collisions are handled in the unique table by a linked list for

each hash-value, while, in the computed table, the cache-like
approach overwrites an entry when collision occurs.
Keeping low the frequency of collisions in the unique and

computed tables is of paramount importance to the BBDD
package performance. Traditional garbage collection and dy-
namic table resizing [10] are used to address this task. When
the benefit deriving by these techniques is limited or not
satisfactory, the hash-function is automatically modified to
rearrange the elements in the table. Standard modifications of
the hash-function consist of nested Cantor pairings reordering
and resizing of the prime number .
4) Chain Variable Reordering: The chain variable order for

a BBDD influences the representation size and therefore its ma-
nipulation complexity. Automated chain variable reordering as-
sists the BBDD package to boost the performance and reduce
the memory requirements. Efficient reordering techniques for
BDDs are based on local variable swap [46] iterated over the
whole variable order, following some minimization goal. The
same approach is also efficient with BBDDs. Before discussing
on convenient methods to employ local swaps in a global re-
ordering procedure, we present a new core variable swap oper-
ation adapted to the CVO of BBDDs.

BBDD CVO Swap: Variable swap in the CVO exchanges the
s of two adjacent levels and and updates the neighbor
s accordingly. The effect on the original variable order ,

from which the CVO is derived as per (4), is a direct swap of
variables and . Note that all the nodes/functions con-
cerned during a CVO swap are overwritten (hence maintaining
the same pointer) with the new tuple generated at the end of the
operation. In this way, the effect of the CVO swap remains local,
as the edges of the above portion of the BBDD still point to the
same logical function.
A variable swap involves three CVO levels

( , ), ( , ) and
( , ). The level must be considered as
it contains in the variable , which is the swapped
at level . If no level exists ( is the top level),
the related operations are simply skipped. In the most general
case, each node at level , and has 8, 4, and 2
possible children on the portion of BBDD below level . Some
of them may be identical, following to reduction rules R1–4, or
complemented, deriving by the -edges attributes in their path.
Fig. 6 depicts the different cases for a general node located
at level , or , with all their possible children. After
the swap , the order of comparisons
is changed to and the children of must be
rearranged consequently . Using the transitive
property of equality and congruence in the binary domain, it is
possible to remap into as

(7)

Following remapping rules in (7), the children for can
be repositioned coherently with the variable swap. In Fig. 6,
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the actual children rearrangement after variable swap is shown.
In a bottom-up approach, it is possible to assemble back the
swapped levels, while intrinsically respecting reduction rules
R1–4, thanks to the unique table strong canonical form.
BBDD Reordering Based on CVO Swap: Using the previ-

ously introduced CVO swap theory, global BBDD reordering
can be carried out in different fashions. A popular approach for
BDDs is the sifting algorithm presented in [46]. As its formu-
lation is quite general, it happens to be advantageous also for
BBDDs. Its BBDD implementation works as follows: Let be
the number of variables in the initial order . Each variable is
considered in succession and the influence of the other variables
is locally neglected. Swap operations are performed to move
in all potential positions in the CVO. The best BBDD size
encountered is remembered and its position in the CVO is
restored at the end of the variable processing. This procedure is
repeated for all variables. It follows that BBDD sifting requires

swap operations.
Evolutions of the original sifting algorithm range between

grouping of variables [48], simulated annealing techniques [49],
genetic algorithms [50] and others. All of them are in principle
applicable to BBDD reordering. In any of its flavors, BBDD re-
ordering can be applied to a previously built BBDD or dynam-
ically during construction. Usually, the latter strategy produces
better results as it permits a tighter control of the BBDD size.

IV. BBDD REPRESENTATION: THEORETICAL AND
EXPERIMENTAL RESULTS

In this section, we first show some theoretical properties for
BBDDs, regarding the representation of majority and adder
functions. Then, we present experimental results for BBDD
representation of MCNC and HDL benchmarks, accomplished
using the introduced BBDD software package.

A. Theoretical Results

Majority and adder functions are essential in many digital
designs. Consequently, their efficient representation has been
widely studied with state-of-art decision diagrams. We study
hereafter the size for majority and adders with BBDDs and we
compare these results with their known BDD size.
1) Majority Function: In Boolean logic, the majority func-

tion has an odd number of inputs and an unique output. The
output assumes the most frequent Boolean value among the in-
puts.With BBDDs, the function has a hierarchical struc-
ture. In Fig. 7, the BBDD for is depicted, highlighting
the hierarchical inclusion of and . The key con-
cepts enabling this hierarchical structure are as follows:

M1) -edges reduce to : when two in-
puts assume opposite Boolean values they do not affect the
majority voting decision;
M2) consecutive -edges fully-determine
voting decision: if over (odd) inputs have the same
Boolean value, then this is the majority voting decision
value.

