A Control Flow Prototype for a Dose Recommending
Device for Chronic Myeloid Leukemia Patients

Alena Simalatsar', Wengi You', Dechao Sun', Verena Gotta*?, Nicolas Widmer?,
Giovanni De Michelit

1 Ecole Polytechnique Fédérale de Lausanne, Switzerland
2 School of Pharmaceutical Sciences, University of Lausanne and Geneva,

o o Switzerland . o .
3 Division of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois and

University of Lausanne, Switzerland

ABSTRACT

In this paper we present a prototype of a control flow for an a pos-
teriori drug dose adaptation for Chronic Myelogenous Leukemia
(CML) patients. The control flow is modeled using Timed Au-
tomata extended with Tasks (TAT) model. The feedback loop of
the control flow includes the decision-making process for drug dose
adaptation. This is based on the outputs of the body response model
represented by the Support Vector Machine (SVM) algorithm for
drug concentration prediction. The decision is further checked for
conformity with the dose level rules of a medical guideline. We
also have developed an automatic code synthesizer for the icycom
platform as an extension of the TIMES tool.
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1. INTRODUCTION

The patient treatment phase of a medical procedure, once the di-
agnosis has been performed and a specific treatment protocol has
been chosen, has usually a long duration. For example it can last for
years for some chronic diseases, like Chronic Myeloid Leukemia.
Therefore, patients can benefit from the automation of treatment
process, which may both improve therapy effectiveness and lifestyle
quality. Moreover, the average quality of patients treatment would
benefit a lot from the process personalization and adaptation to pa-
tients’ specific parameters that may widely vary. The behavior of
drug dispensing devices is defined by the software running on them
which may involve a personalized decision-making process based
on the evaluation of specific patient conditions. A successful ex-
ample of the treatment process automation are the various models
of insulin infusion pump developed to ease the lifestyle of diabetic

patients. The drug dose adjustment procedure for Chronic Myeloid
Leukemia patients is different and requires monitoring of other pa-
tient parameters. The therapeutic range of the drugs used to treat
dynamically progressing Leukemia is narrow and, therefore, there
is a very high risk of patients over- or under-dosing, which can
cause various adverse events or have no positive effect on patient
state respectively. Therefore, the control flow with a feedback of a
potential infusion pump for Chronic Myeloid Leukemia patients is
an absolutely new design task with specific requirements.

When treating patients medical doctors are often following med-
ical Guidelines (GLs) that are also called clinical protocols. The
treatment description includes not only the action-based step-by-
step procedures but also recommendations to the action changes
upon the definition-based response to the treatment also specified
by GLs. Medical GLs synchronize the processes of medical data
acquisition, decision-making and treatment provision. Therefore,
they can be used to build a control flow with a feedback loop for an
autonomous embedded device that also provide adaptation based
on the current patient condition. Due to informal representation,
medical GLs often suffer from structural problems that introduce
additional difficulties to the GLs implementation as a control flow.
In our previous works [18,19] we have proposed to use Timed Au-
tomaton extended with Tasks (TAT) [7] model, an extension of the
Timed Automaton (TA) [6], for medical GLs formal representation
and validation of the structural properties.

Imatinib is a drug used to treat patients with newly diagnosed
Philadelphia positive (Ph+) Chronic Myelogenous Leukemia (CML),
Gastrointestinal Stromal Tumors (GISTs) and a number of other
malignancies. In this paper we present a prototype of an a pos-
teriori imatinib dose adaptation control flow for a closed-loop au-
tonomous device. The control flow can be then analyzed in TIMES
tool [1] and synthesized into the executable C code for icycom [2]
embedded platform. The feedback loop decision-making process
of the control flow is performed based on the personalized pre-
diction of drug concentration values in the blood computed us-
ing the Support Vector Machine (SVM) algorithm [27,28]. The
parametrized version of the SVM algorithm allows modeling of the
complete concentration-time curve. This way we are able to cal-
ibrate the curve every time when a new real drug concentration
measurement is given. We can also take into consideration the ef-
fect of the residual drug concentration after previous intakes with
is essential for a device performing continues dose adjustment.



