IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

1613

QoS-Driven Reconfigurable Parallel Computing for
NoC-Based Clustered MPSoCs

Jaume Joven, Akash Bagdia, Federico Angiolini, Member, IEEE, Per Strid, David Castells-Rufas,
Eduard Fernandez-Alonso, Jordi Carrabina, and Giovanni De Micheli, Fellow, IEEE

Abstract—Reconfigurable parallel computing is required to
provide high-performance embedded computing, hide hardware
complexity, boost software development, and manage multiple
workloads when multiple applications are running simultaneously
on the emerging network-on-chip (NoC)-based multiprocessor
systems-on-chip (MPSoCs) platforms. In these type of systems,
the overall system performance may be affected due to congestion,
and therefore parallel programming stacks must be assisted by
quality-of-service (QoS) support to meet application requirements
and to deal with application dynamism.

In this paper, we present a hardware-software QoS-driven re-
configurable parallel computing framework, i.e., the NoC services,
the runtime QoS middleware API and our ocMPI library and its
tracing support which has been tailored for a distributed-shared
memory ARM clustered NoC-based MPSoC platform.

The experimental results show the efficiency of our software
stack under a broad range of parallel kernels and benchmarks,
in terms of low-latency interprocess communication, good ap-
plication scalability, and most important, they demonstrate the
ability to enable runtime reconfiguration to manage workloads in
message-passing parallel applications.

Index Terms—Networks-on-chip (NoCs), NoC-based multipro-
cessor systems-on-chip (MPSoC), parallel computing, quality of
service (QoS), runtime reconfiguration.

I. INTRODUCTION

N the past, due to Moore’s law the uniprocessor perfor-
mance was continually improved by fabricating more and
more transistors in the same die area. Nowadays, because of the
complexity of the actual processors, and to face the increasing
power consumption, the trend to integrate more but less com-
plex processors with specialized hardware accelerators [1].
Thus, multiprocessor systems-on-chip (MPSoCs) [2], [3] and
cluster-based SoCs with tens of cores such as the Intel SCC
[4], Polaris [5], Tilera64 [6] and the recently announced 50-core

Manuscript received September 20, 2011; revised April 15, 2012; accepted
July 24, 2012. Date of publication October 02, 2012; date of current version
August 16, 2013. This work was supported in part by the Catalan Government
Grant Agency (Ref. 2009BPA00122), European Research Council (ERC) under
Grant 2009-adG-246810, and a HIPEAC 2010 Industrial Ph.D. grant from the
R&D Department, ARM Ltd., Cambridge, U.K. Paper no. TII-11-552.

J. Joven and G. De Micheli are with the Integrated Systems Laboratory (LSI),
Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzer-
land (e-mail: jaime.jovenmurillo@epfl.ch).

A. Bagdia and P. Strid are with the R&D Department, ARM Limited, Cam-
bridge GB-CB1 9NJ, UK.

D. Castells-Rufas, E. Fernandez-Alonso, and J. Carrabina are with CAIAC,
Universitat Autonoma de Barcelona (UAB), Bellaterra 08193, Spain

F. Angiolini is with in iNoCs SaRL, Lausanne 1007, Switzerland.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T11.2012.2222035

Knights Corner processor, are emerging as the future generation
of embedded computing platforms in order to deliver high-per-
formance at certain power budgets. As a consequence, the im-
portance of interconnects for system performance is growing,
and networks-on-chip (NoCs) [7] and multilayer sockets-based
fabrics [8], [9] have been integrated using regular or applica-
tion-specific topologies efficiently in order to be the communi-
cation backbone for those systems depending on the application
domain.

Nevertheless, when the number of processing elements in-
crease and multiple software stacks are simultaneously running
on each core, different application traffic can easily conflict on
the interconnection and the memory subsystems. Thus, to mit-
igate and control the congestion, it is required to support cer-
tain level of quality-of-service (QoS) in the interconnection al-
lowing to control and reconfigure at runtime the execution of
prioritized or real-time tasks and applications.

