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a b s t r a c t

Modern high-performance processors employ thermal management systems, which rely on accurate

readings of on-die thermal sensors. Systematic tools for analysis and determination of best allocation

and placement of thermal sensors is therefore a highly relevant problem. Moreover liquid cooling has

emerged as a promising solution for addressing the elevated temperatures in 3D Multi-Processor

Systems-on-Chips (MPSoCs).

In this work, we present a combined sensor placement and convex optimization approach for

thermal management in 3D-MPSoC with liquid cooling. This approach first finds the best locations

inside the 3D-MPSoC where thermal sensors can be placed using a greedy approach. Then, the

temperature sensing information is subsequently used by our convex-based thermal management

policy to optimize the performance of the MPSoC while guaranteeing a reliable working condition.

We perform experiments on a 3D multicore architecture case-study using benchmarks ranging from

web-accessing to playing multimedia. Our results show a reduction up to 10� in the number of

required sensors. Moreover our policy satisfies performance requirements, while reducing cooling

energy by up to 72% compared with traditional state of the art liquid cooling techniques. The proposed

policy also keeps the thermal profile up to 18 1C lower compared with state of the art 3D thermal

management techniques using variable-flow liquid cooling.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Today, several commercial multicore architectures ranging from
few cores to several tens of cores, such as Sun’s Niagara [14], are
available. Power and thermal management are important challenges
for multicore systems [15], and become even more critical with 3D
integration. In the last years, thermal management techniques
received a lot of attention. Many state of the art thermal control
policies manage power consumption via dynamic voltage and

frequency scaling (DVFS) [19]. DVFS can be targeted to power density
reduction, which has the effect of reducing overall temperature.
However, these techniques do not directly avoid hot-spots [16,22].

Moreover, heat removal is more difficult within 3D stacks
using conventional air cooling methods [7]. Liquid cooling is a
potential solution to address the high temperatures in 3D chips
[13], due to the higher heat removal capability of liquids in
comparison to air. Liquid cooling is performed by attaching a
cold plate with built-in microchannels, and/or by fabricating
ll rights reserved.
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microchannels in the silicon layers of the 3D architecture. Then,
a coolant fluid is pumped through the microchannels to remove
the heat. The flow rate of the pumps can be altered dynamically,
and the pump power consumption increases quadratically with
the increase in flow rate [13]. Thus its contribution to the overall
system energy is significant [29], so there is the need for the
development of thermal policies that consider pumping power to
better exploit this new cooling technology.

Moreover, the problem with all aforementioned techniques is
that they require online thermal profile information from the chip
to perform frequency assignment optimization. Many solutions
are based on techniques trying to reduce temperature differences
between thermal sensors and hot-spots by using the minimum
number possible of sensors for a certain accuracy. The problem
with these approaches is that since hot-spots are application
dependent, there is no guarantee that all hot-spots are detected
during the lifetime of the device. There is basically a trade-offs
between the number of sensors and the accuracy of the measure-
ment. The goal of a smart sensor allocation strategy is to
minimize the number of sensors while maximizing the thermal
profile estimation accuracy.

In this work we focus on a combined sensor placement and
convex optimization approach for thermal management in
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3D-MPSoC with liquid cooling. This method finds first the best
locations inside the 3D-MPSoC where thermal sensors can be
placed. To this end, it analyzes the balanced state-space realization
of the system and the Hankel singular values decay rate [38,46].
According to user designer accuracy requirements, the number of
states of the reduced order model is fixed and a specific location is
assigned to each sensor. Once sensors are placed, temperature
sensing information is then used by the thermal management
policy. The thermal management policy uses these information to
estimate the 3D-MPSoC thermal profile and uses both DVFS and a
variable-flow liquid cooling to meet the desired requirements. The
optimization requirements are expressed by an objective cost
function consisting of two terms. The first one is related to the
overall system power minimization (MPSoC power consumption
and pump power consumption) and the second one to the
performance loss (undone work). Then, the problem is modeled
using a receding horizon approach [20] based on convex optimiza-

tion [24]. The optimization process including also the thermal
profile estimation is applied at run-time using the convex-solver
proposed by [25]. At this stage the convex solver finds the
optimum frequency assignment for the inputs of the MPSoC
system that will maximize performance under temperature con-
straints. These operations have been performed on standard
processors (i.e., Core 2 Duo running at 2 GHz) in few tenth of
microseconds [38]. This time is 3 orders of magnitude smaller as
compared with the time the policy is applied (i.e., 10 ms).

We have validated the proposed approach on a 3D multicore
architecture case study, based on Niagara T1 UltraSparc2 cores [14],
using benchmarks ranging from web-accessing to playing multi-
media. Our results show a reduction up to 10� in the number of
required sensors. Moreover, the proposed sensor location technique
relies on a greedy approach that makes the sensor placement
algorithm not computationally intensive. In addition to that, scenar-
ios with dangerous thermal profiles are avoided while satisfying the
application performance requirements. In addition, cooling energy is
reduced by up to 72% compared with state of the art liquid cooling
policies. In addition, the proposed policy keeps the average thermal
profile up to 18 1C lower compared with state of the art polices
using variable-flow liquid cooling, like [29].
2. Related work

A study of the thermal profile estimation problem has been
analyzed in [43,44]. The problem with these approaches is that
since hot-spots are application dependent, there is no guarantee
that all hot-spots are detected during the lifetime of the device. In
[40] the authors select the location of the sensing element
according to a Gramian-based sensor strategy. In [41] the pro-
blem of making a system observable is solved by employing of
graph theory. The problem of choosing a set of measurements
from a much larger set that also minimizes the estimation error is
solved by [42] using a convex optimization based approach. This
last method approximately solves the problem and has no
guarantee that the performance gap is always small. In [27], the
authors present a sensor placement technique based on a design
space exploration of the observability matrix of the MPSoC model.
The problem with this technique is that it is unfeasible for large
systems such as 3D-MPSoCs including liquid cooling.

