
SATSoT: A Methodology to Map Controllable-Polarity Devices
on a Regular Fabric Using SAT

Catherine Gasnier, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland

Email: catherine.gasnier@epfl.ch

Abstract—Devices with controllable-polarity, such as Double-Gate
Vertically-Stacked Nanowire FETs, have shown promising interests in
recent years to implement XOR-based logic functions in an unprecedented
compact way. Such a compactness is obtained at the cost of a denser
interconnect, that can be mitigated by designing an efficient hyper-
regular layout structure, called Sea-of-Tiles. In this paper, we propose a
methodology, based on Boolean satisfiability, to map netlists of transistors
on such a structure. The methodology endeavors to minimize the wiring
complexity, by maximizing the sharing of the different terminals. We
showed that its implementation, SATSoT, is able to automatically generate
compact mappings with wiring complexities similar to manual layouts.

I. INTRODUCTION

Multiple Gate Field-Effect Transistors (MuGFET) offer promising

opportunities to further scale down the transistor sizes, by reducing

leakage current and enhancing the drive current [1]. FinFETs are

for example scalable down to 20nm [2]. Among those MuGFETs,

peculiar devices present a controllable polarity, i.e., are able to

exhibit either n-type or p-type characteristics, depending on the

polarity applied on a second independent gate. This is the case of

Vertically-Stacked Silicon Nanowire Field Effect Transistors (SiN-

WFETs) [3], Carbon Nanotube Field Effect Transistors (CNFETs)

[4], and Graphene Field Effect Transistors [5].

Thanks to their two independent gate structures, those devices

have a higher expressiveness than conventional CMOS devices, i.e., it

is possible to implement more complex Boolean functions with fewer

resources. In particular, the XOR function can be implemented in a

very compact way [6]. However, the additional gate on every device is

expected to significantly increase the wiring complexity. To mitigate

this effect, a specific layout methodology has been introduced in [8].

This methodology relies on the use of a regular organization, called

Sea-of-Tiles (SoT), that can be efficiently realized by SiNWFETs.

Regular fabrics, such as SoT, enable a manufacturability improvement

of ICs at small technology nodes [7]. In [8], the mapping of logic

gates on SoT was proposed based on a traditional standard-cell design

approach. However, the discrete nature of this problem makes it

suitable for being solved by Boolean satisfiability techniques.

The Boolean satisfiability problem, also abbreviated as SAT, is

the first known NP-complete problem [9]. Many efficient algorithms

for SAT have been designed and implemented in a plethora of SAT

solvers (GRASP [10], Minisat [12], ppfolio [13], among many others).

Relying on this algorithmic efficiency, methodologies involving SAT

have been proposed for many difficult problems in CAD, such as

channel-routing and placement [14], or routing of FPGAs [15].

In this paper, we propose to automatize the mapping of short

netlists of transistors onto SoT structure using Boolean satisfiabil-

ity. We target netlists of a few tens of transistors, which is the

size of typical logic gates. Automating the mapping of logic gates

onto regular fabrics enables to quickly build large standard cell

libraries, while keeping the wiring complexity under control. Such

an opportunity is of paramount importance to better exploit the

expressiveness of the transistors at the gate level. Mapping results

show that the presented methodology allows us to automatically

exploit the sharing of all the different terminals of controllable-

polarity transistors, leveraging a good implementation compactness

of logic cells. Indeed, the methodology achieves wiring complexities

similar to mappings obtained manually.

The paper is organized as follows. Section II introduces the

required background on controllable-polarity devices and Boolean

satisfiability in more details. Section III depicts the way we use

satisfiability to solve the aforementioned problems. Finally, Section

IV presents the performance of our implementation and Section V

draws some conclusions.

II. BACKGROUND

In this section, we describe, in more details, controllable-polarity

devices and their associated layout methodology. Then, we introduce

the necessary background on Boolean satisfiability.

A. Compact Logic Gates with Controllable-Polarity Devices

A controllable-polarity device is, in general an ambipolar field-

effect transistor with double-gate structure, whose polarity (n- or p-

type) is controlled by the bias voltage applied on the second gate

terminal, called polarity gate. As illustrated in Fig. 1a, if the polarity

gate has a high (respectively low) bias voltage, the transistor behaves

as n-type (respectively p-type).