From the software viewpoint, to boost software engineer
productivity and to enable concurrency and parallel computing,
it is necessary to provide parallel programming models and Ap-
plication Programming Interface (API) libraries which exploit
properly all the capabilities of these complex many-core plat-
forms. The most common and viable programming languages
and APIs are OpenMP [10] and Message-Passing Interface
(MPI) [11] for shared-memory and distributed-memory mul-
tiprocessor programming, respectively. In addition, Open
Computing Language (OpenCL) and Compute Unified Device
Architecture (CUDA) have been proposed to program effort-
lessly exploiting the parallelism of GPGPU-based platforms
[12], [13].

In summary, there is consensus that suitable software stacks
and, system-level software in conjunction with QoS services
integrated in the hardware platform will be crucial to achieve
QoS-driven reconfigurable parallel computing for the upcoming
many-core NoC-based platforms.

In this work, reconfiguration is achieved by means of hard-
ware-software components, adjusting a set of NoC-based
configurable parameters related to different QoS service levels
available in the hardware architecture from the parallel pro-
gramming model. Regarding the programming model, we
believe that a customized MPI-like library can be a suitable
candidate to hide hardware many-core complexity and to
enable parallel programming on highly parallel and scalable
NoC-based clustered MPSoCs 1) due to the inherent distributed
nature of message-passing parallel programming model, 2)
the low-latency NoC interconnections, 3) because of the
easy portability and extensibility to be tailored in NoC-based
MPSoC, and 4) since it is a very well-know API and efficient
parallel programming model in supercomputers, and therefore,

1551-3203 © 2012 IEEE

1614

experienced software engineers can create and reuse effort-
lessly message-passing parallel for the embedded domain, as
well as many debugging and tracing tools.

Thus, the main objective is to design a QoS-driven recon-
figurable parallel computing framework capable to manage the
different workloads on the emerging distributed-shared memory
clustered NoC-based MPSoCs. In this work, we present a cus-
tomized on-chip Message Passing Interface (ocMPI) library,
which is designed to support transparently runtime QoS services
through a lightweight QoS middleware API enabling runtime
adaptivity of the resources on the system. Thus, one major con-
tribution of the proposed approach is the abstraction of the com-
plexity from the provided QoS services in the reconfigurable
NoC communication infrastructure. By simple annotations at
application-level in the enhanced ocMPI programming model,
the end user will reconfigure the NoC interconnect, adapting the
execution of parallel application in the system and achieving
QoS-driven parallel computing. This is a key challenge in order
to achieve predictability and composability at system-level in
embedded NoC-based MPSoCs [14], [15].

The ocMPI library has been extended and optimized
from previous works [16]. It has been optimized for dis-
tributed-shared memory architectures removing useless copies,
and most important, it has been instrumented in order to gen-
erate open trace format (OTF) compliant traces, which will
help to debug and understand the traffic dynamism and the
communication patterns, as well as to profile the time that a
processor is executing a particular task or group of tasks.

This paper is organized as follows. Section II presents the
related works on message-passing APIs for MPSoCs plat-
forms, as well as support for system-level QoS management.
Section III describes the designed distributed-shared memory
Cortex-M1 clustered NoC-based MPSoC. Section IV presents
the QoS hardware support and the middleware SW API to en-
able runtime QoS-driven adaptivity at system-level. Section V
describes our proprietary ocMPI library tailored for our dis-
tributed-shared memory MPSoC platform. Section VII reports
results of low-level benchmarks, message-passing parallel
applications in the distributed-shared memory architecture.
Section VIII presents the results about QoS-driven parallel
computing benchmarks performed in our MPSoC platform.
Section IX concludes the paper.

II. RELATED WORK

QoS has been proposed in[14], [17], and [18] in order to com-
bine best-effort (BE) and guaranteed throughput (GT) streams
with time division multiple access (TDMA), to distinguish be-
tween traffic classes [19], [20], to map multiple use-cases in
worst-case scenarios [21], [22], and to improve the access to
shared resources [23], such as external memories [24], [25] in
order to fulfill latency and bandwidth bounds.