The use of convection in microchannels to cool down high
power density chips has been an active area of research since the
initial work by Tuckerman et al. [12]. The heat removal capability
of interlayer heat-transfer with pin-fin in-line structures for 3D
chips is investigated in [13]. Also, several works [8–11] have
explored the feasibility of having liquid cooling as cooling method
for 3D-MPSoCs. Then, prior liquid cooling work in [10] evaluates
existing thermal management policies on a 3D system with a
fixed-flow rate setting.

Accurate thermal modeling of liquid cooling is critical in the
design and evaluation of systems and policies. HotSpot [16] is a
thermal model tool that calculates transient temperature
response given the physical and power consumption character-
istics of the chip. The latest versions of HotSpot include 3D
modeling capabilities and liquid-cooled systems as well [17].
Finally, 3D-ICE [18] is a new thermal modeling tool specifically
designed for 3D stacks, and includes interlayer liquid cooling
modeling capabilities.

Many researchers in computer architecture have recently
focused on thermal control for Multi-Processor System on Chips

(MPSoCs) [19,22]. Processor power optimization and balancing
using DVFS have been proposed in several works [19,37]. The
work proposed by [39], performs thermal management by con-
trolling the fan speed and applying voltage/frequency scaling to
minimize the total power consumption of both the processors and
the cooling systems. However in all aforementioned policies there
is not guarantee to avoid hot-spots by performing this optimiza-
tion. The reason is because the policy targets power optimization
and not hot-spot avoidance.

More advanced solutions apply the concepts of model-pre-
dictive control to turn the control from open-loop to closed-loop
[20,21]. In [32] a chip-level power control algorithm based on
optimal control theory is presented. This algorithm can control
the power consumption of the MPSoC and can maintain the
temperature of each core below a specified threshold. In [31] a
similar concept is tailored for multimodal video sensor nodes. In
[26] a convex optimization-based approach is presented. The
problem with all aforementioned techniques is that they are
based on DVFS and target 2D circuits with no active cooling
mechanism such as variable-flow liquid cooling. In [7,29], thermal
management methods for 3D-MPSoCs using a variable-flow liquid
cooling have been proposed. These policies use simple heuristics
to control the temperature profile of the 3D-MPSoC while ensur-
ing performance requirements to be satisfied. In this paper we
compare the proposed method with state-of-the-art approaches
including both air and liquid cooling policies.
3. Modeling 3D systems with liquid cooling

This paper deals with 3D-MPSoCs stacking two or more dies. As
an example, Fig. 1(a)–(c) shows a 3D system consisting of 4-tiers.
There are four silicon layers (A, B, C, D) (with various functional
units grouped into p islands with independent clock frequency and
voltage supplies), where microchannels are etched in silicon bulk
for liquid cooling. The model abstracts the interconnect on chip as
copper layers (A, B, C, D). For every silicon layer there is a total of
nc linear microchannels Ch1 . . .Chnc. Microchannels are assumed
to be equal in dimensions and a uniform coolant flux is assumed in
channels of the same layer. All microchannels belonging to the
same layer are connected to a pump. In the model shown in
Fig. 1(c) there is a total of four pumps connected to the micro-
channels of the four silicon layers. Fluid flows through channels
belonging to different layers with different flow rates, according to
the power of each pump. The liquid flow rate provided by each
pump can be dynamically altered at run-time.

We would like to highlight that microchannels for 3D-IC
cooling has been proposed previously by different research labs
[1,2,13], including our industrial partner in this work: IBM.
Typically, as mentioned in the literature, microchannels are
etched on the back-side of each silicon tier, to enable forced
convective cooling. Typical cost of microchannels manufacturing
is 20% of the total chip cost, as shown in related work [3].



Fig. 1. 3-D stacked MPSoC with liquid cooling: silicon layer type-A (a), silicon layer type-B (b), overall MPSoC view (c), resistive network model (d).
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In our explorations, we are using single-phase liquid cooling,
using water as the coolant. This is the same applied coolant used
in previous work [1–4,13]. The coolant does not need to be
refilled. As shown in previous work [4], we are assuming that
water comes from a reservoir, feed using a centrifugal pump, to a
group of 3D ICs with liquid cooling, which are used in future data-
centers. In fact, this is the same setup, but using liquid-cooled
heat sinks for 2D chips, in the AQUASAR data center server
developed by IBM zurich [5]. For coolant reliability analysis, we
believe this is not the scope of our research effort, and it is being
performed by our mechanical engineering partners in IBM [6]. In
this respect, we are following the same operating conditions, in
terms of fluid density, maximum inlet pressure and flow rate.