The paper is organized as follows. Section 2 presents some
related work and summarizes the medical GLs formalization ap-
proach. We also give an example of modeling the imatinib dose
adjustment part of the protocol using TAT. Section 3 presents a
general control flow and the details of the feedback loop realiza-
tion, while subsection 3.1 describes the parametrized SVM algo-
rithm used as a body reaction model. In Section 4 we introduce the
actual control flow. Section 5 discusses the code synthesis aspect of
the control flow. In Section 6 we discuss the perspective evalution
of the presented work. Section 7 concludes the paper.

2. BACKGROUND INFORMATION

There have been many frameworks and languages [10,13,20,23,
24] developed in the past years in order to assist medical doctors as
well as patients. Many of them such as PRODIGY [13], EON [24],
GLIF3 [10], PROforma [20], SAGE [23] represent a class of tools
used to build complex decision-support systems. They adapt flow-
charts as a core formalism to represent a sequence of actions that
are supported by ontology based medical terminology interpreta-
tion modules. Most of these tools also provide links to patients’
databases. However, they enable validation of GLs structure only
by means of their formal representation and have no support for the
automatic verification of their formal properties. There exist frame-
works such as GLARE [22] and Asbru [11] that provide transla-
tion links to model checking environments such as SPIN [3] and
SMV [4]. However, if a verified property fails it is difficult to trace
back the result needed to change the initial protocol model. More-
over, these formalisms provide the notion of time only in terms of
actions order and association of time periods with respect to the
patient condition evaluation, which enables only the validation of
GLs structure. While, it is important to be able to map medical
actions into the time scale in order to verify timing properties of
a GL and thus close the gap of medical software and hardware in-
teroperability. In [19] we have used the Timed Automata extended
with Tasks (TAT) models of computation, a well-known approach
for modeling the behavior of a real-time system, for medical GLs
interpretation.

As an example, here we present a TAT model of a small part of
the well known dose adjustment medical guideline for an adult pa-
tient of the drug called imatinib, marketed by Novartis as Gleevec
or Glivec. Itis a drug used to treat Chronic Myelogenous Leukemia
(CML), Gastrointestinal Stromal Tumors (GISTs) and a number of
other malignancies. A complete text of the imatinib drug adminis-
tration protocol can be found here [5].

The model depicted on Figure 1 includes only a small part of the
imatinib GL describing the dose adjustment model for an adult pa-
tients with newly diagnosed Ph+ Chronic Myeloid Leukemia (CML)
for whom bone marrow transplantation is not considered as the first
line of treatment. A more complete model can be found in [18].

The dose should be administered once a day. Medical tests of
the level of neutrophils (N_N) and platelets (N_T') are usually per-
formed every 2 weeks. The dose adjustment model uses the latest
data of the medical tests and adjust the dose and intake interval of
the drug. The recommended dose of imatinib is 400 mg/day for pa-
tients in the chronic phase (transition (<) from Init to chronic_p)
of CML and 600 mg/day for patients in the accelerated phase (Init
< blast_accel) of CML. Therefore, the first two transitions of the
model represent the choice of the treatment according to the patient
condition.

The dose may be increased from 400 mg to 600 mg in patients
with the chronic phase of the disease (chronic_p — LoL_resp) or
from 600 mg to a maximum of 800 mg given as 400 mg twice daily
(blast_accel — LoL_resp and pl = p2, where p2 = half day) in
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Figure 1: Drug delivery, measurements and imatinib dose ad-
justment models

patients with accelerated phase or blast crisis in case of: (i) dis-
ease progression at any time; (ii) failure to achieve a satisfactory
hematological or cytogenetic response; or (iii) loss of a previously
achieved hematological and/or cytogenetic response.