Such a conduction property inherently implements the XNOR

logic function between the two gate logic levels. For that reason,

it is possible to design full-swing XOR gates using only four such

transistors, as shown in Fig. 1b [6]. While binate logic functions (such

as XOR/XNOR) take full-advantage of the controllable-polarity tran-

sistor properties, the design of usual CMOS gates (namely negative-
unate Boolean functions such as NAND/NOR) is achieved by biasing

the polarity gates of transistors to either VDD or Gnd to obtain

traditional unipolar transistors. As an example, the circuit of a NAND

gate is depicted in Fig. 1c.

Among the different technology competitors, Double-Gate Silicon
Nanowire Field-Effect Transistors (DG-SiNWFETs) are very promis-

ing to realize controllable-polarity devices [3]. Their structure and

abstracted top view are shown in Fig. 2, as introduced in [8].

Devices with controllable-polarity introduce an additional ter-

minal to route on every single transistor, leading to an increased

wiring complexity in the first metal layers. To mitigate this impact

and keep the wiring under control, a symbolic-layout diagram, called

dumbbell-stick diagrams, and an associated layout methodology were

46978-1-4799-0874-5/13/$31.00 c©2013 IEEE

B
A A

B

Y

B

A
A

B

0
A B

0

Y

1
B

1
A

(c)

PG
CG

n

pPG=0

PG=1

(a) (b)

Fig. 1. (a) Symbol of a controllable-polarity transistor. (b) Complementary
XOR logic gate exploiting the higher expressiveness of controllable-polarity
transistors. (c) Complementary NAND logic gate with polarity gates biased
to either VDD or Gnd.

Polarity Gate

Control Gate

D

S

CG

PG

S D

(a) (b)

Fig. 2. (a) 3D view of a DG-SiNWFET. (b) Abstracted top view.

introduced in [8]. Instead of focusing on the pull-up and pull-down

parts of the circuit, the new methodology explores new ways of

arranging the devices, considering both the control gate and the

polarity gate signals. Therefore, the physical design of logic functions

exploiting the polarity gates was improved and the wiring kept under

control.

In addition, they also presented the concept of Sea-of-Tiles (SoT),

as an architectural support of the wiring simplification methodology.

This rejuvenated Structured ASIC methodology is based on elemen-

tary building blocks called Tiles, that are composed of few transistors

sharing their terminals. Note that the concept of SoT can be applied

to any controllable-polarity devices. Therefore, the the methodology

discussed in the following is not dependent to the considered device.

More details about Tiles and SoT will be given in III-A.

B. Satisfiability Solving

The Boolean satisfiability problem, also abbreviated as SAT, is

used to efficiently solve a wide variety of problems, especially in

Electronic Design Automation (EDA): channel-routing and placement

[14], routing of FPGAs [15], standard cell routing [16], etc. It benefits

from a large panel of solvers [10]–[13] that keep on being improved

and compete every year in the international SAT competition [17].

Given a Boolean function f in Conjunctive Normal Form (CNF)

solving the Boolean satisfiability problem consists of determining

whether there exists or not an assignment of its variables so that the

function evaluates to true. By extension, the problem of finding such

an assignment is also referred to as satisfiability. A Boolean function

in CNF can be interpreted as a set of disjunctive clauses that all need

to be satisfied. We call a SAT instance a set of such clauses that

define a problem. For example, let us consider the function in CNF

f = (X ∨ Y) ∧ (X ∨ Z ∨ Y), where ∧ denote the logical AND

function, ∨ the OR function and X the complement of X . Then this

function is satisfied by the assignment X = 1, Y = 0 and Z = 1,

since X = 1 makes the first clause satisfied while Z = 1 makes the

second satisfied. For more information about Boolean satisfiability,

we refer the reader to [18].

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

pin a1,2

0,1

J=3

I=2c

b0

a0,0 a0,1

a1,0 a1,1

b1

(a) (b)

Fig. 3. (a) The basic tile and its 7 pins. (b) An example of a grid of tiles
with introduced notations.

C. Motivation

The methodology we propose here automates the mapping of

small netlists of transistors onto a set of tiles, enabling to quickly

build large gate libraries for many different tile shapes. In particular,

it enables to: (i) map any XOR-embedding gate, allowing us to be

unrestricted in the elementary Boolean functions used in synthesis;

and (ii) impose a given shape on a gate, i.e., restrict its mapping

to a certain set of tiles. This way, many different layouts can be

constructed for each gate, enabling more flexibility in the placement

of the gates.