3.1. 3D heat propagation model

Our 3D thermal model is based on finite-element analysis, as
used by typical system-level thermal analysis tools [18]. Heat
propagation is modeled by thermal resistances and capacitances.
To model the 3D-MPSoC architecture we use a state-space
representation of the thermal system. A state space representa-
tion is a mathematical model of a physical system as a set of
input, output and state variables related by first-order differential
equations. The state variables are the variables that can represent
the entire status of the system at any given time. To model the
architecture shown in Fig. 1(a)–(c) we propose an extension of the
model presented in [26]. In particular, the active cooling (for cell
i) is modeled by a current sink ri, as shown in Fig. 1(d) and
highlighted by the circle. This current sink models the capability
of the cooling system to remove heat in a specific location of
the MPSoC.

Following [26], we model the heat propagation process as

ttþ1 ¼ AttþBpt ð1Þ

We assume that the total number of cells in all layers of the 3D-
MPSoC structure is n, the total number of cores is p and the total
number of pumps is z. Matrices AERn�n and BERn�ðpþ zÞ describe
the heat propagation properties of the MPSoC. At time t, the
temperature of the next simulation step of cell i, i.e. ðttþ1Þi can be
computed thanks to Eq. (1). In this model ttþ1 is the state vector
and pERpþ z is the input vector. The first p entries are the
normalized power consumption for each of the p frequency
islands (cores), while the remaining z entries are the normalized
cooling power for each of the z pumps. The relation between the
frequency assignment at time t, ftERp, and the power consump-
tion is assumed to be quadratic [16].

The law that relates the microchannel flow-rate to heat
extraction has been taken from [18]. However, we consider that
the amount of heat ri extracted in cell i by the fluid in the
microchannel controlled by pump j can be approximated by

ri ¼mj � gi,j � ðti�tfluidÞ ð2Þ

where the fluid temperature is tfluid, ti is the temperature of cell i

and gi,j is the constant modeling the channel heat extraction
properties. Vector mERz is the normalized amount of heat that
can be extracted for each of the z independent pumps. Thus, by
varying vector m, the cooling power (flow rate of the cooling
liquid) is varied to achieve the desired heat extraction. In our
model, we used the temperature mapping from [18] to derive gi,j.
Experiments have shown that by updating gi,j every time the
policy is applied (10 ms in our simulation setup), our approxima-
tion leads to a maximum error up to 75%. Moreover, even if
there are inaccuracies between the real and the simulated MPSoC
model, the error does not propagate during the run-time execu-
tion of the system. The temperature profile of the MPSoC is
indeed generated from real thermal sensors data every time the
policy is applied (10 ms for the experimental setup used).

3.2. Workload model

The workload is generated from higher-level software layers
(e.g., operating system). For each p clock islands (cores), the
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workload is defined as the minimum value of the clock frequency
that the functional unit should have to execute the required tasks
within the specified system constraints.

The workload requirement at time t is defined as a vector
wtERp, where ðwtÞi is the workload requirement value for input i

at time t. ðwtÞi is the frequency that cores associated with input i

from time t to time tþ1 should have in order to satisfy the
desired performance requirement coming from the scheduler.

We assume a continuous control on the frequency ranging
from fmin to a max value fmax, the maximum frequency at which
the cores can process data, namely

fmin$wt$fmax8t ð3Þ

When ðwtÞi4 ðftÞi, the workload cannot be processed and so it
needs to be stored and rescheduled in the following clock cycles.
The way we measure the performance of the system in achieving
the requested workload requirements at time t is given by the
vector utERp.

ut ¼wt�ft ð4Þ

We call ut the undone workload at time t and it expresses the
difference at time t between the requested workload and the
workload that is actually executed by the MPSoC.
Fig. 2. Proposed policy global overview block diagram.
4. Global optimization approach overview

In the model described by Eq. (1), a state is required for every
block composing the floorplan. The reason is because we need n

states to store n temperatures values. This requirement is expen-
sive in terms of computational requirements for high accuracy
MPSoC models. The higher the number of states modeling the
MPSoC, the higher the number of sensors required for its state
estimation. This could be a problem in case of a detailed model of
a complex 3D-MPSoC including liquid cooling.

The concept behind this work is a combined sensor placement
and convex optimization approach for thermal management in
3D-MPSoC with liquid cooling. This approach first finds the best
locations inside the 3D-MPSoC where thermal sensors can be
placed using a greedy approach. Then, the temperature sensing
information is subsequently used by our convex-based thermal
management policy to optimize the performance of the MPSoC
while guaranteeing a reliable working condition.

The advantage of the combined approach is an efficient
method to solve both the sensor placement, the model order
reduction and the thermal management of the 3D-MPSoC system
problems at the same time with a reduced computational cost.
The block diagram of the proposed algorithm is presented in
Fig. 2. The proposed methodology consists of two phases: a
design-time phase and a run-time phase.

During the design-time phase the thermal management sys-
tem is defined. The reduced order MPSoC thermal model and the
sensor placement are the outputs of this off-line phase. The
concept behind the proposed sensor placement technique is
based on an analysis of the balanced state-space realization of
the 3D-MPSoC system and its Hankel singular values decay rate.
The Hankel singular values are subject to decay and they decrease
at a rate proportional to their value. This rate is called Hankel
singular values decay rate. The number of states of the reduced
order model is fixed according to user designer accuracy require-
ments, and a specific location is assigned to each sensor.