In the chronic phase of CML, marked with a rectangle in Fig-
ure 1, if the level of neutrophils (ANC) goes below 1.0 x 10%/1
(N_N<=n_lowerB) and/or level of platelets goes below 50 x 10%/1
(N_T<=t_lowerB), then the following actions can be taken:

1. Stop imatinib until ANC >1.5 x 10°/1 and platelets >75 x
10°/1 (chronic_p < anemia_ch);

2. Resume treatment with imatinib at previous dose, (anemia_ch
< chronic_p, N_fails accounts to the number of anemia oc-
currences);

3. Inthe event of recurrence of ANC <1.0 x 10%/1 and/or platelets
<50 x 10%/1, repeat step 1 and resume imatinib at reduced
dose of 300 mg (anemia_ch — repetitive_anemia);

The treatment of a patient in the accelerated phase of CML or in
the blast crisis (starting dose 600 mg) is represented in the lower
part of Figure 1.

Formal representation of a medical GL is understandable by a
machine. Thanks to the GL representation with TAT we can per-
form its structural validation as was presented in [18] and fix certain
problem. When being combined with the technical requirements
for an embedded system it can be used to build a medical guideline
oriented system aimed to assist medical doctors in patients treat-
ment. From the system design point of view a patient is a reactive
system that responds to any treatment events. This way we need to
approach the task of medical systems design as of a cyber-physical
system where the actions of the cyber part are changing with re-
spect to the state of a physical system.

In [14] authors present a formal approach to the development
of a Generic Patient Controlled Analgesic (GPCA) infusion pump.
They approach the problem of the safety-assured development of
the pump software by using TA model. From the point of view
of an embedded system design we take a similar approach to drug
dose administration support system modeling. However, our sys-
tem has different requirements and principals. Their system feed-
back loop monitors the parameters that indicate the event of patient
over-dosing (going above certain boundary). In our case we guard
two boundary conditions that may indicate over- or under-dosing of
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Figure 2: General feedback loop control flow

a patient. Moreover, the monitored parameters are different. What
is more important, the feedback-loop of the control flow presented
in Section 4 includes an algorithm able to predict the patient state in
a personalized manner. The use of the algorithm allows to prevent
adverse events of medication.

3. FEEDBACK LOOP REALIZATION

Figure 2 depicts our representation of a general control flow with
the feedback loop for an autonomous drug administration support
device. It starts with an initial decision-making process that pro-
vides the initial dose and intake interval. The drug administration
block can either perform the actual drug delivery or remind a pa-
tient or a caregiver when the drug needs to be administrated and
with what dose for oral drugs such as imatinib [5]. Once the drug
is administered, it is essential to evaluate the effect of the treatment
reflected in the evaluation of body reaction block of the diagram.
The decision regarding the next dose is then take based on the body
reaction (the decision-making block) and must conform with the
medical GL for this specific drug administration (check conformity
with GL rules). This way we have a cyclic procedure with a feed-
back loop. Further in the text we will refer to the design of a control
flow for an embedded device that can either perform the automatic
drug delivery, or remind a medical doctor or a patient when a spe-
cific dose need to be administered/taken.

The realization of a feedback loop for a medical system requires
a patient body reaction model, that can provide us with the infor-
mation about the response to the treatment required by the medical
GL. The GL model in turn should be able to react according to the
new data. Unfortunately, the GL model presented above requires a
body model that can return the level of White Blood Cells (WBC),
e.g., neutrophils and platelets, which is hard to build. Moreover,
even if such patients model exists, the GL model presented above
does not account for other patient features and thus does not pro-
vide personalization.

Various clinical studies show that responsiveness to the treatment
with drugs depends on the concentration of the drug in patient’s
blood that depends on patients features, drug dose and intake in-
terval. Pharmacokinetics (PK) is a branch of pharmacology fo-
cused on studying the drug disposition in the human body. For lots
of drugs the concentration in patient’s blood is highly related to
its effects. Pharmacodynamics (PD) is the study of the biochem-
ical and physiological effects of drugs on the body. Therapeutic
Drug Monitoring (TDM) [15] is the approach that unifies the PK-
PD knowledge. The concentration in the patient’s blood may be
closely related to the drug effect (PK-PD relationship). Drugs with
clear PK-PD relationships and a narrow therapeutic range may be
easily under- or overdosed. The intervention of TDM and dosage
individualization can help keeping the drug concentration within

the limited ranges provided by the PD studies. The real TDM mea-
surement procedure is quite slow (takes about a day), expensive
and requires an invasive measurement of individual drug concen-
tration. Currently, when treating Chronic Myeloid Leukemia TDM
is performed only in case of adverse events or suboptimal response
in order to figure out whether it is related to over- or under dos-
ing or not. This way, when applying TDM, an algorithm that is
able to compute the drug concentration in patients blood at certain
point, would not only represent a surrogate of body reaction and
thus close the loop of the control flow but also lower the costs of
the real TDM.