The M1 condition traduces in connecting -edges to the
BBDD structure for , or to local duplicated nodes
with inverted children (see grey nodes in Fig. 7).

Fig. 7. BBDD for the 7-input majority function. The inclusion of MAJ and
MAJ functions is illustrated. Grey nodes are nodes with inverted children due
to to majority reduction.

The M2 condition implies consecutive BBDD nodes
cascaded through -edges.
Note that the variable order is not affecting the BBDD struc-

ture for a function as its behavior is invariant under input
permutations [21].
Theorem 3: A BBDD for the majority function of (odd)

variables has nodes.
Proof: The M2 condition for requires

nodes while the M1 condition needs the BBDD structure
for . Consequently, the number of BBDD nodes is

with (including
the sink node) as boundary condition. This is a nonhomoge-
neous recurrence relation. Linear algebra methods [26] can
solve such recurrence equation. The closed-form solution is

. Q.E.D.
Note that with standard BDDs, the number of nodes is

[21]. It follows that
BBDDs are always more compact than BDDs for majority, e.g.,
the BBDD for the 89-inputs majority function has 1982 nodes
while its BDD counterpart has 2026 nodes. These values, and
the law of Theorem 3, have been verified experimentally.
2) Adder Function: In Boolean logic, a -bit adder is a func-

tion computing the addition of two -bit binary numbers. In
many logic circuits, a -bit adder is represented as cascaded
1-bit adders. A 1-bit binary adder, commonly called full adder,
is a 3-input 2-output Boolean function described as

and . The BBDD for the
full adder is depicted by Fig. 8.
With BBDDs, the 1-bit adder cascading concept can be natu-

rally extended and leads to a compact representation for a gen-
eral -bit adder.
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Fig. 8. Full adder function with BBDDs, variable order .

Fig. 9. BBDD for the 3-bit binary adder function, variable order
.

In Fig. 9, the BBDD of a 3-bit binary adder , with
and , employing variable order

, is shown.
3) Theorem 4: A BBDD for the -bit binary adder

function has nodes when the variable order
is imposed.

Proof: The proof follows by induction over the number of
bit and expanding the structure in Fig. 9. Q.E.D.
Note that the BDD counterpart for -bit adders (best) or-

dered with has
nodes [21]. For -bit adders, BBDDs save about 40% of the
nodes compared to BDDs. These results, and the law of The-
orem 4, have been verified experimentally.

B. Experimental Results

The manipulation and contruction techniques described in
Section III-E are implemented in a BBDD software package
[18] using C programming language. Such package currently
counts about 8k lines of code. For the sake of comparison, we
consider CUDD [10] (manipulation package for BDDs) and
puma [11] (manipulation package for KFDDs). We examine

three categories of benchmarks: 1) MCNC suite, 2) portion
of Open Cores designs, and 3) arithmetic HDL benchmarks.
CUDD and puma packages read BLIF format files while
the BBDD package reads a Verilog flattened onto primitive
Boolean operations. The appropriate format conversion is
accomplished using ABC synthesis tool [51]. For all packages,
dynamic reordering during construction is enabled and based
on the original sifting algorithm [46]. For puma, also the choice
of the most convenient decomposition type is enabled. The ma-
chine running the experiments is a Xeon X5650 24-GB RAM
machine. We verified with Synopsys Formality commercial tool
the correctness of the BBDD output, which is also in Verilog
format.
Table I shows the experimental results for the three packages.