On the other hand, the industry as well in the academy due
to the necessity to enable parallel computing on many-core
embedded systems, they provide custom OpenMP [26]-[30]
and MPI-like libraries. In this work, we will focus on mes-
sage-passing. In the industry, the main example of mes-
sage-passing is the release of Intel RCCE library [31], [32]
which provides message-passing on top of the SCC [6]. IBM

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

also explored the possibility to integrate MPI on the Cell
processor [33]. In the academy, a wide number of MPI libraries
have been reported so far, such as rMPI [34], TDM-MPI [35],
SoC-MPI [36], RAMPSoC-MPI [37] which is more focused
on adaptive systems, and the work presented in [38] about MPI
task migration.

Most of these libraries are lightweight running explicitly
without any OS (“bare metal” mode) and they support a small
subset of MPI functions. Unfortunately, some of them do not
follow the MPI-2 standard, and none include runtime QoS sup-
port on top of the parallel programming model, which enable
reconfigurable parallel computing in many-core systems.

This work is inspired on the idea proposed in [39], [40] in
the ambit of high performance computing (HPC). However,
in this work rather than focus on traditional supercomputing
systems, we target the emerging embedded many-core MPSoC
architectures.

Through our research, rather than focus exclusively on de-
veloping QoS services, the main target is to do step forward by
means of a hardware-software codesign towards a QoS-driven
reconfigurable message-passing parallel programming model.
The aim is to design the runtime QoS services on the hardware
platform, and expose them efficiently in the proposed ocMPI li-
brary through a set of QoS middleware API.

To the best of our knowledge, the approach detailed in this
paper represents one of the first attempt together with our
previous work [16] to have QoS management on our standard
message-passing parallel programming for embedded sys-
tems. Rather than in our previous work, where the designed
NoC-based MPSoC was a pure distributed-memory platform,
this time the proposed ocMPI library have been redesigned,
optimized and tailored to suit in the designed distribute-shared
memory system.

The outcome of this research enables runtime QoS manage-
ment of parallel programs at system-level, in order to keep cores
busy, manage or speedup critical tasks, and in general, to deal
with multiple traffic applications. Furthermore, on top of this,
the ocMPI library have been extended in order to generate traces
and dump through joint test action group (JTAG) to enable later
a static performance analysis. This feature was not present in
our previous work, and it is very useful to discover performance
inefficiencies and optimize them, but also to debug and detect
communication patterns in the platform.

III. OVERVIEW OF THE PROPOSED CLUSTERED
NOC-BASED MPSOC PLATFORM

The proposed many-core cluster-on-chip prototype consists
of a template architecture of eight-core Cortex-M1s intercon-
nected symmetrically by a pair of NoC switches including four
Cortex-M1 processors attached on each side.

Each Cortex-M1 soft-core processor in the subcluster rather
than including I/D caches, it includes a 32-kB instruction/data
tightly coupled memory (ITCM/DTCM), 2 x 32-kB shared
scratchpad memories, as well as the external interface for a
8-MB shared zero bus turnaround RAM (ZBTRAM) memory
interconnected by a NoC backbone. Both scratchpads (also
called in this work as message passing memory) are strictly
local to each subcluster.

JOVEN et al.: QOS-DRIVEN RECONFIGURABLE PARALLEL COMPUTING FOR NOC-BASED CLUSTERED MPSOCS

OTHER PERIPHERALS
(AHB subsystem)

Blod Outpt 8-core

RAM subicluster
32KB

[PERIPHERALS| :

Emulation |
Board

e e e ' e e i

(a)

1615

Application —
ocMPI program
QoS-aware Application
ocMPI Library |l Layer
Middleware API for
QoS support
Message Passing ARM RISC CPU
Memory
AHB AHB Transport
QoS-NI Target QoS-NI Initiator Layer
i I i i t I Network
QoS NoC interconnection Layer

(b)

Fig. 1. Architectural and hardware-software overview of our cluster-based MPSoC architecture. (a) 16-core cluster-based Cortex-M1 MPSoC architecture super-
vised by ARM11MPCore host processor. (b) HW-SW view of the cluster-on-chip platform.

Additionally, each 8-core subcluster has a set of local ARM
IP peripherals, such as the Interprocess Communication Module
(IPCM), a Direct Memory Access (DMA), and the Trickbox,
which enable interrupt-based communication to reset, hold
and release the execution of applications in each individual
Cortex-M1.

