
BioNanoSci. (2013) 3:378–393
DOI 10.1007/s12668-013-0103-8

Personalized Drug Administrations Using Support Vector
Machine
A New Approach in Computer-Aided Dose Analysis

Wenqi You · Alena Simalatsar · Nicolas Widmer ·
Giovanni De Micheli

Published online: 22 August 2013
© Springer Science+Business Media New York 2013

Abstract The decision-making process regarding drug
dose, regularly used in everyday medical practice, is critical
to patients’ health and recovery. It is a challenging pro-
cess, especially for a drug with narrow therapeutic ranges, in
which a medical doctor decides the quantity (dose amount)
and frequency (dose interval) on the basis of a set of avail-
able patient features and doctor’s clinical experience (a
priori adaptation). Computer support in drug dose adminis-
tration makes the prescription procedure faster, more accu-
rate, objective, and less expensive, with a tendency to reduce
the number of invasive procedures. This paper presents an
advanced integrated Drug Administration Decision Sup-
port System (DADSS) to help clinicians/patients with the
dose computing. Based on a support vector machine (SVM)
algorithm, enhanced with the random sample consensus
technique, this system is able to predict the drug concentra-
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École Polytechnique Fédérale de Lausanne,
Lausanne, 1015 Switzerland
e-mail: wenqi.you@epfl.ch

A. Simalatsar
e-mail: alena.simalatsar@epfl.ch

N. Widmer
Pharmacien responsable TDM, Division de Pharmacologie et
Toxicologie cliniques CHUV, Hopital de Beaumont,
1011 Lausanne, Switzerland
e-mail: nicolas.widmer@chuv.ch

G. De Micheli
Institute of Electrical Engineering,
Integrated Systems Centre, EPFL,
Lausanne 1015, Switzerland
e-mail: giovanni.demicheli@epfl.ch

tion values and computes the ideal dose amount and dose
interval for a new patient. With an extension to combine
the SVM method and the explicit analytical model, the
advanced integrated DADSS system is able to compute drug
concentration-to-time curves for a patient under different
conditions. A feedback loop is enabled to update the curve
with a new measured concentration value to make it more
personalized (a posteriori adaptation).

Keywords Drug dose computation · Support vector
machine · Decision support system

1 Introduction

In current clinical pharmacology, the initial drug dose is
chosen on the basis of previous medical experiences. It can
be consequently modified based on the presence of adverse
events or nonresponsiveness of a patient to the treatment.
However, this experience-driven method is not suitable to
many kinds of drugs. There is a small group of medicines,
i.e., drugs for treating HIV, cancers, etc., whose effective
therapeutic concentration range is quite narrow, and there-
fore, there is a very high risk to under- or overdose a
patient. Underdosing will lead to an ineffective treatment,
while overdosing will expose the patient to a risk of toxi-
city. Thus, controlling the drug concentration to be within
the therapeutic range is essential to properly carry out the
clinical monitoring; in other words, it is necessary to know
how the human body affects the drug dissipation studied
by the population pharmacokinetics (PK). The PK stud-
ies together with the therapeutic ranges provided by the
pharmacodynamics (PD) studies on the drug effects form
the initial ground for the quantitatively justified decision
making regarding the dose adaptation.
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Medical decisions are critical to patients’ health; the
effective use of medical resources [1] and a proper medi-
cal decision may improve the quality of health care service.
Decision support systems (DSSs) are computer-based infor-
mation systems that support decision-making activities [2].
Clinical DSSs (CDSSs) form a special class of DSSs that
are designed to aid clinical decision making according to
the characteristics of an individual patient. This software
is based on a computerized clinical knowledge or expertise
and can generate recommendations for a specific patient [3].
In this paper, we focus on a specific class of health-care
procedures that we would like to support with a CDSS, i.e.,
the personalized computation of a suitable drug dose for
a new patient based on the prediction of the blood drug
concentration taking into account patient’s features. There
have been several models developed in support of PK stud-
ies that are able to predict the drug concentration in the
blood. These models can be classified as analytical [4] and
statistical [5]. The analytical models are able to account
only for the variables with real values, while binary-valued
variables, such as gender, create strong discontinuities in
the models and are, in general, not taken into account by
the methods. Moreover, the analytical models are based on
differential equations that are hard to modify if we were
to add new parameters. The main drawback of the sta-
tistical approach, including the Bayesian approach [6], is
that it requires knowledge on data distributions, such as
mean and/or deviation values. For newly developed drugs
which do not have sufficient studies on the patients, it is
difficult to give a proper mean or deviation value to com-
pute the concentrations for the following patients. In our
previous works, we have briefly presented a personalized
drug concentration prediction method—the support vector
machine (SVM)-based algorithm [7, 8]. In [9], we enhanced
the prediction accuracy of the algorithm. In [10], we pre-
sented a drug concentration-to-time (DCT) curve prediction
approach, parameterized SVM, which combines the SVM
and analytical models.

In this paper, we present a systematic combination of
the various parts of the algorithm into an advanced Drug
Administration Decision Support System (DADSS) that is
aimed to assist medical doctors in decision making regard-
ing the drug dose adaptation during the different phases of
the treatment. We show a detailed step-by-step elaboration
of the SVM-based prediction algorithm, comparison, and
interrelation and evaluation of its various parts under a dif-
ferent point of view. DADSS is able to recommend the dose
and the intake time interval for a new patient in a person-
alized manner. The core prediction algorithm is represented
with two optional algorithms: a point-wise prediction of the
drug concentration in patient blood, essential for the a priori
drug dose adaptation, and the parametrized SVM that allows
the modeling of the concentration–time curve instead of the

prediction of unique drug concentration point. This exten-
sion also gives a possibility to study the effect of the residual
drug concentration after previous intakes, which is essential
for the a posteriori drug dose adaptation. The parametrized
SVM algorithm does not show a major enhancement in
accuracy compared to the point-wise prediction SVM algo-
rithm with random sample consensus (RANSAC); however,
it allows the visualization of the DCT curve and curve
adaptation with real therapeutic drug monitoring (TDM)
measurements.