Recently, the SVM-based algorithm has shown a great poten-
tial in drug concentration prediction [26-28] without requiring a
measurement of individual drug concentration. This algorithm is
trained with data (a library) that include real measured values of
imatinib concentration obtained trough routine TDM with corre-
sponding patients parameters. The collection of such library data
is time consuming and thus expensive. However, once the data are
available, they can be used by the SVM algorithm with no addi-
tional cost. This way it opens new possibility in patient treatment
procedures. However, in case of Chronic Myeloid Leukemia the
TDM can not be used as a standalone approach should not con-
tradict with the existing approved GL presented in Section 2. Ac-
cording to [8] the response evaluation is performed every 3 months.
The formal model of response evaluation is presented in [18]. The
check for quantitative adverse events is usually performed every 2
weeks, especially at the beginning of the treatment.

When applying the SVM algorithm each following drug concen-
tration must account for the residual concentration in the blood.
Therefore, we need to keep track of the concentration values af-
ter each dose intake and thus performe SVM computation every
day even though the drug concentration may not undergo drastic
changes in one day. The more frequent application of the TDM or
its replacement with an algorithm, can improve the quality of treat-
ment by preventing adverse events and lack of response caused by
the suboptimal dosage. It is also possible to appropriately adjust
the dose when the previous intake was missed out. The dose adjust-
ment can be finer (e.g. 50mg) compared to the one of the approved
imatinib GL (100mg). We only need to make sure that the dose and
intake interval values adapted according to the algorithmic com-
putation corrected from time-to-time with a real measurement lay
within the ranges allowed by the approved GL.

This way we can extract the following rules that need to be
checked in the check conformity with GL rules block of Figure 2:

1. dose >= 300 - the minimum dose assigned should be not less
then 300mg;

2. dose <= 800 - the maximal dose assigned should be not more
then 800mg;

3. dose >= 800 — p:=p/2, dose:=dose/2 - when the dose is
equal (or greater) than 800mg it should be administrated in
two shots.

3.1 Parameterized Support Vector Machine Al-
gorithm

In this section we present a patient body (physical) model that is
able to predict the drug concentration values over time required by
the TDM approach to modify the behavior of the cyber part of our
medical system. The Support Vector Machine(SVM) model able
to predict the drug concentration in the blood was initially devel-
oped to support medical doctors in the clinical routine. There, in
the simplest case, once a new patient comes, an initial dose is deter-
mined based on a population value estimated from the library data.



This first dose computation is called an a priori drug dose adap-
tation. However, the real measurements of the drug concentration
need to take place in order to make sure that drug concentration is
within the therapeutic range defined by the PD studies. If it is too
high or too low the dose needs to be decreased or increased, respec-
tively, which is known as an a posteriori drug dose adaptation. The
population based dose prescription does not guarantee that the new
patient and the library datasets have similar conditions. The SVM-
based first dose estimation, in turn, is able to take into consideration
the patient’s features and then predicts the drug concentrations at a
specific time or the concentration curves from which a dose can be
derived.

The initial Support Vector Machine(SVM) algorithm applied to
do the point-wise prediction of the drug concentrations in patients
blood, has been already presented in our previous works [27, 28].
Later it was enhanced with the RANSAC algorithm [26] to in-
crease the precision of the prediction. Though, the visualization
of the concentration-time curve is important for the PK-PD stud-
ies. An analytical formula that would capture the shape informa-
tion of the curve is essential when we need to calibrate the curve,
as needed in the a posteriori drug dose adaptation. Newly mea-
sured concentration values or the residual concentration of the drug
in the blood after previous drug intakes (e.g. at 24 hours) can be
used for curve calibration and accounting for consequent multiple
doses. Parameterized Support Vector Machine (ParaSVM) uses the
curve parametrized database build using the RANSAC algorithm
as in [26] as an input. RANSAC is an algorithm to separate inliers
and outliers from a set of (noisy) data with respect to the given basis
functions. In short, it randomly selects a very small subset of the
given input data, computes the weights of each basis function con-
sidering the small subset, and then determines the inliers and out-
liers for the rest of the data with a given distant value (threshold).
Here, instead of separating inliers and outliers, RANSAC algorithm
is first applied to compute the basis functions of the concentration-
time curve. Then it is also applied to compute the weights of the
basis functions for each patient that form the Parameter Library
used as the training data.