During the run-time phase the defined thermal management
system solves the frequency assignment problem using a pre-
dictive horizon methodology applied to the reduced order 3D-
MPSoC thermal model. First, during this phase, the reduced order
system state vector x is estimated thanks to a simple state
estimator (i.e. Kalman filter) and measurements coming from
thermal sensors. Then, this information is used by the thermal
model to perform the optimization on the reduced-order 3D-
MPSoC model pre-defined in the design-time phase. The control
problem is formulated over an interval of h time steps, which
starts at current time t. The result of the optimization is an
optimal sequence of future control moves (i.e., frequency settings
for both the cores and the liquid cooling pumps). Only the first
sample of such a sequence is actually applied to the process, the
remaining moves are discarded.
5. Design-time phase, sensor placement

The method is an off-line phase that consists of four steps: A,
B, C and D. As a result we define both the reduced order thermal
model and the sensor placement for the 3D-MPSoC system. The
block diagram of this phase is in the top half of Fig. 2.

5.1. 3D-MPSoC model conversion: from structure-centric to energy-

centric

First, an accurate 3D-MPSoC thermal model is created accord-
ing to the model presented in previous section. This will deter-
mine matrices A and B according to Eq. (1). Locations that the
policy needs to monitor to ensure safe working conditions are
determined by the following relation:

~tt ¼ Ctt ð5Þ

Eq. (5) describes the choice of relevant locations to monitor inside
the MPSoC. Matrix CERs�n is a selection matrix. In this model we
assume that we want to control locations on the silicon layer of
each tier. We do this to ensure a full MPSoC temperature control
in every location containing an active device on the silicon layer.



Fig. 3. Decay rate analysis for the normalized energy related to Hankel singular

values for our case study. Red arrows points to change in the decay rate. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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We assume that s is the total number of those locations. Namely
ci,j is equal to 1 if thermal sensor i is located inside the cell j.

In the case study described in the experimental setup section,
the number of states that is also the number of temperature
values for each cell composing the 3D-MPSoC floorplan is 200.
This means that 100 are the number of cells composing the silicon
layers and 100 the ones composing the copper ones. This means
that matrix A is composed by 104 entries and matrix C has 100
rows. These numbers are large if the model is used in a predictive
horizon control policy [28].

To determine the states with negligible contribution to the
input–output response, the system is balanced using a Gramian-
based balancing of state-space realizations [45]. This technique
computes a balanced state-space realization for the stable portion
of the system. For stable systems, the output is an equivalent
system for which the controllability and observability Gramians
are equal and diagonal, their diagonal entries forming the vector
gERn of Hankel singular values. These values provide a measure of
energy for each state in the system. If the corresponding Hankel
singular value for a certain state is a relatively small number, this
means that state has a small influence in the dynamic of the
system. The second output of the Gramian-based balancing [45] is
the balancing state transformation matrix TERn�n that converts
the original system into the balanced one.

The rationale behind this operation is to change the 3D-MPSoC
thermal model system perspective. The original model belongs to
a geometric and physical view of the 3D-MPSoC where states are
related to physical properties. The new model generated by the
Gramian-based transformation is energy centric and every states
is a heat propagation dynamic. This representation emphasizes
how much a dynamic is relevant to the heat propagation response
of the system. The ith row of the conversion matrix T describes
the contribution that the temperature of each thermal cell in the
original model gives to the ith most important (in terms of energy)
thermal dynamic of the new generated system.

Concluding, the balancing technique is used for sensors place-
ment in the following way. The main outputs of this operation
are: the conversion matrix T and the vector g. Both these outputs
are used in the proposed sensor placement technique. Vector g is
used for the identification of relevant states described in Section
5B. In Section 5C, matrix T is used to find the sensor location that
contributes the most to the thermal dynamic of each state.
Section 5D places sensors using the just derived sensor locations
until the thermal system is observable. This means that we can
derive the overall thermal profile of the MPSoC according to data
received from just placed thermal sensors.

5.2. Identification of relevant states

In this section we elaborate the information related to the
analysis of the Hankel singular values vector g. Fig. 3 shows the
state energy distribution for our case study. As Fig. 3 shows, the
energy magnitude drops quite fast and most of the states gives
almost negligible contributions to the input–output response of
the system. To define a threshold level to distinguish between
relevant and not relevant states, we look at the rate of decay of
the states energy.

Fig. 3 shows the decay rate for the normalized energy related
to Hankel singular values for our case study. Red arrows points to
change in the rate of the decay rate. To identify transition points
we look at peaks in the third derivative of the function defined by
vector g. In Fig. 3 they are highlighted with red circles. All these
points represent a set of possible threshold point to distinguish
between relevant states and negligible states. They are indeed
points in which the decay rate changes the way it decades. This
means that by adding points after these transition points the
advantage of adding states would be smaller in terms of reducing
the approximation error.

Fig. 4 shows the model approximation error in percentage
versus number of states in the reduced model for our case study.
As Fig. 4 shows that the decay rate goes pretty fast. It is important
to notice that only threshold points have been considered in this
plot. They are marked with ‘n’. Results show that an approxima-
tion error of the reduced order model compared to the full model
of 6� 10�2 in percentage can be achieved with only 20 states and
180 can be easily discarded with a reduction factor of 10� for the
given accuracy. It is also important to notice that it does not make
much sense to go for higher accuracies because inaccuracies in
the silicon, in the power model or in thermal sensors will add
uncertainty in the results.