The paper is organized as follows. Section 2 introduces
the fundamental knowledge on clinical decision support sys-
tem and the related work in domains using a support vector
machine. Section 3 talks about the background information
of our research, including the addressed problems, termi-
nologies used in the paper, and the statistics of the drug
imatinib. Section 4 presents the DADSS combining our pre-
vious work and extends to analyzing within different dose
groups. Section 5 draws the conclusion of this study.

2 Related Work

In this section, we first talk about the background of deci-
sion support system. Then we introduce the SVM algorithm
and its applications in various decision support domains.

2.1 Clinical Decision Support System

In the literature, there exist many definitions of a deci-
sion support system according to various purposes, within
which clinical DSSs form a special type of DSSs that pro-
vide clinicians with medical guidelines of best practices
in patient care according to clinical knowledge. Previous
studies [11–14] on comparing clinical DSSs to the pro-
fessional clinicians have concluded that using a reliable
clinical DSS helps improve the patients’ treatment process
in effectiveness and safety. Hickling et al. [15] have also
shown that some measurements of blood plasma during
treatments helps increase the accuracy of blood concentra-
tion analysis for one individual. In [16], the authors have
demonstrated that using the Bayesian approach other than
empirical choice can reduce the number of hospital stay so
as to save the cost.

When one develops a CDSS, the two main problems
that need to be addressed are as follows: (1) the medical
knowledge acquisition, which is devoted to build a medi-
cal knowledge database in a structural way, and (2) medical
knowledge representation, which analyzes the data of the
medical databases in order to produce inferences helping in
medical decision making. Many tools aimed at combining
knowledge acquisition and representation were developed
in the past three decades. These tools form a class of
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knowledge-based decision support systems among which
we can name PROforma [17], Prodigy [18], EON [19],
GLIF [20], SAGE [21], Guide [22], GLARE [23] and
Asbru [24], and [25]. They approach the problem of gen-
eralization of medical guideline (GL) representation. How-
ever, due to the big variety of the GLs and information
sources as well as the continuous growth of the medical
knowledge database, there has been no common standard
for GL representation presented until now. The proposed
integrated DADSS system will be applied as part of the
computer-assisted medical guideline control flow to pre-
dict the concentration values and therefore give the advice
on dose amount and time interval for a patient. It can be
considered as a solid brick for a general decision support
system aimed at assisting medical doctors when applying
the therapeutic drug monitoring approach. For instance,
it can close the verification loop of the TAT-based med-
ical protocol representation [26] by bridging the model-
ing gap between treatment and patient’s reaction to the
treatment.

2.2 Support Vector Machines

Machine learning has been applied with some success to
solve classification problems in computer vision and pattern
recognition in the past few decades [27].

Four of the most representative machine learning tech-
niques are decision trees, neural networks (NN), support
vector machine, and AdaBoosting (AB). With the extension
to solve regression problems, these techniques became pop-
ular in various domains such as image superresolution [28],
object tracking [29], etc. Among the four, decision trees
(DT) is the simplest and thus the fastest approach, but it is
not as precise as the other three, especially for regression
to give a prediction on continuous numbers [30]. NN is the
oldest technique of the four, inspired from neurobiological
knowledge, but it is often regarded as a black box due to
the high complexity of the model it builds [31]. SVM uses
a nonlinear mapping to transform the original training data
into a higher dimensional space, within which it searches
for the linear optimal separating hyperplane, or “decision
boundary” to separate the two classes [32]. It is convenient
both due to its clear mathematical understanding and its
control of the overfitting problem. AB is a meta-algorithm
used in conjunction with other weak classifiers iteratively,
but it is sensitive to outliers or noisy data [33].

Here, we have chosen the SVM technique for our model-
ing system because of its appropriate complexity, efficiency,
and strength in data regularization [34]. It was invented by
Vapnik in 1979 and applied to classification and regres-
sion problems in 1995 [35]. Besides common areas such as
object recognition, handwritten digit detection, etc., SVMs
have also been applied in decision support systems where

prediction-based decision making is required. In [36], the
authors use an SVM and an artificial neural network as
bases for their heart disease classification DSS. The SVM
was used to separate the disease data into two classes, show-
ing the presence or absence of heart diseases with 80.41 %
accuracy. In [37], the authors propose a medical diagnosis
DSS with an extension to the SVM algorithm to classify
four types of acid–base disturbance. Besides clinical cases,
SVMs have also been used in DSSs for hard landing of civil
aircrafts [38], electric power information systems [39], etc.
While all these works rely on the classification ability of
SVMs, in our paper, we will present a DSS for drug admin-
istration using SVMs for regression [40] to predict the drug
concentration in the blood and then use it to compute an
appropriate dose and a dose administration interval for a
chosen patient in our decision support system.

3 Background Information

In this section, we introduce the background information of
current therapeutic drug monitoring (Section 3.1) and the
statistics of the drug imatinib in our research (Section 3.2).
The link between our previous work and this manuscript is
also presented.