3.1.1 SVM-based Parametrization (ParaSVM)

In case of modeling NN patient samples, the form of patient sam-
ples becomes (z;, 91, -~ ,y’,--- ,yi ), where i is the ID of a
sample i € {1,2---, N}, y? denotes the j-th parameter value of
this patient, and /N P is the number of parameters. The goal is to
find N P linear functions f7(x) = w? - ¢7(x) 4 b; to describe the
relationship between the dataset points and estimate the parame-
ter value y according to a new input dataset. For that we need to
minimize the following modified objective function:

min of[w|l® +Co D>yl —w’ ¢ (@) =V (1)

j=1i=1

Applying Lagrangian analysis to solve the optimization problem of
objective function, we obtain w as:

N
w = Z ol ¢’ (z;) (2)

i=1
Combining Equation (1) and (2), we can obtain a linear system to:
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where each entry of the kernel matrix K7 is defined to be K gb =

@ (x4)T ¢7 (xp). Therefore, the prediction function becomes: f7 ()
211'\7:1 qu;Kj (.ZCi, :c) + bj.
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Figure 3: An examples of parametrically refined drug Concen-
tration to Time Curve (dCT). Upper curve: dCT curve com-
puted by ParaSVM; lower (curve: dCT curve adjusted with
one measurement; cross: new real measured concentrations;
circle: predicted concentration based on the dCT curve. Dot-
ted black circle: measured point chosen for curve adjustment.
X-axis: time [h], Y-axis: concentration value [1g/L]

In the a posteriori dose adaptation, we refine the predicted drug
concentration curve computed by ParaSVM. First of all we still
need to compute the initial concentration curve, the one that starts
with a 0 residual drug concentration. Therefore, we set the follow-
ing conditions to obtain the first refined curve:

e Starting point of the concentration curve should be less than
or close to 0:

}E}}) fconcentration(t) S 07 (4)

e Ending point of the concentration curve should be less than
or close to 0:

hm fconcent'ration(t) S 0 (5)

t—T

where 1" is determined as the time when the concentration
curve drops below 0, i.e. T' = 72h (at least 3 days);

e After giving the dose, the concentration value should start
growing with time:
8 trati
fCOanT; ration ‘t:O > 0; (6)
e After several hours, the concentration value reaches the peak
value and starts to decrease:

afconcentration

ot

where T, is a time point after the peak value, i.e. we set it as
T, = 24, since imatinib need to be administered once a day.

=1, <0, (7

e The concentration curve whose shape is the most similar com-
pared with the one predicted from ParaSVM will be chosen:

min Z (vl —y')? (8)
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Figure 4: An example of multi-dose estimation of the dCT
curves for 10 days.

where y? stands for the predicted parameters using ParaSVM
for the concentration curve and y;. denotes the parameters for
the refined curve.

Figure (3) shows an example of parametrically refined drug con-
centration curves. The upper curve on the figure indicates the pre-
dicted concentration curve without refinement while the lower one

is the refined concentration curve according to the rules listed above.

Crosses stand for the newly-measured concentration values and cir-
cles are the predicted concentrations with respect to the measuring
time. One measured value is randomly picked up for the refinement
which is indicated by a dotted black circle. Therefore, in the dot-
ted black circle, the cross value should appear in the same position
as the red circle, and the accuracy improvement can be calculated
from the remaining points. In Figure 3 the refined concentration
curve improves the prediction accuracy for the other two measure-
ments with respect to the measurement in the dotted circle.