III. MAPPING TRANSISTORS ON A SOT USING SAT

In this section, we describe in details our methodology for

mapping a netlist of transistors onto a Sea-of-Tiles using SAT. This

methodology targets short netlists, of the typical size of a logic gate.

A. Preliminary Notations

To simplify the instance formulations, we use a very simple tile

as depicted in Fig. 3a. The tile, known as Tile G1 [8], consists of two

transistors sharing their control gates. It has seven pins in total: one

for the shared control gate, two for the polarity gates and four for

the drains and sources. Those pins are labelled as in the figure: for

each pin, the subscript numbers indicate its position on the tile, while

notations a, b and c are used to indicate the type of pin, respectively

drain or source pin, polarity gate pin and control gate pin.

For mapping a netlist, we consider a grid of I × J of such tiles,

with I the number of rows and J the number of columns. In the

following, we will refer to this grid as the Sea-of-Tiles itself, even

if we should rather think of it as a part of the whole Sea-of-Tiles.

Such a grid is shown in Fig. 3b, where I is equal to 2 and J equal

to 3. In the context of netlist mapping, I and J are determined by

the number of transistors to map. These parameters are first set to

support the minimal requirements in terms of transistors and a first

minimal SAT instance is run. If this instance is unsatisfiable, then the

size of the grid is increased until a satisfiable instance is obtained.

An elementary tile is uniquely identified by the indexes (i, j),
with 0 ≤ i < I and 0 ≤ j < J . We note pi,j the pin p from tile

(i, j) (for example ai,j0,1). Let P be the set of all pins of the SoT and

N the set of nets from a given netlist to map.

B. SAT Instance Overview

For the sake of clarity, the various constraints introduced with out

SAT instance will be explained by using the example of the mapping

2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 47

(0,1)

a0,0
0,1 a0,1

0,1

a1,0
0,1 a1,1

0,1

b0
0,1

b1
0,1

c 0,1(0,0)

a0,0
0,0 a0,1

0,0

a1,0
0,0 a1,1

0,0

b0
0,0

b1
0,0

c 0,0

B
A A

B

Y

B

A
A

B

t2t1

t4t3

Transistor Netlist
t1 :S VDD CG A PG B D Y

t 2 :S VDD CG A PG B D Y

t 3 :S Gnd CG A PG B D Y

t 4 :S Gnd CG A PG B D Y

Nets
N A, B,VDD ,Gnd,Y

Fig. 4. Problem formulation of a 4-transistor XOR gate mapping.

problem of a 4-transistor 2-input XOR gate onto a 2 × 2 grid, i.e.,

the assignment of nets N = {A,B, Vdd, Gnd, Y } onto the different

pins of the SoT. The problem formulation is depicted in Fig. 4.

To solve our mapping problem, we define Boolean variables

able to describe a mapping, in the sense that an assignment of

those variables, i.e., a solution to our SAT instance, can be directly

translated into a valid mapping. A simple way to proceed is to

introduce assignment variables: if ν is a net of the netlist and p a pin

of the SoT, then the assignment variable of net ν to pin p, denoted

pν , is true if and only if net ν is assigned to pin p. Fig. 5 shows

an illustration of an assignment variable on the bottom-left transistor,

where a0,01,0B
= 1 means that net B is assigned to the pin a0,01,0.

However, an assignment of those variables does not necessarily

correspond to a valid mapping. For example, if both a0,01,0A
and a0,01,0B

are assigned to true, then both nets A and B have been assigned to

the same pin a0,01,0, which is not physical. To avoid that, a first set of

constraints, called validity constraints, are introduced in III-C.

For a mapping to actually correspond to a given netlist, we need

to consider the position of the transistors in addition to the position of

the nets. Therefore, we define, in III-D, a set of transistor assignment
variables in a similar way than nets. Again, we need constraints

to ensure that each transistor of the netlist is placed at exactly one

position on the SoT, and that no transistors are overlapped. Therefore,

we define a set of placement constraints. These constraints are then

derived in terms of assignment variables, as we expect that a valid

assignment of the transistors turns into a valid assignment of the nets.

The proposed set of constraints is enough to guarantee a valid

mapping of the netlist. However, some efforts are required to mini-

mize the wiring complexity. To give to the SAT solver a sense of what

a good mapping is, we introduce a set of optimization constraints.

Those are detailed in III-E.