3.1 Therapeutic Drug Monitoring

The variation of DCT in blood depends on the drug dose
administrated to a patient as well as the patient’s features,
and this dependency is not trivial. PK is a branch of phar-
macology focused on studying the drug dissipation in the
human body, and pharmacodynamics (PD) is the study on
the biochemical and physiological effects of drugs on the
body. In clinical practice, to determine whether a patient is
prescribed a right dose, doctors measure the drug concen-
tration in blood and compare it with the drug’s therapeutic
range. For a drug with a narrow therapeutic range, it is
easy to under- or overdose a patient. The approach that uni-
fies the PK-PD studies in the medical practice focused on
keeping the drug concentration within the limited ranges is
named therapeutic drug monitoring [41]. In general medical
practice, TDM specializes in the measurement of drug con-
centrations in blood by performing regular sampling of the
blood in order to maintain its value within the therapeutic
concentration ranges [42]. It is an invasive, time-consuming,
and quite expensive measurement procedure. Several PK
computational models [42] have been presented earlier to
replace this procedure. However, due to the complexity
of the human body system and many external factors that
may affect the patients’ health condition, it is difficult to
build a general analytical model for the drug concentration
prediction that would be efficient for any patient.
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Ideally, two different therapeutic ranges are defined for a
drug: one for the peak and another one for the trough val-
ues of the drug concentration. Figure 1a, b depicts three
examples of the drug concentration curves each, which
are defined by PK studies. The therapeutic peak range
(PkBDlow up to PkBDup) and the ideal value (PkBDm)
are defined in Fig. 1a, while the trough range (TrBDlow

up to TrBDup) and the ideal value (TrBDm) are presented
in Fig. 1b. The ideal drug concentration curve is the one
whose peak and trough values are as close as possible to the
corresponding ideal peak and trough values.

3.2 Statistics of the Drug Imatinib

Imatinib [6] is a drug used to treat chronic myeloid leukemia
and gastrointestinal stromal tumors, which is considered in
our study. Until now, only a trough therapeutic range of this
drug has been proposed and is presently being validated in
a randomized clinical study in leukemia patients (I-COME;
ISRCTN31181395). The trough range has a lower bound at
750 mg/L, upper bound at 1,500 mg/L, and target value at
1,000 mg/L [43]. The available training data in our research
are 251 collected from 54 patients and 209 testing data from
65 patients, which distribute with respect to different doses
as shown in Table 1. The set of input features of patient
profile data includes gender, age, and body weight, which,
together with the “dose amount”, the “measuring time”,
and the “measured drug concentrations”, consist of the data
library for [7–10].

In [7], we have presented the SVM algorithm for drug
concentration predictions able to account for different fea-
ture parameters of a patient, where we found that the feature
measuring time is the most important feature to calculate
the drug concentration (DC) values in blood. However, the
mean absolute difference (MAD) between the predicted and
the measured concentrations was still large. We concluded

that this large difference was possibly caused by two factors:
(a) measured data samples are noisy and (b) insufficient
types of features are considered. In [9], we applied the ran-
dom sample consensus (RANSAC) algorithm to remove the
“outliers,” or noisy data, from all our data samples and ana-
lyzed the influence of using different features to find the
outliers, which has improved the prediction accuracy. In [8],
we presented a DADSS which uses all the predicted DC val-
ues from 1.0 to 24.0 h after a patient has taken a dose to
compute the ideal dose amount and ideal time interval for
this patient, namely the a priori adaptation, according to the
therapeutic range. The paper also illustrated the potential
feature library to be considered in the future clinical prac-
tice. However, to collect sufficient clinical data on newly
proposed patient features is demanding in the sense of time,
i.e., it will probably take years. Therefore, one solution is to
adjust the predicted concentrations with one or more mea-
sured values, namely the a posteriori adaptation. Neverthe-
less, the previously proposed methods were all considered
to be “point-wise” DC value predictions; hence, it is diffi-
cult to adjust all the DC values given with one measurement.
The analytical model is an effective approach to overcome
this problem, thanks to its explicit description of curve’s
structural information. Current PK model [6] is one of the
commonly used analytical models. However, the basis func-
tions of this PK model rely, exponentially, on several other
parameters such as drug absorption rate and elimination
rate, which might also vary due to an intra-patient variation
of the parameters [7]. On the other hand, explicit PK model
makes it difficult to consider more patient features when
they are available. In [10], we presented a DCT curve pre-
diction approach, parameterized SVM, which combines the
SVM and analytical models. It keeps the merits of SVM,
such as being able to be extended to a larger feature library
in the future, and also adds to the advantages of analytical
model’s being structurally adjustable.

(a) (b)

Fig. 1 a Example of peak concentration range. b Example of trough concentration range. An example of the drug concentration curves intersecting
with the peak and trough therapeutic ranges. The dose of curve (1) is 800 mg; curve (2), 600 mg; and curve (3), 400 mg
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Table 1 Distribution of
patient samples with respect to
different doses in the training
and testing library

Dose unit: mg 100 200 300 400 500 600 700 800 Total

Training library 3 11 18 193 – 10 – 16 251

Testing library 1 1 7 176 1 13 – 10 209

The RANSAC algorithm has been applied to filter the
outliers in both training and testing datasets, while in real
clinical practice, it is hard to distinguish whether a newly
measured concentration value is an outlier or is due to a
sudden intra-variation happening to the patient. Under the
condition that we do not have a sufficient number of fea-
tures, we need to search for a curve adaptation method to
help the prediction to be more personalized for one patient.
In addition, all the analysis in the above work has consid-
ered the dose amount as one of the input features for SVM
to predict the drug concentrations. The results in Table 1
show a large inequality distribution of the samples in dif-
ferent dose groups. Hence, in this paper, we also investigate
the influence of different dose groups on the prediction
accuracy.

4 Decision Support System

The integrated Drug Administration Decision Support Sys-
tem takes, the patient features, as input data, and pro-
duces, as output data, the recommendation for drug’s dose
amount and time interval. As shown in Fig. 2, the original
DADSS system [8] can be viewed as the upper part of the
flowchart which is composed of three main modules: “pre-
process”, “prediction”, and “selection”. The lower part of
the flowchart shows the parameterized SVM and a feedback
loop that uses the measured drug concentration values to
adapt the concentration curve in order to be more person-
alized to a patient. The main differences between the two
parts are: (a) input data: patients’ original features for the
upper part and the generated curve parameters for the lower

part; (b) outputs from the prediction module: predicted con-
centration points for the upper part and predicted parameters
for building the concentration curve for the lower part.