3.1.2  Multiple Dose Analysis

Knowing how the concentration varies with respect to multiple
doses is essential for a continues drug dose adapting procedure. As
it takes usually more than 24 hours for a drug to be cleared out
from the human body, we have to consider the residual concentra-
tion values from the previous dose(s). Such curve adjustment, as
presented above, can be used to account for this. Figure 4 shows an
example of estimating the drug concentration over 10 days based
on ParaSVM taking into account the residual drug concentrations.
In an a posteriori case, after we adjust the concentration curve
with a given measurement, the multi-dose concentration-time curve
can be obtained. From this curve, it is visually easy to obtain the
peak and trough concentration values and to check whether they are
within the therapeutic ranges or not. From Figure 4 we can easily
see, that the residual concentration affects both the peak and trough
concentration values. We can also see that if patients parameters
do not change we can enter into a steady state of drug concentra-
tion. However, this steady state can be easily disturbed by such
external events as patient parameters changes, miss of a dose or
complementary medication.

4. THE CONTROL FLOW

In the previous sections we have briefly described an approach
to formal representation of a medical GL showcasing it with an ex-
ample of modeling a small part of the well-known imatinib dose
adjustment guideline (see Section 2). In Section 3 we have de-
scribed our approach to the feedback loop realization, where the
body reaction model is represented by the Parametric SVM algo-

rithm described in details in Section 3.1. In this section we present
an executable control flow that refines the one presented in Sec-
tion 3 combining body reaction model, GL rules and results of the
pharmacodynamics (PD) studies.

The control flow that can be executed on an embedded electronic
device is presented in Figure 5. Following the general feedback
loop control flow of Figure 2 it is divided into initial decision-
making, drug delivery, body reaction, decision making and check
for conformity with GL rules blocks. The flow has fixed values for
the intake intervals: one day p2 or half a day p3; while the dose can
be changed with more fine than in currently applied imatinib GL
values defined by the parameter A 4,5¢ (e.g., 50 mg).

The flow starts with the initialization of the peripheral of an em-
bedded device. Here the daily dose is also initialized with a person-
alized values (d_dose:=init_dose) after being computed externally
using the SVM-based algorithm taking into account all the patient
features. The period p is first set to one day (p:=p2) in case the
initial dose value is less then 800 mg, while the actual dose to be
administrated is set to the daily dose (dose:=d_dose).

The drug delivery block is composed of main and deliver blocks.
Here we will stay in the main block until clock T is less then intake
period p. Once the condition 7> >= p holds we transit to the de-
liver block, where either the drug is automatically administrated, in
case of an implantable device or a reminder is given to a user. Im-
mediately after each drug administration the body reaction must be
evaluated where SVM-based prediction of the drug concentration
performed in the SVM-TDM block. The algorithmic computation
of the body reaction is performed every time after the drug admin-
istration (every day or half a day), while the clinical measurement
of the drug concentration is performed (every period p1, e.g. ev-
ery 2 weeks). The value of the real measurement is further used to
correct the SVM-TDM algorithm.

In the decision-making block the decision about increasing, de-
creasing or keeping the dose is taken. In the present example we
assume that the trough concentration value Cy,ir, (at 24 or 12 hours
after the last intake) should lay within the 750:1500 pg/l range
(750 pg/l<= Cmin <= 1500 pg/l) [12,25]. If Cmin<750 ug/l
the daily dose will be increased (d_dose += Agosc) and decreased
in case Crmin>1500 ug/l.

In the next block we check if the value of the daily dose and
intake interval are conformed with the rules defined in Section 3.
For example, when d_dose>800 mg the period must be set to half
day interval and the dose divided by 2 for each drug administration.
The alarm (alarmi!) will be also generated since the maximal dose
defined by imatinib GL is exceeded. The period will be set back
to one day next time only after the d_dose falls down to 600 mg.
An alarm (alarm2!) will be generated when we reach the minimal
dose value defined in imatinib GL.