C. Validity Constraints

As introduced above, pin assignment variables can describe valid

mappings but they are not necessarily guaranteeing that an assignment

of those variables corresponds to a valid mapping. Therefore, we

a =1
0,0

1,0B

B

At most one net is assigned to a
0,0

1,0

(a1,0A
0,0 a1,0B

0,0) (a1,0A
0,0 a1,0VDD

0,0) (a1,0A
0,0 a1,0Gnd

0,0)

(a1,0A
0,0 a1,0Y

0,0) (a1,0B
0,0 a1,0VDD

0,0) (a1,0B
0,0 a1,0Gnd

0,0)

(a1,0B
0,0 a1,0Y

0,0) (a1,0VDD
0,0 a1,0Gnd

0,0) (a1,0VDD
0,0 a1,0Y

0,0)

(a1,0Gnd
0,0 a1,0Y

0,0)

Fig. 5. Illustration of assignment variables and validity constraints for pin
a0,01,0.

define a set of validity constraints: if net ν is assigned to pin p, then

for each net μ different from ν, μ is not assigned to p. This results

in Boolean notation in:

∀p ∈ P,
∧
ν∈N

∧
μ �=ν∈N

(pν ⇒ pμ) (1)

where the symbol ⇒ denote the Boolean implication. These validity
constraints force any assignment of Boolean assignment variables to

correspond to valid mappings. From (1), we can easily obtain a CNF

using the identity P ⇒ Q = P ∨Q:

∀p ∈ P,
∧
ν∈N

∧
μ�=ν∈N

(pν ∨ pμ) (2)

Fig. 5 also illustrates the validity contraints associated with pin

a0,01,0, by listing all the possibles couples on assignments required to

ensure a unique assignment.

D. Transistors Placement Constraints

In addition to the considerations on nets, the validity of a

mapping implies that each transistor of the netlist is assigned to a

unique transistor of the SoT. Hence, we define a set of transistor
assignment variables in a similar way than pin assignment variables:

each transistor assignment variable determines whether or not a given

transistor t of the netlist is assigned to a given transistor of the SoT.

Given integers i and j such that 0 ≤ i < I and 0 ≤ j < J ,

let (i, j, 0) (respectively (i, j, 1)) denote the position on the SoT of

the upper (respectively lower) transistor of tile (i, j). Let then G
be the domain of (i, j, k), i.e., {0, ..., I − 1} × {0, ..., J − 1} ×
{0, 1}. Then, given a transistor t of the netlist and (i, j, k) in G, we

denote by ti,j,k the transistor assignment variable of transistor t to

the transistor of the SoT at position (i, j, k), i.e., ti,j,k is true if and

only if transistor t is placed at position (i, j, k). An example of such

a transistor assignment variable is given in Fig. 6 with the assignment

of the transistor instance t3 to the top-right transistor.

Each transistor t is assigned to at least one of the transistors

of the SoT, i.e., for a transistor t of the netlist, at least one of the

ti,j,k variables is true. This can be written in Boolean notation with

48 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

t =1
3

0,1,0

Y

A

B

Gnd

must be assigned to at least one transistor of the SoTt3
t0,0,0
3 t0,0,1

3 t0,1,0
3 t0,1,1

3

(0,1,0)

(0,1,1)

Fig. 6. Illustration of transistor assignment variables and associated placement
constraint for t1.

a disjunction of the ti,j,k, as follows:∧
t∈T

∨
(i,j,k)∈G

ti,j,k (3)

Figure 6 gives also an example of such a constraint associated with

transistor t3, i.e., t3 must be placed on one of the four possible

transistors of the SoT with indexes(0, 0, 0), (0, 0, 1), (0, 1, 0) or

(0, 1, 1). In addition, no transistor of the SoT should be assigned

to more than one transistor instance of the netlist. This is already

guaranteed by the constraint, introduced previously, that no pin is

assigned to more than one net.

To ensure a valid mapping, a correct assignment of transistors

must derive in a pin assignment. Therefore, we introduce new

constraints to define those variables in terms of the pin assignment

variables. For a transistor t of the netlist, we call At and Ât the

nets assigned to the drain and source, Bt the one assigned to the

polarity gate and Ct to the control gate. For example, in Fig. 7, we

would have At1 = Y , Ât1 = VDD, Bt1 = B and Ct1 = A. Then,

a definition of the transistor assignment variables in terms of the

assignment variables can be written, in Boolean notation, as follows:

∀t ∈ T,(i, j, k) ∈ G
ti,j,k ⇒ ci,jCt

(4)

∧ti,j,k ⇒ (ai,jk,0At
∨ ai,jk,0Ât

) (5)