The memory map of each 8-core subsystem is the same with
some offsets according to the cluster id, which helps to boost
software development by executing multiple equal concurrent
software stacks (e.g., the ocMPI library and the runtime QoS
support), when multiple instances of the 8-core subcluster ar-
chitecture are integrated in the platform.

For our experiments, as is shown in Fig. 1(a), we de-
signed a 16-core NoC-based MPSoC including two 8-core
subcluster instances supervised by an ARM11MPCore host
processor. The system has been prototyped and synthesized
in a LT-XC5VLX330 FPGA LogicTile (TL), and later, it has
been plug-in together with the CT11MPCore CoreTile on the
emulation baseboard (EB) from ARM Versatile Products [41]
to focus on further software exploration.

As presented in [42], the system can optionally integrate an
AHB-based decoupled Floating Point Unit (FPU) to support
hardware-assisted floating point operations. In our case, the
FPU must be connected through an AMBA AHB Network
Interface (NI) instead of being connected directly to an AHB
matrix.

The proposed 16-core clustered NoC-based MPSoC platform
enable parallel computing at two levels, 1) intracluster and, 2)
intercluster, leverage to exploit locality on message-passing ap-
plications. In this scheme, we assume that short-fast intracluster
messages will be exchanged using the small size scratchpad
memories taking profit of their low-latency access time. On the
other hand, for intercluster communication larger messages can
be exchanged between each subcluster due to the higher ca-
pacity of the ZBTRAM.!

This clustered NoC-based architecture instead of including
like in a pure distributed-memory architecture, one scratchpad
for each processor, each scratchpad is shared between all 4 cores

INevertheless, if it is required, even for intracluster communication large
messages can be exchanged using a simple fragmentation protocol implemented
on top of the synchronous rendezvous protocol.

in each side of each subcluster. Thus, this cluster-based architec-
ture can be considered as noncache-coherent distributed-shared
memory MPSoC.

To keep the execution model simple, each Cortex-M1 runs a
single process at the same time that is a software image with
the compiled message-passing parallel program and the ocMPI
library. This software image is the same for each Cortex-M1
processor, and it is scattered and loaded in each ITCM/DTCM
from one of the ARM11MPCore host processors.

Once the software stack is loaded, the ARMI11MPCore
through the Trickbox starts the execution of all the cores in-
volved in the parallel program. The application will finish only
after each Cortex-M1 has completed.

IV. RUNTIME QOS SUPPORT AT SYSTEM LEVEL

As we state before, the QoS services on the platform must
be raised up to the system-level to enable runtime traffic recon-
figuration on the platform from the parallel application. As a
consequence, two architectural changes at hardware level have
been done on the NoC fabric. The first one is the extension of the
best-effort allocator (either the fixed-priority or round-robin) on
the switch IP from xpipes library [43], [44] in order to support
the following QoS services.

* Soft-QoS—Up to eight levels of priority traffic classes.

* Hard-QoS or GT—Support for end-to-end establishment/

release of circuits.

The second structural modification is to tightly-coupled a set
of configurable memory-mapped registers in the AMBA AHB
NI to trigger the QoS services at transport level.

In Fig. 2, we show the area overhead and frequency degra-
dation to include QoS support. At switch level, we varied the
number of priority levels according to each type of best-effort
allocator (fixed priority and round-robin).

As expected, the synthesis results? show that when
eight priority levels are used either with fixed priorities or
round-robin best-effort allocator, the increment in area is

2The results have been extracted using Synplify Premier 9.4 to synthesize
each component on different FPGAs. VirtexII (xc2v1000bg575-6) and Virtex4
(xc4vfx140ff1517-11) from Xilinx, and StratixII (EP2S180F1020C4) and
StratixIII (EP3SE110F1152C2) from Altera.