5.3. Balanced state transformation analysis

Here we elaborate information related to conversion matrix T.
The ith row of T describes the contribution that the temperature
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of each thermal cell in the original model gives to the ith most
important (in terms of energy) thermal dynamic of the new
generated system. For this reason at this stage for each row i of
T, we identify the most relevant component in absolute value. We
call this component j. This means that if we place a sensor in the
jth cell in the original model, among all the possible sensor
locations, this position would be the one that will contribute
more in terms of energy to the ith most important thermal
dynamic of the new generated system.

5.4. Reduced order model and sensor placement

At this stage the user-defined parameter that is missing to
complete the sensor placement is the desired accuracy of the
reduced order model. If we accept an approximation error
between the full model and the reduced order model of 6�
10�2 in percentage, we fix the number of states to 20. By doing
this operation we reduce by a factor of 10 the number of states in
the model and so the computational complexity of Eq. (1).

At this point a new reduced order model is obtained from the
original one after the balancing using a Gramian-based balancing
of state-space realizations [45]. States corresponding to Hankel
singular values smaller than a pre-defined threshold (in our case
we selected the 20th) are discarded. Thus the full MPSoC thermal
model is now described by the following system of equations:

xtþ1 ¼
~Axtþ ~Bpt ð6Þ

~tt ¼ ~Cxt ð7Þ

where matrix ~AERl�l and matrix ~BERl�p. The number of states of
the new thermal model is l and p is the number of inputs in the
MPSoC model. Eq. (6) describes the state update for the reduced
order model of the MPSoC. This equation is analogous to Eq. (1).
The only difference is that, in this case, the states do not represent
directly temperature values inside each cell. Matrix ~CERs�l in
Eq. (7) relates the value of the states to temperature in s specific
locations (every cell in all silicon layers) inside the MPSoC. This
equation is analogous to Eq. (5) and describes how the tempera-
ture measurements can be derived from the state vector x. Thus
we need Eq. (7) and matrix ~C to extract the temperature vector ~tt
from vector xt. If we are interested in recovering the complete
MPSoC thermal profile, in Eq. (5), matrix C is an identity matrix.
Matrix ~C is computed in the model order reduction process by
Eqs. (1) and (5) as well as matrices ~A and ~B in Eq. (6). In our case
study s¼100 because we are interested in knowing the tempera-
tures of all the cells of all the silicon layers.

The purpose of sensor placement is to get reliable information
on the 3D-MPSoC thermal profile. The reason is because this way,
every time the policy is applied, it operates on reliable thermal
profile temperature values. The key for this is to obtain the state
vector x. In step 1, the balancing state transformation matrix T
converts the original system into the balanced one. Thanks to this
matrix, to obtain the estimate of the reduced state vector x, it is
sufficient to multiply the thermal profile by matrix T.

For the system identified by Eq. (1), it means that we are able
to reconstruct completely the thermal profile of the chip given the
inputs only by looking at the measurements coming from the
sensors, placed in locations specified by the matrix C0.

~tt ¼ C0tt ð8Þ

The number of states in the new thermal model equals to l. Matrix
C0ERs0�l in Eq. (8) is a selection matrix that describes the sensor
placement inside the 3D-MPSoC. This means that we are assum-
ing to have in the output vector s0 distinct temperature measure-
ments coming from s0 distinct cells every Ts seconds where Ts is
the sensors sampling period. The rank of the observability matrix
Q expresses the number of states that can be reconstructed from
the measurement vector ~tt . The observability matrix Q is
expressed by the following equation (see [46]):

Q ¼ ½C0;C0A; . . . ;C0An�1
� ð9Þ

If the rank of Q equals n, the state vector x can be reconstructed
completely from the measurement vector and the input vector.
Then, A is the matrix describing the original system in Eq. (1).

The problem of selecting the right placement of thermal
sensors to both minimize the number of sensors and maximize
observability is the problem of choosing the matrix C0 with the
minimum number of rows that makes the rank of the observa-
bility matrix Q equal n. Given a determined MPSoC model, this
problem depends on the location and the number of sensors
inside floorplan (matrix C0) and the sensor sampling period Ts.

To choose the sensor placement we used the information we
got from step 3 about the locations that contribute most to each
of the states in the balanced model. The proposed algorithm is a
greedy technique that adds a sensor according to the placement
suggested in step 3. The algorithm starts from the most relevant
state (state number 1) and goes on adding sensors until the rank
of the observability matrix equals the rank of A. Fig. 5 shows that
this is achieved after 25 steps for our case study. This means that
with only 25 sensors it is possible to estimate the thermal profile
of the 3D-MPSoC. This means that we got a reduction of a factor
8 in the number of required sensors. Fig. 6 shows the resulting
placement assuming a sensors sampling frequency Ts of 1 ms.
6. Run-time phase, thermal management optimization

The method is the run-time phase performing the thermal
management optimization on the 3D-MPSoC system. The block
diagram of this phase is in the bottom half of Fig. 2. During this
phase, the reduced order system state vector x is estimated. To
recover the thermal profile from thermal sensors measurements
any state estimator can be used (e.g., a Kalman Filter [46]). Then,
this information is used by the thermal model to perform the
optimization on the reduced-order 3D-MPSoC model pre-defined
in the design-time phase.