In this section, we discuss the methods used in each
module with detailed experimental comparisons.

4.1 Preprocess Module

Input data, or “training” data to a model, are one of the
fundamental factors in deciding whether the model will be
correctly built and able to predict a future case with a rea-
sonable accuracy. Traditional PK model considers a limited
number of patient features, and, as a result, it does not guar-
antee a good prediction accuracy for a future patient. In
our work, we apply the SVM approach, a method able to
analyze a larger number of features, to tract this problem.
In Section 4.1.1, a set of potentially relevant features are
presented for future clinical study.

As depicted in Fig. 2, there are two types of input
data. The first type is based on the initial dataset that was
provided by Cantonal Hospital of Lausanne, Switzerland
(CHUV). It contains several patient’s feature data such as
age, gender, and body weight for each measured concentra-
tion value corresponding to a time stamp of the measure-
ment, as presented in Section 3.2. The drug concentration
values were collected by CHUV from 2002 to 2004. An
extension of patient feature data is suggested in Section
4.1.1.

The other library, ParaLibrary, is a derivative of the ini-
tial dataset that contains the concentration curve parameters
extracted from the concentration values in the first type of
library. These parameters are obtained using the RANSAC

Fig. 2 Flowchart of the integrated Drug Administration Decision Support System
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algorithm which is originally applied to file out the out-
liers of a dataset (Section 4.1.2) and modified to obtain the
parameters for ParaLibrary (Section 4.1.3).

4.1.1 Extension of Patient Feature Data

As presented in the previous sections, two factors influence
the accuracy of the drug concentration prediction model:

– Accuracy of a measurement, which may introduce noise
in the training/evaluation datasets;

– Limitation of the patients’ feature database, where an
insufficient number of feature could lead to an inaccu-
racy of drug concentration computation.

While it is difficult to adjust the PK method such that it
accounts for a bigger number of features, the SVM approach
is flexible in this term and is able to account for various
patient features, allowing one to study a large number (sev-
eral dozens) of new parameters and determine which are the
important ones. Choosing new valuable features is critical
to enhance the accuracy of the drug concentration predic-
tion, as well as it can be potentially used to enhance the
existing methods. Hence, we present an extension of the
feature database such that it accounts for all kinds of stan-
dard (such as age and weight) and nonstandard (not used
in the current clinical practice) patient features. In Table 2,
we classify the dataset features into three types: patient
profile, physical measurements, and external parameters.

Table 2 List of the three groups of potentially relevant patient
features

Patient profile

Individual features

Age, gender, weight, height, etc.

Clinical features

Diabetes, hypertension, high cholesterol, heart disease, cancer, etc.

Genomic features

Family disease history, gene polymorphism

Physical measurements

Vascular features

Blood sugar, pH value, cholesterol level, etc.

Physical features

Blood pressure, heart rate, renal function, respiration frequency,

respiration rhythm, respiration deepness, etc. External parameters

Symptoms features

Vomiting, fever, dizziness, headache, convulsion, somnolence,

shock, dreams, etc.

Habitual features

Amount of water, milk, smoke, alcohol, tea, coffee, sports, etc.

Environmental features

Humidity, temperatures, pressure, etc.

The patient profile class is given by the user as semi-static
data which rarely change during the treatment. The physical
measurements and the external parameters can be collected
by using clinical tools, questionnaires, etc. [8]. Though the
features are not considered explicitly in the current drug
concentration prediction models, i.e., the PK method, they
are critical to help in determining whether a drug has been
prescribed properly. If we take physical features as an exam-
ple, the abnormal responses of the patient might be a signal
of overdosing, i.e., during the period when the patients take
the drug, there is a sudden and big increase in the blood
pressure.

4.1.2 RANSAC for Filtering Outliers

The preprocess module prepares the input data for the
prediction. Apart from applying RANSAC to remove the
outliers from all the dataset, first of all, the system checks
the completion of patient features. When the features of a
new patient are available only partially, it replaces the miss-
ing data by an average value of the corresponding feature
in the library. Moreover, since each feature considered in
clinical scenarios has different absolute values in different
metrics, we normalize all the feature values using “zero
mean, unit variance” technique as follows:

norm(feature)i = featurei − mean(featurei )

STD(featurei )
(1)

RANSAC is applied between the above two steps.
The RANSAC [44] algorithm works as described in

Algorithm 1. The number of trials M is set to be big enough
to guarantee that at least one of the sets of possible inliers
does not include any outlier with a high probability p. Usu-
ally, p is set to 0.99. Let us assume, that u is the probability
that any selected data point is an inlier, then v = 1 − u is
the probability of selecting an outlier. M trials of sampling
each K data points are required, where 1 −p = (1 −uK)M .
This implies

M = ln(1 − p)

ln(1 − (1 − u)K)
. (2)

From the above algorithm description, we could find that
the RANSAC algorithm, though powerful, does rely on sev-
eral empirical choices: (a) the threshold to decide whether
a point is an outlier or inlier, and (b) the basis functions
used to construct the structure of dataset. Figure 3 shows
an analysis for different thresholds influencing the SVM
prediction accuracy for the training data in different dose
groups. RANSAC is used to select inliers of each dose group
to build the SVM model, and the model is then tested on
the whole training database of the same dose group. The
thresholds vary from 10 to 5,000 with a step of 10 μg/L. The
result shows that small threshold values exclude too many
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Fig. 3 The influence of
prediction accuracy using
different threshold values with
respect to different dose groups

data points, and the resulting inliers are not enough to build
a decent model to predict the concentrations.