S. IMPLEMENTATION

The model presented above is directly implementable with TAT
in TIMES toolbox. There might be several variations of the im-
plementation mainly concerning the small operations with intake
interval and dose values when the dose must be administrated in 2
shots. They can be implemented either as functional tasks associ-
ated with corresponding locations, or as assignments of the corre-
sponding transitions. The SVM-TDM algorithm is quite compli-
cated and must be modeled as a locations associated task. The con-
trol flow represented with TAT is synthesizable either into an exe-
cutable code for an embedded platform or into a decision-support
tool. When implementing the control flow as an embedded soft-
ware it is essential to perform schedulability analysis, which check
that none of the task deadlines will be actually missed, considering
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the chosen scheduling policy and tasks parameters, such as worst-
case execution time.

TIMES toolbox implements TAT model and has already pro-
vided a platform independent code synthesizer, that is able to gen-
erate parts of the code that do not include any functions specific to
an embedded platform. Among the most essential platform depen-
dent code parts we can name the automatically generated Makefile,
initialization of the platform peripherals, and, the most important,
operations with clocks. We have extended the existing TIMES code
synthesizer in order to be able to generate the executable code for
icycom platform [2]. The code generator is based on platform in-
dependent code generator of TIMES with several features added.
Further we describe some details of the new code generator imple-
mentation.

5.1 System Initializing and the Initial Task

Each embedded platform needs to be initialized at the begin-
ning. Therefore, we have added an obligatory Init location with
an associated initialization task that can be modified and adapted
for any target platform independently from the control flow. In the
generated code, the platform initialization part is completed at the
beginning of the main function, in the SYSTEM_START() proce-
dure. The Init function is present in our control flow depicted on
Figure 5. It has to run before all other tasks and be executed only
once. In this task, the libraries and the initializing procedures of
the optional peripheries are included. Besides that, the MACRO
functions defined in this task can be used in all other task. Based
on the periphery libraries in this task, the corresponding symbols
will be added to the Makefile automatically.

5.2 The Global Variables Passing

The synchronization using global variables is not a trivial task.
We had to rework the implementation of the global variables pass-
ing in the new code generator, since we often use it in our case

studies, e.g. when modifying the dose and intake interval values.
The global variables defined in TAT can be evaluated and set in the
guard and assignments of the automata network, as well as in the
task body. If a global variable is used in a task, it has to be added to
the input of the task body editor in TIMES. The value of the global
variable in this case is copied to a local variable when the task is
added to the queue. During the task running, the local variable is
used in the task body, rather than the global one. After the task
body is finished, the value of the local variable will be copied back
to the global one. That is to say, the local value used in a task body
equals to the global value when the task is added to the queue. The
transient value of local variable during the task body execution will
not affect the global one. The value of the global variable will be
changed by the task body only when the task body is finished.

If the maximum number of the equal tasks in the queue is greater
than 1, then we need to use more local variables. The local vari-
ables for the same task work like a FIFO. The task body first added
to the queue takes the first local variable. If the second one is added
to the queue before the first task of the same type is finishes, the
current, not yet modified, value of the global variable will be stored
at the second position of local variables FIFO. The third task will
store the current values of the global variable at the third position
and so on. If the first task finishes, the value of the first local vari-
able will be copied to the global one and the value in the second
position of the local variables FIFO will be copied to the first one,
the value of the third one will be copied to the second one, etc.
The time diagram for global variable passing is presented in Fig-
ure 6. Let’s assume that we have a model with two tasks except
the init one and a global variable dose. One task named dose_adj
adjusts the value of the global variable, and the other task named
dose_deliver delivers the drug based on the value of the global
variable. The maximum number of the dose_deliver task in the
task queue is two and the maximum number of the dose_adj task is
one. The behavior of tasks is shown in the upper graph while the
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Figure 6: A example for the global variable handling