The proposed policy, uses both DVFS and variable-flow liquid
cooling to meet the desired requirements. Requirements are



Fig. 6. Sensor placement for our case study with sensors (marked as red stars on

the floorplan) sampling frequency Ts of 1 ms. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)
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expressed by an objective cost function. This function consists of
two terms. The first one is related to power minimization (3D-
MPSoC power consumption and liquid cooling pumping system
power consumption) and the second one to the performance loss
(undone work). The solution of following minimization is the 3D
MPSoC frequencies and cooling pumps speeds necessary to meet
the desires requirements. The control problem is as follows:

J¼
Xh

t ¼ 1

ðJRpsJjþJVusJbÞ ð10Þ

min J ð11Þ

subject to : fmin$fs$fmax 8t ð12Þ

xtþ1 ¼
~Axtþ ~Bpt 8t ð13Þ

~Cxtþ1$tmax 8t ð14Þ

utj0 8t ð15Þ

ut ¼wt�ft 8t ð16Þ

ltjmfat 8t ð17Þ

�w$mtþ1�mt$w 8t ð18Þ

0$mt$1 8t ð19Þ

pt ¼ ½lt;mt� 8t ð20Þ

It is important to highlight that the matrices ~A, ~B used in previous
equations are constant during the h time steps the system tries to
minimize the cost function J, and are then updated every time the
policy is applied. The time horizon of this predictive policy is
defined as h [20].

Function J is expressed by a sum where the summation index t
ranges from 1 to h. The first term JRptJj is the j norm (in our
implementation j¼1) of the power input vector p weighted by
matrix R. Power consumption is generated here by two main
sources: the voltage-frequency setting of the 3D-MPSoC and the
liquid cooling pumping power. Vector p is a vector containing
normalized power consumption data of both the cores and the
cooling pumps. Matrix R contains the maximum value of the
power consumption of both the cores (first p diagonal entries)
and the cooling pumps (last z diagonal entries).

The second term JVutJb is the b norm (in our implementation
b¼1) of the amount of predicted required workload that has not
been executed. The weight matrix V quantifies the importance
that executing the workload required from the scheduler has in
the optimization process.

Inequality (12) defines the range of working frequencies that
can be used. It enables a continuous range of frequency settings
but this does not prevent from adding in the optimization
problem a limitation on the number of allowed frequency values.
Eq. (13) defines the evolution of the system according to the
present state and inputs. Eq. (14) states that temperature con-
straints should be respected at all times and in all specified
locations. Since the system cannot execute jobs that have not
arrived, every entry of ut has to be greater than or equal to 0 as
stated by Eq. (15). The undone work at time t, ut is defined by
Eq. (16). Eq. (17) defines the relation between the power vector l
and the working frequencies. m is a technology-dependent constant.

Eq. (20) defines formally the structure of vector p as described
in Section 3.1. Vector lERp is the power input vector, where p is
the number of frequency islands composing the 3D-MPSoC. Vector
mERz contains the normalized amount of cooling power for each
of the z independent pumps. Eqs. (18) and (19) define constraints
on the liquid cooling management. Eq. (19) states that m is a
normalized value and it can range from 0 to 1. Eq. (18) defines the
maximum increment/decrement that the normalized pump can
have between two consequent applications of the policy. In other
terms this value takes into account the mechanical time dynamics
of the pump. Their values are stored in vector wERz.

The control problem is formulated over an interval of h time
steps, which starts at current time t. For this reason, the approach
is said to be predictive. The result of the optimization is an
optimal sequence of future control moves (i.e., frequency settings
for the cores of the 3D-MPSoC which are stored in vector f). Only
the first sample of such a sequence is actually applied to the
process; the remaining moves are discarded.

At the next time step, a new optimal control problem based on
new temperature measurements and required frequencies is
solved over a shifted prediction horizon. Such a ‘‘receding-
horizon’’ [20] mechanism represents a way of transforming an
open-loop design methodology into a feedback one, as at every
time step the input applied to the process depends on the most
recent measurements. To increase the performance of our pro-
posed policy, history information about the task arrival process
are exploited by the proposed algorithm. These data are used to
make prediction on future workload requirements.
7. Experimental setup

7.1. 3D-MPSoC model

The 3D-MPSoC architecture we are considering is presented in
Fig. 1(a)–(c). The floorplan has been modeled using technological
parameters and coefficients taken from [7] and [14]. This archi-
tecture has a maximum operating frequency of 1.2 GHz and the
maximum power consumption of each of the eight processing
cores at this frequency is 5 W.

To implement the voltage and frequency scaling techniques, we
use frequencies ranging from fmin to 1.2 GHz, see [14] for details. In
this range, only specific values of frequencies are allowed. These
values are generated from the integer division of the maximum
clock frequency by scaling factors as proposed in [30].
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We compute the leakage power of processing cores as a
function of their area and the temperature. We assume a base
leakage power density of 0:25 W=mm2 at 383 K for 90 nm, as in
[37]. To accounts for the temperature effects on leakage power
and we use the model proposed in [7]. In this case, the leakage
power at a temperature To K is given by: PðTÞ ¼ Po � ebðT�383Þ,
where Po is the leakage power at 383 K, and b is a technology
dependent coefficient. Finally we set b¼ 0:017 [29].