The model of the RANSAC algorithm is a linear com-
bination of several basis functions. The number of basis
functions corresponds directly to the minimum number of
points K required to fit the model. The parameters of the
model are the weights of each basis function. Due to the

fact that some dose groups have limited number of train-
ing data, i.e., 100- or 600-mg groups, we would like to keep
the K as small as possible. In the preprocess phase, the
basis of the RANSAC algorithm is chosen to be a combina-
tion of some typical functions: {x−2, x−1, x, x2, x3, log(x),

cos(x), (1 − exp(−x)), exp(x)}. This requires a K = 9
data points to be randomly selected each time to com-
pute the weights of these basis functions. However, in our
experiments, we find that not all the listed basis functions
are utilized to estimate the inliers and outliers. Table 3
shows the utilization results (“1” for “used”, when the cor-
responding weight of the basis function is nonzero; “0” for
“unused”, when the corresponding weight is 0 zero) of each
basis function with respect to different thresholds T h, which
indicates a tolerable difference between the measured con-
centration and the predicted one. In clinical scenario, we
expect that the threshold is as small as possible to min-
imize the prediction inaccuracy. Therefore, we combine
the first two rows of the basis functions and get f (x) =
{x−2, x, x3, log(x), cos(x), (1 − exp(−x)), exp(x)}. How-
ever, the basis functions should also reflect the distribution
of the data points with a meaningful structure. To further
minimize the value of K and as indicated in [6], the values
of drug concentration in blood varying with time, or DCT
curve, follows the specifications of a “concave” form, such
that it monotonically grows in the beginning till reaching
the peak value, and then starts (monotonically) decreas-
ing. Therefore, after evaluating the shape of the above basis
functions, we select f (x) = {x−2, log(x), (1 − exp(−x))}
to be our final ones. We test it on the dose group with
the largest number of data points (400 mg) for each basis
function with a fixed threshold of 500 μg/L. The results
are presented in Fig. 4, where the small cross points are
the training data points and the green circles indicates the
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Table 3 RANSAC basis
function analysis with respect
to different thresholds

T h x−2 x−1 x x2 x3 log(x) cos(x) 1 − exp(−x) exp(x)

250 1 0 1 0 1 1 1 1 0

500 0 0 1 0 0 1 1 0 1

1,000 0 1 0 0 0 0 1 1 0

1,500 0 1 0 0 0 0 0 0 0

selected inliers to compute the parameters for the basis
functions. After combining all the three basis functions,
Fig. 4d depicts the concave DCT curve for the dose group
of 400 mg.

4.1.3 RANSAC for Building ParaLibrary

As discussed in Section 4.1.2, we select f (x) = {x−2,

log(x), (1 − exp(−x))} as our basis functions. The final
curve in Fig. 4d is built by the curve fitting interpolation
using the weighted basis functions. The weights of these
functions will be further named as “parameters.” To build
the parameters’ library, or ParaLibrary, we need to extract
these parameters from each of the training data samples. The
RANSAC algorithm outputs a curve that can be described
as follows:

g(x) = α · f (x) = [α1 α2 α3]
⎡
⎣

x−2

log(x)

1 − e−x

⎤
⎦ (3)

where the set of α’s compose our ParaLibrary. For each
training sample Si , we first collect all the other samples
from the training library with the same dose amount (in the
same dose group). Then the RANSAC algorithm is applied
M times (Algorithm 1). However, apart from selecting the
model by choosing the one with the biggest number of
inliers, we also take into consideration that the target sample
Si has to be an inlier and also be as close to the estimated
RANSAC curve as possible.

4.2 Prediction Module

The prediction module runs an SVM-based drug concen-
tration prediction using the preprocessed data and predicts
the concentration values for a new patient. Instead of solv-
ing a convex quadratic programming problem (QP) as a
theoretical SVM solver, we simply use a least square SVM
(LS-SVM) classifier to give a solution by solving a set of
linear equations [7, 45]. Section 4.2.1 describes the math-
ematics of the LS-SVM algorithm. There, the simulation
results of the influence of the SVM’s hyper-parameters
are also discussed. Section 4.2.2 modifies the LS-SVM
algorithm to predict three parameters {α1, α2, α3} for each
sample of the testing library.

4.2.1 Least Square Support Vector Machine

The goal of SVM is to find a linear function f (x) =
w · φ(x) + b which approximates the relationship between
the training data points and can estimate output y accord-
ing to new input data. Here, φ(x) maps the input samples to
a higher-dimensional feature space by applying a nonlinear
function in the original space; w and b stand for the weights
of the feature space and offset, respectively. To apply the
LS-SVM algorithm for the drug concentration prediction,
we assume that there are N patient samples in the library,
some of which can be obtained from the same patient, in
the form of (xi, yi) ∈ {(x1, y1), · · · , (xN , yN)}, where yi

denotes the drug concentration values, and x is a vector of
d patient features, e.g., age, gender, and body weight [7].

A loss function L(y, f (x)) = (y −f (x))2 [32] is used to
estimate the deviations between the predicted values and the
measured ones. To minimize this loss function and mean-
while to prevent overfitting, SVM adopts the following
objective function:

min
w,b

1

2
‖w‖2 + C0

N∑
i=1

[yi − w · φ(xi) − b]2 (4)

where the constant C0 determines the tradeoff between over-
fitting to the function and the amount up to which deviations
between the predicted and measured values are tolerated.
Note that this objective function has a root-of-sum-of-
square fitting error and a regularization term, which is also
a standard procedure for the training of multilayer percep-
trons and is related to ridge regression [46, 47]. Applying
the Lagrangian analysis to solve the optimization problem
of objective function [45, 47], we see that the optimal w can
always be expressed by the following:

w =
N∑

i=1

αiφ(xi) (5)

Plugging w into Eq. 4, we can estimate α and b by solving
the linear system:
[

K + 1
C0

I 1
1T 0

]

︸ ︷︷ ︸
H

[
α

b

]
=

[
y

0

]
(6)
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(a)

(c) (d)

(b)

Fig. 4 Estimations of different basis functions to the dose group of
400 mg (with the biggest number of data samples). a Basis function
f1(x) = x−2. b Basis function f2(x) = log(x). c Basis function
f3(x) = 1 − e−x . d Applying all basis functions in a, b, and c. Red

curve, estimated RANSAC curve using the given basis function(s);
blue cross point, data samples with dose = 400 mg; green circle point,
selected inliers by RANSAC

where K is the kernel matrix defined by Kab =
φ(xa)

T φ(xb). The use of the kernel matrix greatly helps
in reducing the computational complexity without explic-
itly computing φ(x), making use of the fact that the SVM
algorithm depends only on dot products between sample
patterns. Hence, after defining the kernel function, the least
square optimization problem can be solved simply by invert-
ing the first term H in the left-hand side of Eq. 6. Once
we obtain the value of α and b, the output concentration of
the new patient value y can be then estimated through the
prediction function: f (x) = ∑N

i=1 αiK(xi, x) + b .