Note that the sizes and runtime reported derives from heuristic
techniques, so better results may exist. Therefore, the following
values provide an indication about the practical efficiency of
each decision diagram but do not give the means to determine
if any of them is globally superior to the others.
MCNC Benchmarks: For large MCNC benchmarks, we re-

port that BBDDs have an average size 33.5% and 12.2% smaller
than BDDs and KFDDs, respectively. Regarding the runtime,
the BBDD is 1.4 and 1.5 faster than CUDD and puma, re-
spectively. By handling two variables per time, BBDDs unlock
new compact representation opportunities, not apparent with
BDDs or KFDDs. Such size reduction is responsible for the
average runtime reduction. However, the general runtime for a
decision diagram package is also dependent on the implementa-
tion maturity of the techniques supporting the construction. For
this reason, there are benchmarks like C5315 where even if the
final BBDD size is smaller than BDDs and KFDDs, its runtime
is longer as compared to CUDD and puma, which have been
perfected and highly optimized during years. Further runtime
improvements are expected with next releases of the BBDD
package.
Open Cores Benchmarks: Combinational portions of Open

Cores circuits are considered as representative for contempo-
rary real-life designs. In this context, BBDDs have, on average,
30.9% and 20.9% fewer nodes than BDDs and KFDDs, respec-
tively. The average runtime is roughly the same for all packages.
It appears that such benchmarks are easier than MCNC, having
fairly small sizes and negligible runtime. To test the behavior of
the packages at their limit we consider a separate class of hard
circuits.
Arithmetic HDL Benchmarks: Traditional decision diagrams

are known to face efficiency issues in the representation of
arithmetic circuits, e.g., multipliers. We evaluate the behavior
of the BBDD package in contrast to CUDD and puma for
some of these hard benchmarks, i.e., a 10 10-bit multiplier,
a 32-bit width square root unit, a 20-bit hyperbola and a 16-bit
divisor. On average, BBDDs are about 5 smaller than BDDs
and KFDDs for such benchmarks. Moreover, the runtime of the
BBDD package is 4.4 faster than CUDD and puma. These
results highlight that BBDDs have an enhanced capability to
deal with arithmetic intensive circuits, thanks to the expressive
power of the biconditional expansion. A theoretical study to
determine the asymptotic bounds of BBDDs for these functions
is ongoing.
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TABLE I
EXPERIMENTAL RESULTS FOR DD CONSTRUCTION USING BBDDS, BDDS, AND KFDDS

V. BBDD-BASED SYNTHESIS AND VERIFICATION

This section showcases the interest of BBDDs in the auto-
mated design of digital circuits, for both standard CMOS and
emerging technologies. We consider the application of BBDDs
in logic synthesis and formal equivalence checking tasks for a
real-life telecommunication circuit.

A. Logic Synthesis

The efficiency of logic synthesis is key to realize profitable
commercial circuits. In most designs, critical components are
arithmetic circuits for which traditional synthesis techniques
do not produce highly optimized results. Indeed, arithmetic
functions are not natively supported by conventional logic
representation forms. Differently, BBDD nodes inherently act
as two-variable comparators, a basis function for arithmetic
operations. This feature opens the opportunity to restructure
arithmetic logic via BBDD representation.
We employ the BBDD package as frontend to a commercial

synthesis tool. The BBDD restructuring is kept if it reduces the
original representation complexity, i.e., the number of nodes and
the number of logic levels. Starting from a simpler description,
the synthesizer can reach higher levels of quality in the final
circuit.

B. Formal Equivalence Checking

Formal equivalence checking task determines if two versions
of a design are functionally equivalent. For combinational por-
tions of a design, such task can be accomplished using canonical
representation forms, e.g., decision diagrams. BBDDs can speed
up the verification of arithmetic intensive designs, as compared
to traditional methods, thanks to their enhanced compactness.
We employ BBDDs to check the correctness of logic opti-

mization methods by comparing an initial design with its opti-
mized version.

C. Case Study: Design of an Iterative Product Code Decoder

To assess the effectiveness of BBDDs for the aforementioned
applications, we design a real-life telecommunication circuit.
We consider the Iterative Decoder for Product Code from Open
Cores. The synthesis task is carried out using BBDD restruc-
turing of arithmetic operations for each module, kept only if ad-
vantageous. The formal equivalence checking task is also car-
ried out with BBDDs with the aim to speed-up the verification
process. For the sake of comparison, we synthesized the same
design without BBDD restructuring and we also verified it with
BDDs in place of BBDDs.
As mentioned in Section I, one compelling reason to study