∧(ti,j,k ∧ ai,jk,0At
) ⇒ ai,jk,1Ât

(6)

∧(ti,j,k ∧ ai,jk,0Ât
) ⇒ ai,jk,1At

(7)

∧ti,j,k ⇒ bi,jk Bt
(8)

This expression can be directly converted into CNF, as per (1). An

example of such a constraint is presented in Fig. 7. In this example,

the formula means that if transistor t1 is placed at position (0, 0, 1),
then net A must be assigned to c0,0 (clause (4)) and net B to b0,01

(clause (8)). The assignment of the drain and source is more complex,

because of the interchangeability of the terminals. This liberty is

expressed in clauses (5-7). In the example 7, these clauses express

the fact that nets Y and VDD can be either associated to pins a0,01,0 or

a0,01,1.

E. Optimization Constraints

The constraints introduced so far are sufficient to obtain a correct

mapping of the input netlist of transistors. However, our global

objective is to minimize the wiring complexity of the mapping, and

while different mappings can satisfy the previously defined set of

constraints, some solutions might be inefficient regarding the routing

B
A t1

Y

VDD

Y

(0,0,1)

A

VDD

B

t0,0,1
1 c0,0

A

t0,0,1
1 (a1,0

0,0
VDD

a1,0
0,0

Y)
(t0,0,1
1 a1,0

0,0
VDD
) a1,1

0,0
Y

(t0,0,1
1 a1,0

0,0
Y) a1,1

0,0
VDD

t0,0,1
1 b1

0,0
B

A
t1

Y

Â
t1

VDD

B
t1

B

C
t1

A

Clause (4)

Clause (8)

Clauses (5-7)

Fig. 7. Expression of transistor assignment variable t10,0,1 in terms of
assignment variables.

complexity, as for example the mapping of Fig. 8a compared to Fig.

8b. While Boolean satisfiability is not fundamentally an optimization

problem, we endeavor to optimize the wiring complexity by ensuring

that pins that are assigned to the same nets are close to each other.

For that purpose, we formulate a set of constraints to state: if a

net ν is assigned to a pin p, then ν must also be assigned to the

neighbor pin of p. Applied to pin bi,jk , this constraint can be written

in Boolean notation by a simple implication, as follows:∧
X∈N

bi,jk X
⇒ bi,j+1

k X
(9)

for i ∈ {0, ..., I − 1}, j ∈ {0, ..., J − 2} and k ∈ {0, 1}. Such

a constraint is called an elementary optimization constraint. By this

approach, we do not claim to actually minimize the wiring complexity,

since the wiring complexity is not strictly speaking an objective

function. Instead, the wiring complexity will be used as a measure of

the results quality, as explained in section IV.

There is one elementary optimization constraint per (i, j, k) tuple,

i.e., in total, 2 × I × (J − 1) constraints. Hence, enforcing all

those optimization constraints may result in unsatisfiable instances.

Consequently, a reduced constraint set is determined. The proposed

approach consists of imposing first a strong set of constraints and

progressively relaxing them until a satisfiable instance is obtained.

In practice, the largest number of constraints is often satisfiable,

as discussed in section IV, i.e., all optimization constraints can be

enforced. Therefore, we start by setting the number of constraints

at its maximum value, and decrease it until we find a satisfiable

instance. This procedure is first applied to optimization constraints

on pins b and then repeated for pins a while having fixed the number

of optimization constraints on pins b at its maximum satisfiable value.

It has to be noted that this approach only forces pins assigned to the

same nets to be next to one another. Enforcing more general rules for

efficient routing, such as the avoidance of signal crossing, is out of

the scope of this paper.

IV. MAPPING EXPERIMENTAL RESULTS

In this section, we present SATSoT, a tool based on the method-

ology described so far to map netlists of transistors on Sea-of-Tiles

using SAT, and show that it achieves satisfying wiring complexity in

tractable time.

2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 49

VDD Y

Gnd Y

B

B

A

Y VDD

Y Gnd

B

B

A

Y VDD

Y Gnd

B

B

A

Gnd Y

VDD Y

B

B

A

(a) (b)

Fig. 8. Two valid mapping of the 4-transistors XOR gate. (a) Mapping with
important wiring complexity. (b) Mapping with lower wiring complexity.

A. Methodology and Metrics

SATSoT is implemented using C++ language and works as a

wrapper: it generates inputs for a SAT solver and analyses the results.