1616

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

120
105 L .
% Listing 1. Middleware API QoS support
75
o 60 // Set up an end-to-end circuit
©
[
£ % // unidirectional or full duplex (i.e., write or R/W)
g 30
R o150 int ni_open_channel (uint32_t address, bool
0 - full duplex);
-15 -
-30 — . .
s Virtexll Virtex4 Stratixll Stratixlll // Tear down a circuit

W 2levels FP (LUTs) M 2levels RR (LUTs) M4 levels FP (LUTs) M 4levels RR (LUTs) M 8levels FP (LUTs)
u 8levels RR (LUTs) ' AMBA NI (LUTs) 2levels RR (Fmax) ® 4 levels FP (Fmax)
u 4levels RR (Fmax) = 8 levels FP (Fmax) AMBA NI (Fmax)

m 2 levels FP (Fmax)
8 levels RR (Fmax)

Fig. 2. QoS impact at switch level according to the priority levels, and in the
AMBA AHB NI (LUTSs, fuax)-

around 100%-110%, i.e., doubling the area of the switch
without QoS. On the other hand, with two or four priority
levels, the overhead ranges from 23% to 45% in Virtex, and
25% to 61% in Stratix FPGAs, respectively. The presented
priority-based scheme is based on a single unified input/output
queue, and therefore no extra buffering is required in the
switch. The presented area overhead is the control logic in the
allocator, with respect to the base case switch without QoS.

On the other hand, in terms of f,.x, as shown in Fig. 2, the
circuit frequency drops between 32% and 39% in case to use
eight priority levels. In the other extreme, if we use just two
priority levels, the overhead is only between 13% and 19%,
whereas an intermediate solution with four priority levels,
the outcome frequency degradation ranges from 23% to 29%
depending on the FPGA device and the selected best-effort
allocator.

It is important to remark that the hardware required in each
switch to establish end-to-end circuits or GT channels can be
considered negligible because it is only required a flip-flop to
hold/release the grant in each switch.

Atthe AMBA AHB NI level, as shown in the same Fig. 2, the
overhead to include QoS extensions is only 10-15% depending
on the FPGA device. Mainly, the overhead is due to the fact
to extend the packet format and the redesign of the NI finite
state machines. On the other hand, the frequency drop can be
considered totally negligible (around 2% drop), and even in one
case despited the fact that, the AMBA AHB NI is a bit more
complex, the achieved f,ax improves.

Even if, the area costs and frequency penalty are not negli-
gible, the costs to include least two or four, and even eight pri-
ority level can be assumed depending on the application and
taking into account the potential benefits to have the runtime
NoC QoS services on the system.

According to each QoS services integrated in the proposed
NoC-based clustered MPSoC, a set of lightweight middleware
API QoS support functions have been implemented. In Listing
1, we show their functionality and prototypes.

// unidirectional or full duplex (i.e., write or R/W)
int ni_close_channel (uint32_t address, bool

full duplex);

// Set high-priority in all W/R packets between an
// arbitrary CPU and a memory on the system

int setPriority(int PROC_ID, int MEM_ID, int level);

// Reset priorities in all W/R packets between an
// arbitrary CPU and a memory on the system

int resetPriority(int PROC_ID, int MEM_ID);

// Reset all priorities in all W/R packets of
a specific CPU on the system
p y

int resetPriorities(int PROC_ID);

// Reset all priorities W/R packet on the system

int resetAllPriorities(void);

The execution of each middleware function will configure at
runtime the NI according the selected QoS service. The activa-
tion or configuration overhead to enable priority traffic can be
considered null since the priority level is embedded directly on
the request packet header on the NoC backbone. However, the
time to establish/release GT circuits is not negligible. Mainly,
the latency depends on the time to transmit the request/response
packets along several switches from the processor until the des-
tination memory. In (1) and (2), we express the zero-load la-
tency in clock cycles to establish and release unidirectional and
full-duplex GT circuits, respectively. In any case, in large NoC-
based systems, this means tens of clock cycles

GT—unitime
_ 5 request_packetiengih
B FLITzuidth

+ Nun]hops) (1)

GT—bitime
B (request _packetiongin
FLITwian

e response_packetjengin
FLITwidth

+ Numhops>

+ Numhop5> .

JOVEN et al.: QOS-DRIVEN RECONFIGURABLE PARALLEL COMPUTING FOR NOC-BASED CLUSTERED MPSOCS

Standard Message
Passing Interface

Message Passing Interface
on-a-chip environment

Standard MPI ocMPI Library i SW
SW
. Transport Layer
Operafing System (Network Interface)
porting to on-chip
TCPIP environments NoC Network Layer
(switch)
HW/sw MAC MAC layer HW
(Arbitration + Flow Control)
PHY
Rl (NoC wiring)

Fig. 3. MPI adaptation for NoC-based many-core systems.