BBDDs is to provide a natural design abstraction for emerging
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TABLE II
EXPERIMENTAL RESULTS FOR BBDD-BASED DESIGN SYNTHESIS AND VERIFICATION

technologies where the circuit primitive is a comparator, whose
functionality is natively modeled by the biconditional expan-
sion. For this reason, we target two different technologies: 1) a
conventional CMOS 22-nm technology and 2) an emerging con-
trollable-polarity DG-SiNWFET 22-nm technology. A specific
discussion for each technology is provided in the following sub-
sections while general observations on the arithmetic restruc-
turing are given hereafter.
The Iterative Decoder for Product Code consists of eight main

modules, among them two are sequential, one is the top entity,
and six are potentially arithmetic intensive. We process the six
arithmetic intensive modules and we keep the restructured cir-
cuits if their size and depth are decreased. For the sake of clarity,
we show an example of restructuring for the circuit bit_com-
parator. Fig. 10(a) depicts the logic network before processing
and Fig. 10(b) illustrates the equivalent circuit after BBDD-re-
structuring. BDD nodes due to rule R4 are omitted for sim-
plicity. An advantage in both size and depth is reported. Table II
shows the remaining results. BBDD-restructuring is favorable
for all modules except ext_val that instead is more compact in
its original version. The best obtained descriptions are finally
given in input to the synthesis tool.
1) CMOS Technology: For CMOS technology, the design re-

quirement is a clock period of 0.6 ns, hence a clock frequency
of 1.66 GHz. The standard synthesis approach generates a neg-
ative slack of 0.12 ns, failing to meet the timing constraint. With
BBDD-restructuring, instead, the timing constraint is met (slack
of 0.00 ns), which corresponds to a critical path speedup of
1.2 . However, BBDD-restructuring induces a moderate area
penalty of 9.6%.
2) Emerging DG-SiNWFET Technology: The control-

lable-polarity DG-SiNWFET technology features much more
compact arithmetic (XOR, MAJ, etc.) gates than in CMOS,

Fig. 10. Representations for the bit_comparator circuit in [47] (inverters are
bubbles in edges). a) original circuit b) BBDD rewriting, BDD nodes are omitted
for the sake of illustration.

enabling faster and smaller implementation opportunities. For
this reason, we set a tighter clock constraint than in CMOS, i.e.,
0.5 ns corresponding to a clock frequency of 2 GHz. Direct syn-
thesis of the design fails to reach such clock period with 0.16 ns
of negative slack. With BBDD-restructuring, the desired clock
period is instead reachable. For DG-SiNWFET technology, the
benefit deriving from the use of BBDDs is even higher than
in CMOS technology. Indeed, here BBDD-restructuring is ca-
pable to bridge a negative timing gap equivalent to 32% of the
overall desired clock period. For CMOS instead the same gap is
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just 20%. This result confirms that BBDDs can further harness
the expressive power of emerging technologies as compared
to traditional synthesis techniques alone. Furthermore, the area
penalty relative to BBDD-restructuring for DG-SiNWFET
technology is decreased to only 3.3%.
3) Combinatorial Verification: The verification of the com-

binatorial portions of the Iterative Decoder for Product Code
design took 185.11 s with BBDDs and 208.80 s and with tra-
ditional BDDs. The size of the two representations is roughly
the same, thus the 12% speed-up with BBDDs is accountable
to the different growth profile of the decision diagrams during
construction.

VI. CONCLUSION

Following the trend to handle ever-larger designs, and in light
of the rise of emerging technologies based on new Boolean
primitives, the study of innovative logic representation forms
is of paramount importance. In this paper, we proposed Bicon-
ditional BDDs, a new canonical representation form driven by
the biconditional expansion. BBDDs implement an equality/in-
equality switching paradigm that enhances the expressive power
of decision diagrams. Moreover, BBDDs natively models the
functionality of emerging technologies where the circuit prim-
itive is a comparator, rather than a simple switch. Employed in
electronic design automation, BBDDs 1) push further the effi-
ciency of traditional decision diagrams and 2) unlock the po-
tential of promising post-CMOS devices. Experimental results
over different benchmark suites, demonstrated that BBDDs are
frequently more compact than other decision diagrams, from
1.1 to 5 , and are also built faster, from 1.4 to 4.4 . Con-
sidering the synthesis of a telecommunication circuit, BBDDs
advantageously restructure critical arithmetic operations.With a
22-nmCMOS technology, BBDD-restructuring shorten the crit-
ical path by 20%.With an emerging 22-nm controllable-polarity
DG-SiNWFET technology, BBDD-restructuring shrinks more
the critical path by 32%, thanks to the natural correspondence
between device operation and logic representation. The formal
verification of the optimized design is also accomplished using
BBDDs in about 3 min, which is about 12% faster than with
standard BDDs.