For our experiments, a very simple open-source SAT solver called

Minisat [12] was used.

To assess the performance of our methodology, SATSoT is run

on two distinct libraries. The first one, ambilib, is a library designed

specifically for devices with controllable polarity, leveraging their

high expressiveness in XOR-embedding gates [6]. In the following,

the functions named FXX refer to this library. This library contains

46 gates of up to 3 transistors in series, up to 6 inputs and up to 12

transistors. The second library is a regular CMOS standard-cell library

with 84 gates of up to 50 transistors [19]. Mappings were performed

on both Tile G1 and Tile G2 architectures. Tile G2 is composed of

two Tiles G1, i.e. 4 transistors, sharing their polarity gates and drains

and sources [8]. To quantify the generated mappings, we define a

measure of the wiring complexity of a mapping as an upper bound

of the total length of the wire that will have to be subsequently routed.

Considering a mapped net ν and the positions P1, ..., Pn of its pins,

we refer as wiring complexity of net ν to:

n∑
i=1

|Pi − C| (10)

where | · | denotes the euclidean distance and C the barycenter of

positions P1, ..., Pn. The wiring complexity of a mapping is then

simply the sum of the wiring complexity of its nets. We report for

each mapping its wiring complexity density, i.e., its wiring complexity

divided by the total area of the mapping. A large wiring complexity

density, i.e., important wire lengths per tile, makes a mapping more

difficult to wire. Indeed, pins of nets are farther from one another,

thereby increasing the probability to have signal crossings inside the

gate. In addition, all the wiring complexity metrics are normalized,

considering an unitary height of a tile.

B. Experimental Results

Experimental results are shown in Fig. 9. We first illustrates the

obtained results with two examples and then we discuss the perfor-

mances of the methodology considering the two test-case libraries.

1) Methodology Performance Illustration: Fig. 9ab illustrate the

mapping of two simple functions on Tiles G1 (F21 [6] and the

carry-out logic of a full-adder) obtained by both our methodology

and the one introduced in [8]. We compare the equivalent mappings

on SoT from [8] with mappings generated by our tool, and show

that our automatized methodology is able to achieve similar wiring

complexities than the mappings obtained by hand in short runtimes -

a few tens of milliseconds. For gate F21, the obtained mappings are

exactly the same (Fig. 9a), achieving a wiring complexity of 4.43.

The automated mapping was obtained in 28 ms with SATSoT. For the

carry-out function, mappings are slightly different with close wiring

complexity: 4.17 for the hand-made mapping against 4.50 for SATSoT

(Fig. 9b). In this context, the mapping was obtained in 51 ms. In both

mappings, polarity gates are nicely grouped together and almost all

pairs of neighboring drain-sources are assigned to the same nets. Note

that only one such pair could not be mapped on the same net, and is

therefore not placed at the same position on both mappings, inducing

the slight wiring complexity difference.

2) Global Considerations: Table 9c shows the most significant

results from the runs over the two case-study libraries when mapped

on Tiles G2. In this table, we report the number of transistors of

the gate, the number of tiles used by both our automatized mapping

methodology and, when available, by hand [8], the wiring complexity

density, the runtime and the number of run instances. The results are

sorted by numbers of transistors. Most gates can be mapped with

minimal areas, i.e., with a number of Tiles G2 equal to the quarter

of the number of transistors, therefore guaranteeing a good usage of

the available resources. The number of tiles are equivalent between

our solution and the previous art, confirming a good efficiency of

the automatized method. The wiring complexity increases roughly

linearly with the number of transistors: as the number of tiles

increases, the wire length per tile increases due to longer wires.

On average over the libraries, the wiring complexity density is 7.35,

which means that for each tile composing the mapping a normalized

total wire length of 7.35 is required.

Most gates required only 3 SAT instances for a successful

mapping. This corresponds to the minimum number of SAT instances

that have to be run (at least one to determine the size of the grid of

tiles, one to determine the number of optimization constraints for pins

b and one for pins a). This means, as we argued in section III-E, that

for most gates, all optimization constraints could be enforced, i.e., all

pairs of neighboring pins could be assigned to the same net.

SATSoT mapped successfully gates of up to 32 transistors, most

of them in a few tens to a few hundreds of milliseconds. The runtime

increases with the number of transistors, but also with the number

of nets in a gate. Over the whole libraries, 66% of gates could be

mapped in less than 200 ms and the average runtime is 163.3 ms.