The effectiveness and the accuracy of SVM highly
depends on the choice of the kernel function. In our system,
we select the Gaussian distribution, a common choice with a
single hyper-parameter kernel width σ as the kernel function
of the SVM algorithm. Hence, Eq. 6 has two parame-
ters to be estimated—C0 and σ—the best combination of
which is found by a grid search with exponentially grow-
ing sequences, e.g., C0 ∈ {10−2, 10−1, · · · , 102, 103}, and
σ ∈ {10−3, · · · , 10}, through cross validation. An L-fold
cross validation is a commonly used method to estimate the
parameters of a model over each observation value [48]. It
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randomly partitions the original training sample into L sub-
samples, each of which is treated as the “validation data” in
the training phase, and the remaining L − 1 subsamples are
used as training data. The cross-validation process is then
repeated L times, or folds, to compute the values of C0 and σ

with each of the L subsamples used exactly once as the vali-
dation data. As different dose groups have different numbers
of data points, and after preprocessed by RANSAC, the
remaining number of training data points, Nsi , are further
reduced. Therefore, we choose L = min(10, Nsi ), where
si denotes the dose group i. We choose C0 and σ to be the
one of the L results having the least mean absolute differ-
ence (MAD) between the predicted values and the validation
data.

Figure 5 shows the influence of the hyper-parameters C
and σ on the prediction accuracy in different dose groups
of the training data, when the RANSAC algorithm is not
applied. The results show that the MAD values decrease

(a)

(b)

Fig. 5 a Influence of hyper-parameter C (from 0 to 2000). b Influ-
ence of hyper-parameter σ (from 0.001 to 10). Influence of hyper-
parameters C and σ on the prediction accuracy (mean absolute
difference values) with respect to different dose groups

with the growth of the C value within (10, 200) and start to
increase after C > 200 due to overfitting. On the other hand,
smaller kernel width σ < 1 decreases the MAD values.

Table 4 shows the accuracy results of the SVM and
RANSAC algorithms over different dose groups. The pre-
dictions are made according to the following five methods:

– Method 1: training separately each dose group without
RANSAC

– Method 2: training the whole library without RANSAC
– Method 3: training separately each dose group with

RANSAC on training data
– Method 4: training the whole library with RANSAC on

the training data
– Method 5: training separately each dose group with

RANSAC on both training and testing data, with differ-
ent thresholds to each dose group

– PK: the pharmacokinetic method [6]
– PKRANSAC: the pharmacokinetic method with RAN-

SAC on the testing data

The data in this table indicate that separating the dose group
gives better prediction accuracy, especially in the groups
where there are very few data samples. It also shows that
using RANSAC on the testing database can enhance the
prediction accuracy, which indicates an insufficiency in the
patient features in current clinical practice.

4.2.2 SVM-based Parametrization (ParaSVM)

Instead of directly computing the drug concentration at a
given time, clinicians are more interested in modeling the
concentration–time curve, or DCT curve, for each patient
in order to visually check whether the concentration drops
within the therapeutic range at the trough value. There are
mainly two ways to obtain the DCT curve:

– Compute the point-wise concentration values and build
the DCT curve by linear interpolation;

– Compute the parameters used to construct the DCT
curve (Eq. 3), by curve fitting interpolation.

The first method implicitly models the relationship of
patient features and the drug concentrations. It relies on the
point-wise prediction for the concentrations over time using
the SVM algorithm to take into account new patient fea-
tures. However, it is difficult to capture a global structure
explicitly; especially when new measured concentration
data is provided, it does not provide any means to adapt
the global curve structure according to this given concentra-
tion value. The traditional PK model [6] provides an explicit
structural information of the concentration curve. However,
it considers a limited number of patient features apart from
the fact that some of these features require several blood
concentration measurements to be determined accurately,
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Table 4 Comparisons of the prediction accuracy over the five methods and the pharmacokinetic (PK) method (MAD values with units in
microgram per liter)

Dose group (mg) 100 200 300 400 600 800

No. of training/no. of testing 3 / 1 11 / 1 18 / 7 193 / 176 10 / 13 16t / 10

Method 1 26.25 178.05 1,799.01 983.16 771.41 1,868.66

Method 2 1,024.47 1,318.78 1,785.94 1,033.71 1,274.10 1,493.37

Method 3 26.25 209.95 1,841.65 860.11 660.04 1,011.15

Method 4 935.64 838.54 1,732.18 827.41 461.31 1,059.87

PK 311.4 446.3 1,474.4 819.3 630.1 1,200.4

Method 5 (threshold (μg/L)) 0.6 (210) 42.8 (260) 51.6 (20) 90.5 (80) 480.8 (120) 82.8 (110)

PKRANSAC 311.4 446.3 322.7 493.4 627.7 1,831.1

i.e., the drug absorption/elimination rate. Hence, we com-
bined the “implicit” SVM method and the “explicit” analyt-
ical way to model the parameters of the basis functions used
to construct the DCT curve [10].