REFERENCES

[1] C. Y. Lee, “Representation of switching circuits by binary-decision
programs,” Bell Syst. Tech. J., vol. 38, no. 4, pp. 985–999, 1959.

[2] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., vol.
100, no. 6, pp. 509–516, 1978.

[3] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Trans. Comput., vol. 100, no. 8, pp. 677–691,
Aug. 1986.

[4] C. Yang and M. Ciesielski, “BDS: A BDD-based logic optimization
system,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst.,
vol. 21, no. 7, pp. 866–876, Jul. 2002.

[5] S. Malik et al., “Logic verification using binary decision diagrams in a
logic synthesis environment,” in Proc. IEEE Int. Conf. Comput. Aided
Design, 1988, pp. 6–9.

[6] M. S. Abadir et al., “Functional test generation for digital circuits using
binary decision diagrams,” IEEE Trans. Comput., vol. 100, no. 4, pp.
375–379, Apr. 1986.

[7] C. Scholl, R. Drechsler, and B. Becker, “Functional simulation using
binary decision diagrams,” in Proc. IEEE Int. Conf. Comput. Aided
Design, 1997, pp. 8–12.

[8] U. Kebschull, W. Rosenstiel, and E. Schubert, “Multilevel logic
synthesis based on functional decision diagrams,” in Proc. IEEE Eur.
Conf. Design Automat., 1992, pp. 43–47.

[9] R. Drechsler et al., “Ordered Kronecker functional decision diagrams-a
data structure for representation and manipulation of Boolean func-
tions,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol.
17, no. 10, pp. 965–973, Oct. 1998.

[10] CUDD: CU Decision Diagram Package Release 2.5.0 [Online]. Avail-
able: http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.html

[11] Decision Diagram-Package PUMA [Online]. Available: http://ira.in-
formatik.uni-freiburg.de/software/puma/pumamain.html

[12] M. De Marchi et al., “Polarity control in double-gate, gate-all-around
vertically stacked silicon Nanowire FETs,” in IEEE Electron Devices
Meet., 2012, p. 8.

[13] Y. Lin et al., “High-performance carbon nanotube field-effect tran-
sistor with tunable polarities,” IEEE Trans. Nanotechnol., vol. 4, no.
5, pp. 481–489, Sep. 2005.

[14] N. Harada et al., “A polarity-controllable graphene inverter,” Appl.
Phys. Lett., vol. 96, no. 1, p. 012102, 2010.

[15] D. Lee et al., “Combinational logic design using six-terminal NEM re-
lays,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol.
32, no. 5, pp. 653–666, May 2013.

[16] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Biconditional BDD:
A novel canonical representation form targeting the synthesis of XOR-
rich circuits,” in Design, Automat. Test Eur., 2013, pp. 1014–1017.

[17] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “An efficient manipu-
lation package for biconditional binary decision diagrams,” in Design,
Automat. Test Eur., 2014, pp. 296–301.

[18] BBDD Package [Online]. Available: http://lsi.epfl.ch/BBDD
[19] K. Levitz, Logic and Boolean Algebra. New York: Barrons, Feb.

1979.
[20] G. De Micheli, Synthesis and Optimization of Digital Circuits. New

York: McGraw-Hill, 1994.
[21] I. Wegener, Branching Programs and Binary Decision Diagrams:

Theory and Applications. Philadelphia, PA: SIAM, 2000, vol. 4.
[22] M. Kreuzer and L. Robbiano, Computational Commutative Algebra.

Berlin, Germany: Springer, 2005, vol. 1.
[23] R. E. Bryant, “On the complexity of VLSI implementations and graph

representations of boolean functions with application to integer mul-
tiplication,” IEEE Trans. Comput., vol. 40, no. 2, pp. 205–213, Feb.
1991.

[24] J. Gergov and C. Meinel, “Mod-2-OBDDs A data structure that
generalizes EXOR-sum-of-products and ordered binary decision
diagrams,” Formal Methods Syst. Design, vol. 8, no. 3, pp. 273–282,
1996.

[25] B. Bollig, “Improving the variable ordering of OBDDs is NP-com-
plete,” IEEE Trans. Comput., vol. 45, no. 9, pp. 993–1002, Sep. 1996.

[26] T. Koshy, Discrete Mathematics With Applications. New York: Aca-
demic, 2004.

[27] T. S. Czajkowski and S. D. Brown, “Functionally linear decomposition
and synthesis of logic circuits for FPGAs,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 27, no. 12, pp. 2236–2249,
Dec. 2008.