3) Discussions: Our methodology is thus capable of achieving

compact mappings with good wiring complexity by simply enforcing

the sharing of neighboring drain, source an polarity gate pairs: in

most cases, all such pairs could be shared. This characteristic makes

possible the mapping of most gates with only three SAT instances,

enabling short runtimes. The capabilities of the proposed tool enable

interesting opportunities in the context of regular fabrics based on

emerging devices.

In the present paper, the methodology was presented with Tile G1.

However, by slightly modifying the set of constraints, it is possible to

adapt it to a broad range of tile geometries. Hence, SATSoT makes

possible the evaluation of various tile sizes with regards to their

impact on wiring complexity.

In addition, while linked to a synthesis framework such as ABC

[20] or MIXSyn [21], SATSoT enables the design of complex circuits

by providing an automatic link between logic cells and their efficient

implementation onto the SoT. Such an opportunity is of paramount

interest, as it allows the designers to study not only the performance

of SoT, but also to exploit the new set of logic functions proposed

50 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

D
C C

D

F1=

1
A

(b)

(a)
0
A

0
B

D
C C

D

1
B

(A B)(C D) B

VSS

Y N1

N2 VSS

VDD

A

VSS

N1 VDD

VSS N2

VDD

C

D

VDD Y

N2 Y

D

C

D

Y N2

Y VDD

D
[This work]

[6]

B
A A

B

COUT =

1
C

0
B

B
A A

B

1
A [This work]

[6]

1
B

0
A

0
B

(A B)C AB

B

VSS

VDD N1

Y N3

VDD

A

VSS

N1 VDD

N3 VSS

VDD

C

VSS

Y N1

VSS N2

VDD

A

B

N1 Y

N2 Y

B

A

B

Y N2

Y N1

B

B

VSS

N1 VDD

Y N3

VDD

A

VSS

VDD N1

N3 VSS

VDD

C

VSS

N1 Y

VSS N2

VDD

A

B

N1 Y

N2 Y

B

A

B

Y N2

Y N1

B

Wiring Complexity Density = 4.4

Wiring Complexity Density = 4.5

Wiring Complexity Density = 4.2

(c)
Gate #Trans. #Tiles #Hand [8] W.C.D. Rt (ms) #SAT

Ambilib
F03 4 1 N.A. 2.83333 24 3
F13 6 2 N.A. 3.80556 28 3
F15 10 3 N.A. 5.92 40 3
F25 10 3 N.A. 5.86667 38 3
F32 10 4 N.A. 6.02585 350 5
F36 10 4 N.A. 5.86463 306 5
F20 12 3 N.A. 7.66667 54 3
F31 12 3 N.A. 7.625 50 3
F34 12 4 N.A. 7.71429 411 4
F41 12 4 N.A. 6.16071 441 4

CMOS Standard-Cells
INV X1 2 1 1 0.5 110 3

NOR2 X1 4 1 1 2.83333 90 3
OAI21 X1 6 2 2 4.05556 89 3
AND3 X1 8 2 2 5.5 34 3

NAND4 X1 8 2 2 4.925 126 3
AOI221 X1 10 3 3 5.51333 50 3
XNOR2 X1 8 2 2 6.00667 188 3
XOR2 X1 8 2 2 5.74 191 3
MUX2 X1 12 3 N.A. 6.33333 111 3
DLH X1 16 4 N.A. 8.375 288 3
DLL X2 18 5 N.A. 8.25265 303 3

TBUF X4 18 5 N.A. 8.67901 1279 3
CLKGATE_X2 22 6 N.A. 9.02112 422 3

BUF_X8 24 6 N.A. 11.1667 282 3
CLKGATEST_X2 26 7 N.A. 10.1943 2185 3

AOI22_X4 32 8 N.A. 11.4883 257 3
NAND4_X4 32 8 N.A. 12.1125 813 3

INV_X32 64 16 N.A. 19 5936 3

Fig. 9. (a) Mapping of F21 gate on Tiles G1. (b) Mapping of carry-out logic functions on Tiles G1. (c) Selected performance results of SATSoT + Minisat
on ambilib and a regular CMOS standard cell library mapped on Tiles G2(#Trans.: Number of transistors per gate, #Tiles: Number of tiles used to map the
function, #Hand: Number of tiles used to manually map the function [8], W.C.D.: Wiring Complexity Density, #SAT: Number of running SAT instances)

by controllable-polarity devices [6]. In addition, SATSoT paves the

way to library-free mapping approaches, especially promising for the

architectural exploration of circuits based on controllable-polarity de-

vices [21]. Finally, the modularity of SATSoT enables the generation

of several different mappings for each gate to support a large set

of geometrical conformations, simply by modifying the dimensions

of the grid, leveraging some extra freedom for any subsequent gate

placement step.