changes of the global and local variables are shown in the lower
one in the Figure 6. We can see the execution of the Init function
before any task. Then the dose_adj task is added to the queue at the
2nd cycle and keeps running for 5 cycles. When it is added to the
task queue, the value of the global_dose is copied to the local vari-
able, dose_adj_0_local_dose. The local variable changes during
the task dose_adj task execution. After the dose_adj task finishes,
the value of dose_adj_0_local_dose is copied to the global one, so
the global_dose is changed at the 7th cycle. The dose_deliver task
is added to the queue in the 4th cycle. The global variable copied
to the dose_deliver_0_local_dose variable still has the unchanged
initial one. Thus, the first dose_deliver task running during the
8th and 9th cycle is based on the initial value of dose. The second
dose_deliver task is added to the task queue in the 8th cycle and the
updated global variable is copied to the dose_deliver_1_local_dose
variable. When the first dose_deliver task is finished, the value of
the dose_deliver_1_local_dose variable is copied to the dose_deliver
_0_local_dose variable and further used by the second dose_deliver
task. This way of handling global variables passing is valid only for
the First Come First Serve scheduling policy. For other scheduling
policy, since the order of tasks execution might change dynami-
cally, the scheme will be more complicated. It is essential to be
aware of the global variables passing mechanism when building
new models.

6. DISCUSSION

Using TAT for modeling medical GLs as well as a control flow
is not a unique approach. However, TAT has several advantages.
First of all it has a notion of time and allows us modeling of the
choice of sequential actions based on specific conditions mapped
to the time scale. It enables the modeling of several plans with
periodically repeating actions that can be executed in parallel with
other actions. It can associate tasks with locations to model simple
actions (e.g., computational blocks or medical tests) that need to
be finished before certain deadline. When the model is executed a
task will be added to the scheduling queue whenever an associated
location is reached. The tasks will be then executed in a scheduler
defined order. TAT is expressive enough to represent the step-by-
step actions of medical GLs.

Furthermore, it is able to assist a designer in correcting structural
problems of the GLs such as incompletenesses, inconsistencies,
ambiguity and redundancies and provides the verification abilities
of the methodology. TIMES [1], the tool that implements TAT, in-
cludes a model-checker engine that supports verification of system
properties. Therefore, when the protocol is formally represented
with TAT we are able to perform an automatic verification of the

protocol structural properties, such as the reachability/non reacha-
bility of some states, or to be able to find a path that would avoid
certain actions, e.g. surgery or chemotherapy. A big variety of
properties to be verified can be found in [9,16,21]. As was already
described in Section 5 a medical protocol represented using TAT
can be turned into a fully deterministic model [7] thus enabling the
code synthesis in two different directions: (i) to produce a person-
alized decision-support tool adapted for a patient conditions similar
to the idea of [17] or (ii) to do the code synthesis for an executable
code an embedded system as in [14]. The main control flow of
the electronic devices as well as a complementary decision-support
system should be based on parts of the same medical GL.

When synthesizing a decision-support tool we can create a frame-
work that would assist a doctor in suggesting the steps in time
that need to be taken in general patient treatment procedure. Pa-
tient condition include not only the parameters of his/her state but
also the combination of diseases and therefore treatment proce-
dures with their effects that may interfere, and thus create other
complications, not related to the initial disease. Patient treatment
procedure often includes the combination of more than one stan-
dard medical treatment GL. Therefore, it is important to be able
to synthesize a patient-oriented personalized decision-support tool
from a complex model of cooperating formal representations of the
GLs that may interfere with each other.

The control flow presented in this paper can be extended to add
more features. It can not only perform the computation of specific
values (dose or drug administration period), but also communicate
with an external server that performs this computation in order to
receive the updated values, trigger the operational code that reads
and analyzes data coming from the sensor, activate the actuators of
the chip or send recommending alarms.

7. CONCLUSION

In this paper we have presented prototype of the imatinib dose
adjustment control flow for the personalized a posteriori drug dose
adaptation using Timed Automata extended with Tasks(TAT). When
implemented in TIMES the control flow is synthesizable into an
executable code for the icycom embedded platform using our ex-
tended platform independent code generator. The feedback loop of
the control flow includes the parametrized Support Vector Machine
(SVM) algorithm based model of the body reaction that is able to
predict the drug concentration over time curve in the patients blood
in a personalized manner. The drug concentration value is com-
pared with the therapeutic range defined by the Pharmacodynamics
(PD) studies of imatinib and decision about the modification of the
drug dose (increase or decrease) and the intake time interval for a
new patient with certain parameters is then taken. The dose value is
then checked for conformity with the dose level rules of the medical
GL. We also show that the control flow conforms with the currently
approved imatinib protocol. Such concept will have to be validated
with real clinical data.
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