7.2. Cooling model

The number of independent pumps is 4 and the spacing between
two microchannels on the same layer is 100 mm. We assume that a
pump connected to all microchannels of the same layer, such as a
centrifugal pump EMB MHIE [34], is responsible for the fluid
injection to the whole system. This pump has the capability of
producing large discharge rates at small pressure heads.

Liquid is injected to the stacks from this pump via a pumping
network. To enable using different flow rates for each stack, the
cooling infrastructure includes valves in the network. We assume
normally closed valves (NCV) provided by Festo group [35]. NCVs
use external power to reduce the pressure drop and to increase
the flow rate. Cooling microchannels parameters and cooling
pump power consumption values are taken from [29].

7.3. Virtual platform environment

The 3D-MPSoC simulation framework is a SystemC-based
simulation platform. The main device consists of 16 (8 per tier)
32-bit cores, 16 private memories included in the cores and 16 L2
shared cache memories distributed in four layers of a 3D stuck (as
in Fig. 1). All these units communicate among each other by a
crossbar interconnect. A floating point unit is also connected to it.
The virtual platform environment provides also power statistics
for the several hardware modules in the simulated platform. The
simulation is based on applications generating functional data
traffic on the target architecture. Power consumption data are
coming from the 3D simulation platform while temperature data
are extracted using the publicly available 3D-ICE thermal tool
[18], as described in the previous sections. Modern OSes have a
multi-queue structure, where each CPU core is associated with a
dispatch queue, and the job scheduler allocates the jobs to the
cores according to the current policy. In our simulator, we
implement a similar infrastructure, where the queues maintain
the threads allocated to cores and execute them.

We use workload traces collected from real applications run-
ning on an UltraSPARC T1. We record the utilization percentage for
each hardware thread at every second using mpstat for several
minutes for each benchmark. We use various real-life benchmarks
including web server, database management, and multimedia
processing. The web server workload is generated by SLAMD
[36] with 20 and 40 threads per client to achieve medium and
high utilization, respectively. For database applications, we experi-
ment with MySQL using sysbench for a table with 1 million rows
and 100 threads. Finally, we run several instances of the mplayer
(integer) benchmark as typical examples of multimedia proces-
sing. The utilization ratios are averaged over all cores throughout
the execution.

7.4. Policy setup

According to the general model of Eqs. (10)–(17), the problem
formulation is the following. Matrix T is set to be an identity matrix
while matrix R contains the maximum value of the power con-
sumption of both the cores and the cooling pumps, which are
extracted from [7]. In this policy we want to minimize the sum of
all contributions to the 3D-MPSoC power consumption as well as the
undone workload. For this reason, we set both the norms b and j to 1.

All the others constraints expressed by Eqs. (12)–(17) are
considered inside the problem formulation. The policy is applied
every Tpol ¼ 10 ms, while the simulation step for the discrete time
integration of the RC thermal model has been set to 200 ms. The
sensors sampling period Ts has been set equal to 1 ms. The
maximum temperature limit is set to 370 K. The room tempera-
ture and tfluid are set to 300 K. In the problem formulation, we
used a¼ 2 (as in [33]) to establish the relation between the
frequency setting and the power consumption. The linear pre-
dictor has been designed using a 3rd order polynomial equation,
an observation window of 600 ms and a prediction length equal
to 50 ms in the future.

The optimization process is done online using the convex
solver proposed in [25]. These operations, have been performed
on standard processors (i.e., Core Duo @ 2 GHz) in few tenth of
microseconds. For more details on the complexity of the solving
algorithm, see [38]. This time is 3 orders of magnitude smaller
compared with the time the policy is applied (i.e.10 ms). The time
constants needed by the mechanical dynamics of the cooling
pumps to go from 0 to maximum power is set to 400 ms.
8. Run-time simulation results

In our experiments, we compare the proposed 3D thermal
management method with state of the art thermal management
techniques based on DVFS, load balancing and variable flow liquid
cooling [7,10,22,23,29]).

Dynamic load balancing (LB) [22] balances the workload by
moving threads from a core’s queue to another if the difference in
queue lengths is over the defined threshold. Temperature-trig-
gered task migration (TTTM) [23] moves tasks from a core if that
core exceeds the threshold temperature. TTTM has an impact on
performance resulting from the time overhead required to move
tasks between the cores (e.g., context switch overhead and cold
start effects). In this work we assume a 1 ms overhead when a
thread is migrated to a new core [7,10]. For previously mentioned
polices, if the temperature goes higher than 420 K, the system
shuts down until the maximum MPSoC temperature returns
below 250 K. In temperature triggered DVFS (TTDVFS) [22] the
voltage and frequency settings are reduced to 10% of the max-
imum value when the maximum MPSoC temperature exceed the
threshold value set to 370 K. TTTM and TTDVFS can also be
combined into a joint policy called (TTTM_TTDVFS) [10].

We experiment with both air-cooled (AC) and liquid-cooled
(LC) systems for comparison purposes. In LC_LB, we apply 100% of
the maximum flow rate (0.0323 l/min per cavity [29]). We also
consider in the comparison state of the art liquid cooling methods
recently proposed in [7,29]. These methods employ a variable-
flow liquid cooling combined with DVFS. We refer to the first
method as LC_VF and to the second one as LC_Fuzzy.