V. CONCLUSION

We presented a methodology using Boolean satisfiability to map

netlists of controllable-polarity transistors onto regular SoT fabric.

We implemented this methodology and ran it on two libraries,

one targeting controllable-polarity devices and the other based on

conventional CMOS-based gates. Mapping results showed that the

presented methodology is able to achieve wiring complexities similar

to mappings obtained manually by previous methodologies. It allows

us to automatically exploit the sharing of the different terminals of

the tiles and achieves a high resource usage, with runtimes from a

few tens of milliseconds to around one second for the biggest gates.

ACKNOWLEDGMENTS

The authors would like to thank Luca Amarú for the fruitful

discussions. This work has been partially supported by the ERC senior

grant NanoSys ERC-2009-AdG-246810.

REFERENCES

[1] V. Subramanian, ”Multiple gate field-effect transistors for future CMOS
technologies,” IETE Tech. Rev., 27(6): 446, 2010.

[2] D. Hisamoto et al., ”FinFET-a self-aligned double-gate MOSFET scal-
able to 20 nm,” IEEE Trans. on Electron Devices, 47(12):2320-2325,
2000.

[3] M. De Marchi et al., ”Polarity control in double-gate, gate-all-around
vertically stacked silicon nanowire FETs,” IEDM Tech. Dig., 2012.

[4] Y.-M. Lin, J. Appenzeller, J. Knoch and P. Avouris, High-Performance
Carbon Nanotube Field-Effect Transistor With Tunable Polarities, IEEE
Trans. Nanotechnology, 4:481-489, 2005.

[5] N. Harada, K. Yagi, S. Sato and N. Yokoyama, ”A polarity-controllable
graphene inverter,” Applied Physics Letters, 96:12102, 2010.

[6] M.H. Ben Jamaa, K. Mohanram and G. De Micheli, ”An Efficient
Gate Library for Ambipolar CNTFET Logic,” IEEE Trans. on CAD,
30(2):242-255, 2011.

[7] T. Jhaveri, L. Pileggi, V. Rovner and A. J. Strojwas, ”Maximization
of layout printability/manufacturability by extreme layout regularity,” J.
Micro/Nanolith. MEMS, 2007.

[8] S. Bobba, M. De Marchi, Y. Leblebici and G. De Micheli, ”Physical Syn-
thesis onto Sea-of-Tiles with Double-Gate Silicon Nanowire Transistors,”
DAC Tech. Dig., 2012.

[9] S. A. Cook, ”The complexity of theorem-proving procedures”, ACM
Sym. on Th. of Comp., 1971.

[10] J. P. Marques-Silva and K. A. Sakallah, ”GRASP: a search algorithm for
propositional satisfiability,” IEEE Trans. on Computers, 48(5):506-521,
1999.

[11] http://www.lri.fr/∼simon/?page=glucose

[12] http://minisat.se/Main.html

[13] http://www.cril.univ-artois.fr/∼roussel/ppfolio/

[14] S. Devadas, ”Optimal layout via Boolean satisfiability,” ICCAD Tech.
Dig. 1989.Computer-Aided Design, 1989.

[15] G.-J. Nam, K. A. Sakallah and R. A. Rutenbar, ”Satisfiability-based
layout revisited: detailed routing of complex FPGAs via search-based
Boolean SAT,” FPGA Tech. Dig., 1999.

[16] N. Ryzhenko and S. Burns, ”Standard cell routing via Boolean satisfi-
ability,” DAC Tech. Dig., 2012.

[17] http://www.satcompetition.org/

[18] A. Biere, M. Heule, H. van Maaren and T. Walsh ”Handbook of
Satisfiability,” IOS Press, 2009.

[19] http://si2.org/openeda.si2.org/projects/nangatelib

[20] http://www.eecs.berkeley.edu/∼alanmi/abc/

[21] L. Amarú, P.-E. Gaillardon and G. De Micheli, ”An Efficient Logic
Synthesis Methodology for Mixed XOR-AND/OR Dominated Circuits,”
ASP-DAC Tech. Dig., 2013.

2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 51

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