[28] J. F. Groote and J. Van de Pol, “Logic for programming and automated
reasoning,” in Equational Binary Decision Diagrams. Berlin, Ger-
many: Springer, 2000.

[29] S. Minato, “Zero-suppressed BDDs for set manipulation in combi-
natorial problems,” in Proc. IEEE Conf. Design Automat., 1993, pp.
272–277.

[30] C. Meinel, F. Somenzi, and T. Theobald, “Linear sifting of decision
diagrams,” in Proc. IEEE Conf. Design Automat., 1997, pp. 202–207.

[31] W. Gunther and R. Drechsler, “BDD minimization by linear transfor-
mations,” in Adv. Comput. Syst., 1998, pp. 525–532.

[32] M. Fujita, Y. Kukimoto, and R. Brayton, “BDD minimization by truth
table permutation,” in Proc. IEEE Int. Symp. Circuits Syst., 1996, pp.
596–599.

[33] E. M. Clarke, M. Fujita, and X. Zhao, “Hybrid decision diagrams,” in
Proc. IEEE Int. Conf. Comput. Aid. Design, 1995, pp. 159–163.

[34] E. I. Goldberg, Y. Kukimoto, and R. K. Brayton, “Canonical TBDD’s
and their application to combinational verification,” in ACM/IEEE Int.
Workshop Logic Synthesis, Tahoe City, CA, 1997.

[35] U. Kebschull and W. Rosenstiel, “Efficient graph-based computation
and manipulation of functional decision diagrams,” in Proc. IEEE Eur.
Conf. Design Automat., 1993, pp. 278–282.

[36] J. E. Rice, “Making a choice between BDDs and FDDs,” in ACM/IEEE
Intl. Workshop Logic Synthesis, Lake Arrowhead, CA, 2005.



500 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 4, NO. 4, DECEMBER 2014

[37] R. Drechsler, “Ordered Kronecker functional decision diagrams und
ihre Anwndung,” in Reihe Informatik. Germany: Modell-Verlag,
1996.

[38] S. Grygiel and M. A. Perkowski, “New compact representation of mul-
tiple-valued functions, relations, non-deterministic state machines,” in
Proc. IEEE Conf. Comput. Design, 1998, pp. 168–174.

[39] A. Srinivasan, T. Kam, S. Malik, and R. Brayton, “Algorithms for dis-
crete function manipulation,” in IEEE Int. Conf. Comput. Aided De-
sign, Nov. 1990, pp. 92–95.

[40] S. Minato et al., “Shared BDD with attributed edges for efficient
boolean function manipulation,” in Proc. IEEE Conf. Design Au-
tomat., 1990, pp. 52–57.

[41] B. Becker and R. Drechsler, “How many decomposition types do we
need?,” in Proc. IEEE Eur. Conf. Design Automat., 1995, pp. 438–442.

[42] B. Becker, R. Drechsler, and M. Theobald, “On the expressive power
of OKFDDs,” Formal Methods Syst. Design, vol. 11, no. 1, pp. 5–21,
1997.

[43] R. Drechsler and B. Becker, Binary Decision Diagrams: Theory and
Implementation. Norwell, MA: Kluwer, 1998.

[44] P. Tarau, Pairing functions, Boolean evaluation and binary decision
diagrams arXiv preprint arXiv:0808.0555, 2008.

[45] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in Proc. IEEE Conf. Design Automat., 1990, pp.
40–45.

[46] R. Rudell, “Dynamic variable ordering for ordered binary decision di-
agrams,” in Proc. IEEE Int. Conf. Comput. Aided Design, 1993, pp.
42–47.

[47] An iterative decoder for product code—From open cores [Online].
Available: http://opencores.org/project,product_code_iterative_de-
coder

[48] S. Panda and F. Somenzi, “Who are the variables in your neighbor-
hood,” in Proc. IEEE Int. Conf. Comput. Aided Design, 1995, pp.
74–77.

[49] B. Bollig et al., “Simulated annealing to improve variable orderings for
OBDDs,” in ACM/IEEE Int. Workshop Logic Synth., Tahoe City, CA,
1995.

[50] R. Drechsler et al., “A genetic algorithm for variable ordering of
OBDDs,” in ACM/IEEE Int. Workshop Logic Synthesis, Tahoe City,
CA, 1995.