Thermal impact of all the policies on the system is shown in
Fig. 7. This figure compares the percentage of time spent above
the threshold temperature (set to 370 K). Thus each bar shows the
area distribution of the dimension of the hot-spot as percentage
of the overall MPSoC area.

The first four policies are air cooled methods, while the last
four are liquid cooled. As Fig. 7 shows, the first ones are not able
to avoid hot-spots. AC_LB and AC_TTTM present hot-spots for up
to 67% of the execution time, and in addition to that, these hot-
spots affect more than 80% of the total MPSoC area. Methods
using temperature-triggered DVFS show a better performance.
This is shown for AC_TTDVFS and AC_TTTM_TTDVFS.



Fig. 7. Percentage of run-time execution where the maximum MPSoC tempera-

ture is higher than the threshold (370 K). The area of the hot-spot is also provided

as a percentage of the overall MPSoC area.

Fig. 8. Left graph: energy consumption of the overall system: 3D MPSoC power

consumption and cooling network. Values are normalized to LC_LB; right graph:

average maximum 3D-MPSoC temperature (1C).
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Hence, they present hot-spots for only 34% and 35% of the
execution time, respectively. In addition, these hot-spots cover
less than 20% of the overall MPSoC area.

Nevertheless, overall air cooled policies do not completely
avoid hot-spots. In fact, the 4-tier stacked architecture is unable
to dissipate the heat of inner layers by using only a heat spreader.
These results indicate the benefits of liquid cooling techniques in
completely avoiding any hot-spots scenario. The reason is because
of their capability to cool inner layers of the 3D-MPSoC of Fig. 1.

Liquid cooling policies provides a value of undone workload
that is less than 1% of the overall executed workload. However, air
cooled polices provide values ranging from 24% to 31% in the case
of AC_LB and AC_TTDVFS, respectively.

Since we are interested in techniques that avoid hot-spots
while satisfying performance requirements, we restrict from now
on our comparison to liquid cooling methods. The following
paragraphs compare the proposed policy versus state of the art
liquid cooling methods.

The left graph of Fig. 8 shows the overall energy consumption
of the 3D-MPSoC. It is divided here into two parts. The first one is
the one absorbed by the cooling network (pumps and valves)
while the second one is the energy absorbed by the MPSoC
activity (switching and leakage). The simplest policy LC_LB shows
the highest energy consumption. This is because the cooling
pumps need to work always at maximum speed to avoid over-
heating and hot-spots. This causes the cooling power to be
extremely high compared with other methods. The value of the
cooling power here represents 39% the overall 3D-MPSoC energy
consumption. Thus, LC_VF [7] and LC_Fuzzy [29] have been
proposed to reduce the power consumption of the cooling system.
We tested these policies on our experimental setup. They show a
reduction in the cooling power consumption of 64% and 70%,
respectively. The proposed technique has a cooling and an overall
3D-MPSoC power consumption that is respectively 72% and 31%
lower compared with LC_LB. If we compare our policy with
LC_Fuzzy, we see a 8% saving in terms of cooling power and a
16% additional saving in the overall MPSoC consumption.

Finally, Fig. 8 shows the average maximum 3D-MPSoC tem-
perature for all the policies under comparison. The lowest thermal
profile among the compared policies is generated by the LC_LB. In
this case the maximum MPSoC temperature has an average value
of 54 1C. LC_LB and LC_Fuzzy show a thermal profile having an
average maximum temperature of 89 1C and 92 1C, respectively.
The reason is because both these systems save energy by reducing
the cooling cost and by having the system working at a tempera-
ture close to the threshold set to 97 1C. However, the proposed
policy is able to save approximately as much energy as LC_Fuzzy,
while being able to keep the thermal profile 18 1C lower. The main
reason is because the predictive problem formulation of the
proposed method is able to satisfy performance requirements by
acting in advance and this allows the policy a smoother control on
the system and save active power. Therefore, this keeps the overall
3D-MPSoC thermal profile colder.
9. Conclusion

In this work, we presented a combined sensor placement and
convex optimization approach for thermal management in 3D-
MPSoC with liquid cooling. This technique finds best locations by
analyzing the balanced state-space realization of the 3D-MPSoC
system and its Hankel singular values decay rate. The number of
states of the reduced order model is fixed according to user
designer accuracy requirements, and a specific location is
assigned to each sensor. Once sensors are placed, temperature
sensing information is then used by the thermal management
policy. The thermal management policy uses these information to
estimate the 3D-MPSoC thermal profile and uses both DVFS and a
variable-flow liquid cooling to meet the desired requirements.

We performed experiments on a model of a 4-tier multicore
architecture using benchmarks ranging from web-accessing to
playing multimedia. Results show a reduction up to 10� in the
number of required sensors. Moreover the proposed sensor loca-
tion technique has a greedy approach that makes the sensor
placement algorithm not computationally intensive. Our experi-
mental results illustrated also that our policy satisfies performance
requirements, maintains the temperature below the specified
threshold, while reducing cooling energy by up to 72% compared
with traditional state of the art liquid cooling techniques. The
policy also keeps the thermal profile approximately 18 1C lower
compared with state of the art polices using liquid cooling.
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