In the case of modeling N patient samples as described in
Section 4.2.1, the form of patient samples becomes (xi, y

1
i ,

· · · , y
j
i , · · · , yNP

i ), where i is the ID of a sample i ∈
{1, 2 · · · , N}, y

j
i denotes the j -th parameter value of this

patient, and NP is the number of parameters which is equal
to three in our case. The goal is to find NP linear functions
yj = wj · φj (x) + bj to describe the relationship between
the dataset points and estimate the parameter value y accord-
ing to a new input dataset. Similarly, we try to minimize the
following modified objective function:

min
w,b

1

2
||w||2 + C0

NP∑
j=1

N∑
i=1

[yj
i − wj · φj (xi) − bj ]2, (7)

the right part of which are the mean squared error func-
tions for all the parameters. Similar to Section 4.2.1, after
applying the Lagrangian analysis to solve the optimization
problem of objective function, we obtain w as follows:

wj =
N∑

i=1

α
j
i φj (xi) (8)

Combining Eqs. 7 and 8, we can obtain a linear system:
[

Kj + 1
C0

I 1
1T 0

] [
αj

bj

]
=

[
yj

0

]
(9)

where each entry of the kernel matrix Kj is defined to be
K

j
ab = φj (xa)

T φj (xb). Therefore, the prediction function

becomes yj = ∑N
i=1 αiKj (xi, x) + bj .

4.3 Selection Module

The selection module chooses the best dose amount and
dose interval according to the given therapeutic ranges

(possibly one for the peak and another for the trough con-
centration). However, in practice, some drugs have only one
therapeutic range available, such as in the imatinib case
study. For a general purpose, the DADSS system proposes
both solutions accordingly.

4.3.1 Computation Rules

As shown in Fig. 2, predictions from both the SVM-
based point-wise prediction and the ParaSVM-based DCT
curve prediction will be the inputs to the selection
module to compute the ideal dose and the time inter-
val. We consider for discrete sets of candidate doses
Dj ∈ {100, 200, · · · , 2,000}mg and candidate time inter-
vals τ ∈ {1, 2, · · · , 24}h. The final output of DADSS
can be a recommended dose amount D∗ and/or the dose
interval τ ∗.

As indicated before, there could be two therapeutic
ranges defined for each drug: peak and trough drug con-
centration ranges. Our system enables the recommendations
based on both. Figure 1a shows an example of select-
ing a proper curve based on the peak concentration range.
The system chooses the curve whose peak concentration
response is the closest to the ideal value (PkBDm), as
indicated in the Eq. 10.

argmin
Dj

(|Cjmax − CPkBDm |), (10)

where Cjmax stands for the peak concentration value within
24 h after taking the dose Dj . This indicates the smallest
difference between the ideal peak concentration value and
the peak values estimated by the core module correspond-
ing to each Dj . Thus, curve 3 is picked up in this example.
Similarly, Fig. 1b shows the example of selecting a dose
interval based on the trough concentration range, and thus,
the system computes the Th and Tl with respect to the inter-
sections between curve 3 and the trough range (TrBDup and
TrBDlow). T m, which is the time that corresponds to the
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ideal trough concentration value, is recommended to be the
time of next dose intake.

When only the trough concentration range is available,
the system first selects the dose amount whose correspond-
ing concentration value at 24 h is the closest to the ideal
trough concentration value, as shown in Eq. 11.

argmin
Dj

(|Cj24 − CT rBDm |), (11)

where Cj24 stands for the concentration values estimated at
24 h after giving a dose Dj . Then it computes the dose inter-
val τ ∗ = (τh, τ l) of this curve. Since we want to keep
the trough drug concentration value within the trough ther-
apeutic range, τh and τ l are computed according to the
higher and lower bounds of the trough therapeutic range,
respectively.

4.3.2 Case Study of Imatinib

Table 5 describes some examples of how the decisions about
imatinib’s dose and intake interval are made for five ran-
domly selected patients. For each pair of the cross product
of the dose Di and the dose interval τ i for a new patient, the
core module computes the corresponding drug concentra-
tion value. The selection module first removes the candidate
doses whose predicted resulting drug concentration at time
24 h (Ci24 ) are higher than the upper bound of the trough
therapeutic range as well as the ones whose predicted peak
concentration value is lower than the trough lower bound.
Furthermore, to choose the best dose, our system computes
the absolute difference between each Ci24 value and the
ideal value of the trough therapeutic range, and selects the
dose with respect to the smallest difference, as shown in
Eq. 11. For example, for patient 1, we obtained the set of
Ci24 = [890.6, 1,032.5, 1,152.5, 1,239.1] μg/L that corre-
sponds to the set of Di = [200, 400, 600, 800] mg. The
ideal value is 1,000 μg/L, therefore Ci24 = 1,032.5 μg/L
has the smallest difference, and thus the curve whose D∗ =
400 mg is chosen. Hereafter, the system obtains the range
of the dose interval (τ ∗ = (τh, τ l)) according to the lower
and upper bounds of the trough therapeutic range. However,
in the real clinical practice, doctors tend to give a common

Table 5 5 Sample recommendations from DADSS

Patient profile features Recommendations

No. Gender Age Body weight (kg) D∗ (mg) τh(h) τ l (h)

1 M 82 56 400 13 24

2 F 58 53 500 15 24

3 F 62 54 700 16 24

4 M 58 100 800 18 24

5 M 47 73 500 14 24

dose amount (400 mg) and time interval (24 h) to every adult
patient at the a priori stage (at the start of treating a new
patient). Following the clinical protocol in the later stages,
doctors update the dose amount and the time interval with
respect to patients’ responses to the treatment [26].