[51] ABC Synthesis Tool [Online]. Available: http://www.eecs.berkeley.
edu/~alanmi/abc/

Luca Amarú (S’13) received the B.S. degree in
electronic engineering from Politecnico di Torino,
Torino, Italy, in 2009. In 2011, he received the
joint M.S. degree in electronic engineering from
Politecnico di Torino and Politecnico di Milano,
Milan, Italy. He is currently working toward the
Ph.D. degree in computer and communication sci-
ences at École Polytechnique Fédérale de Lausanne
(EPFL), Integrated Systems Laboratory, Lausanne,
Switzerland.
His research interests include electronic design au-

tomation, beyond CMOS technologies, information and communication theory,
and computer science in general.
Mr. Amarú received the Best Presentation Award at FETCH 2013 conference

and a Best Paper Award Nomination at ASP-DAC 2013 conference.

Pierre-Emmanuel Gaillardon (S’10–M’11) re-
ceived the electrical engineer degree from CPE Lyon,
Villeurbanne, France, in 2008, the M.Sc. degree
from INSA Lyon, Villeurbanne cedex, France, in
2008, and the Ph.D. degree in electrical engineering
from the University of Lyon, Lyon, France, in 2011.
He works as a Research Associate at the

Laboratory of Integrated Systems (LSI), École Poly-
technique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland. Previously, he was a research assistant
at CEA-LETI, Grenoble, France. Involved in the

Nanosys project, his research activities and interests are currently focused on
emerging nanoscale devices and their use in digital circuits and architectures.
Dr. Gaillardon is recipient of the C-Innov 2011 best thesis award and the

Nanoarch 2012 best paper award. He has been serving as TPC member for
Nanoarch 2012, 2013 conferences and is reviewer for several journals (AIP
APL, IEEE TNANO, IEEE TVLSI, ACM JETC), conferences (ICECS 2012,
ISCAS 2013) and funding agencies (ANR, Chairs of Excellence program of
Nanosciences Foundation).

Giovanni De Micheli (F’94) received the nuclear
Eng. degree from Politecnico di Milano, Milan,
Italy, in 1979, and the M.S. and Ph.D. degrees in
electrical engineering and computer science from
the University of California, Berkeley, CA, USA, in
1980 and 1983, respectively.
He is a Professor and the Director of the Institute of

Electrical Engineering and of the Integrated Systems
Centre at EPF Lausanne, Lausanne, Switzerland. He
is a Program Leader of the Nano-Tera.ch program.
His research interests include several aspects of

design technologies for integrated circuits and systems, such as synthesis for
emerging technologies, networks on chips and 3-D integration. He is also
interested in heterogeneous platform design including electrical components
and biosensors, as well as in data processing of biomedical information. He
is author of “Synthesis and Optimization of Digital Circuits” (McGraw-Hill,
1994), co-author and/or co-editor of eight other books and of more than 500
technical articles. His citation h-index is 84 according to Google Scholar.
Dr. DeMicheli is a Fellow of ACM and a member of the Academia Europaea.

He is member of the Scientific Advisory Board of IMEC and STMicroelec-
tronics. He is the recipient of the 2012 IEEE/CAS Mac Van Valkenburg award
for contributions to theory, practice, and experimentation in design methods and
tools and of the 2003 IEEE Emanuel Piore Award for contributions to com-
puter-aided synthesis of digital systems. He received also the Golden Jubilee
Medal for outstanding contributions to the IEEE Circuits and Systems Society
in 2000, the D. Pederson Award for the best paper on the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN (CAD)/INTEGRATED CIRCUITS AND SYSTEMS
(ICAS), in 1987, and several Best Paper Awards, including Design Automa-
tion Conference (DAC) in 1983 and 1993, Design, Automation, and Test in Eu-
rope (DATE) in 2005, and Nanoscale Architectures in 2010 and 2012. He has
been serving IEEE in several capacities, namely: Division 1 Director during
2008–2009, the Co-Founder and President Elect of the IEEE Council on Elec-
tronic Design Automation during 2005–2007, the President of the IEEE CAS
Society in 2003, an Editor-in-Chief of the IEEE TRANSACTIONS ON CAD/ICAS
during 1987–2001. He has been the Chair of several conferences, including
DATE in 2010, Public Health Conferences in 2006, IEEE International Con-
ference on Very Large Scale Integration in 2006, DAC in 2000, and IEEE In-
ternational Conference on Computer Design in 1989.