4.4 Adaptation Module

In the simplest clinical routine, once a new patient is admit-
ted, a first dose is determined based on a population value
estimated from the library data. This method does not guar-
antee that the new patient and the library datasets have sim-
ilar conditions, SVM-based first dose estimation uses these
patient’s features and then predicts the drug concentrations
at a specific time or the concentration curves. This is called
the a priori adaptation. We show a way to build the DCT
curve for multiple doses after the initial a priori adaptation
taking into consideration the residual drug concentrations in
patient’s blood (see Section 4.4.1). To further refine the pre-
dicted DCT curve to be as close to the real measurement as
possible, a blood test is sometimes taken to control the drug
concentration to be within the therapeutic range (Section
4.4.2). This is known as the a posteriori adaptation. As pre-
sented in the previous sections, insufficient types of patient
features and measurement errors are two possible factors
of current predicted concentration values being sometimes
largely deviated from the measured values. Here, we con-
sider updating the predicted DCT curve with a given mea-
sured concentration value to be efficient to personalize the
prediction results, as the feedback adaptation loop in Fig. 2.

4.4.1 Multidose Estimation

Knowing how the concentration value varies with time after
multiple doses is important to clinicians and patients in
order to monitor a long-term therapeutic procedure. In the a
priori adaptation, the multi-dose DCT curve can be obtained
simply by recomputing over the days of the updated one-
dose concentration curve, taking into account the residual
concentration value of the previous day, since the drug
sometimes takes several days, i.e., 5 to 7 days, to be cleared
out from the human body.

Figure 6 shows an example of estimating the drug con-
centration over 10 days based on ParaSVM, taking into
account the residual drug concentration from the previous
day, while the first period of the DCT curve is assumed to be
the starting day. The DCT curve for multiple doses makes
it visually easy to obtain the peak and trough concentration
values and to check whether they are within the therapeutic
ranges or not. As shown in Fig. 6, the residual concentration
affects both the peak and the trough concentration values in
the beginning of the treatment and starts to be steady after
several days (3 days in this example).
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Fig. 6 Example of multiple
dose estimation for the drug
concentration to time curve over
10 days of the drug imatinib.
X-axis, time (in hour); Y -axis,
concentration value (in
microgram per liter)

4.4.2 The A Posteriori Adaptation

In the a posteriori dose adaptation, we refine the predicted
DCT curve computed by ParaSVM. It is done by calibrating
the current DCT curve using one or several measured data
point under certain constraints. This procedure is impor-
tant in clinical routine to overcome an inaccuracy caused by
insufficient feature data collection for concentration predic-
tion. Taking into account that these measurements are done
for the same patient, the calibration makes the DCT curve
more personalized with each new measurement. The same
DCT curve adjustment approach is also applied to build
the concentration curve for multiple dose regimens using
the computed trough concentration value from the previous
cycle (computation) as a measurement.

Once a new measurement is provided, we first predict the
basis function’s parameters using ParaSVM and then search
within a certain radius �D around each parameter value
with a step δd to find the best set of parameters that satisfies
the following conditions:

– The modified DCT curve has to pass through the given
measured concentration value;

– After giving the dose, the concentration value should
increase with time:
∂fconcentration

∂t
|t=0 > 0; (12)

– After several hours, the concentration value reaches the
peak value and starts to decrease:

∂fconcentration

∂t
|t=Tp < 0, (13)

where Tp is a time point after the peak value, i.e., we
set it as Tp = 24 h.

– Considering the trough value or residual value, from the
previous dose, the difference between the starting value
of DCT curve (t = 0) and the ending one (t = 24 h,

since imatinib is usually administrated once a day),
should be within a certain range (R), i.e., < 50 μg/L:

|f t=0
concentration − f t=24

concentration| < R, (14)

– The DCT curve whose shape is the closest to the curve
previously predicted by ParaSVM will be chosen:

min
gr

∑
j=0,··· ,Ns

(g
t=j
r − gt=j )2, (15)

where gt=j stands for the concentration value at time
j , and g

t=j
r is the one in the refined curve. The set of

parameters y corresponding to the best gr are selected.

Figure 7 shows the a posteriori adaptation for a sample
patient with the same dose amount D = 400 mg, but in dif-
ferent dose periods (we assume that the patient has reached
the steady state). As the measured concentration values vary
a lot even though the measuring time is relatively similar
between 2 days, it indicates that a potential intra-variation
has happened to this patient. Based on the above adaptation
rules, the DCT curves are adjusted accordingly.

5 Conclusion

In this paper, we have presented an advanced DADSS sys-
tem with a feedback loop using the ParaSVM method.
The system has also been tested and evaluated for differ-
ent dose groups to overcome the drawbacks caused by the
unbalanced sample distribution, which has improved the
prediction accuracy in each dose group. Detailed informa-
tion of choosing the basis functions, RANSAC threshold,
and hyper-parameters has been introduced. The results show
that a general setting of C = 1,000 and σ < 1 can be
applied to all the dose groups. The difference between the a
priori case analysis and a steady-state analysis is discussed.



BioNanoSci. (2013) 3:378–393 391

(a)

(c) (d)

(b)

Fig. 7 a Same patient, sample no. 1. b Same patient, sample no. 2. c
Same patient, sample no. 3. d Same patient, sample no. 4. Examples
of parametrically refined DCT curves over 3 days in a steady state of a
same patient being sampled in different days with a same dose amount

400 mg. Blue curve, DCT curve computed by SVM-based parametric
approach; green curve (passing through a red dot), DCT curve adjusted
with one measurement; red dot, measured concentrations

As to the former, a residual concentration from the previ-
ous dose period should be taken into consideration when we
construct the drug concentration to time curve for multiple
doses. As for the latter, the algorithm considers the resid-
ual drug concentration influence and gives the prediction as
in a steady-state case. Though the ParaSVM algorithm does
not improve the drug concentration’s prediction accuracy, it
provides the ability of being adjustable when a new mea-
sured concentration value is available. The system is also
able to deal with a very large number of features which are

currently not presented in the training database. Therefore,
we encourage the extension of patient feature datasets.
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