V. ON-CHIP MESSAGE PASSING LIBRARY

Message passing is a common parallel programming model,
which in the form of a standard MPI API library [11], [45] can
ported and optimized in many different platforms.

In this section, we show an overview of ocMPI that is our
customized proprietary and MPI-compliant library targeted
for the emerging MPSoCs and cluster-on-chip many-core
architectures.

The ocMPI library has been implemented starting from
scratch using a bottom-up approach as proposed in [46] taking
as a reference the open source Open MPI project [47]. It does
not rely on any operating system, and rather than use TCP/IP as
the standard MPI-2 library, it uses a customized layer in order to
enable message-passing on top of parallel embedded systems.
Fig. 3 shows our MPI adaptation for embedded systems.

However, in contrast with our previous work [16], we have
redesigned the transport layer of the ocMPI library to be tai-
lored efficiently using the scratchpad memories for intracluster
communication (i.e., each of the four Cortex-M1 processors
on the left-side of each subcluster uses the first scratchpad
memory, whereas the other processors in the right-side of each
subcluster work with the second scratchpad memory), and the
shared external ZBTRAM for intercluster communication, in
the distributed-shared memory MPSoC.

The synchronization protocol to exchange data relies on a
rendezvous protocol supported by means of flags/semaphores,
which have been mapped on the upper address memory space of
each scratchpad memory and the external memory. These flags
are polled by each sender and receiver to synchronize. The lower
address space is used by each processor as a message-passing
buffer to exchange ocMPI messages in the proposed cluster-
based MPSoC.

During the rendezvous protocol, one or more senders attempt
to send data to a receiver, and then block. On the other side,
the receivers are similarly requesting data, and block. Once a
sender/receiver pair matches up, the data transfer occurs, and
then both unblock. The rendezvous protocol itself provides a
synchronization because either the sender and the receiver un-
block, or neither does.

ocMPI is built-in upon a low-level interface API or transport
layer which implements the rendezvous protocol. However, to
hide hardware details, these functions are not directly exposed
to the software programmers, and the software programmers
can only see the standard ocMPI_Send() and ocMPI Recv()
functions.

The rendezvous protocol has some well-know performance
inefficiencies, such as the synchronization overhead specially

1617

TABLE I
SUPPORTED FUNCTIONS IN THE OCMPI LIBRARY

Types of MPI functions | Ported MPI functions
OocMPI_Init (), ocMPI_Finalize(),
ocMPI_Initialized (), ocMPI_Finalized (),
Management ocMPI_Comm_size (), ocMPI_Comm_rank (),
OCMPI_Get_processor_name (),
ocMPI_Get_version ()
Profiling ocMPI_Wtick (), ocMPI_Wtime ()
Point-to-point ocMPI_Send (), ocMPI_Recv (),
Communication ocMPI_SendRecv ()
ocMPI_Broadcast (), ocMPI_Barrier ()
Advanced & ocMPI_Gather (), ocMPI_Scatter(),
Collective ocMPI_Reduce (), ocMPI_Scan(),
Communication ocMPI_Exscan (), ocMPI_Allgather (),
ocMPI_Allreduce (), ocMPI_Alltoall()

g < <
PR R S I
2|82 |-2 |82 (|32 Payload data
20> 58|98 (%8
= Lo)))

A\
A

ocMPI Header ocMPI Payload

Fig. 4. ocMPI message layout.

with small packets. However, as we show later, the efficiency
of the protocol in the proposed ocMPI library running in
fast on-chip interconnection, such NoCs, is acceptable even
for small packets. Another problem that affects the over-
lapping between the communication and computation is the
“early-sender” or “late-receiver” pattern. Nevertheless, as we
demonstrate later, this issue can be mitigated reconfiguring and
balance the workloads by means of runtime QoS services.

To optimize the proposed ocMPI library, we improve the ren-
dezvous protocol to do not require any intermediate copy and
user-space buffer since the ocMPI message is stored directly on
the message-passing memory. This leads to a very fast inter-
process communication by means of a remote-write local-read
transfers hiding the read latency on the system.

This implementation leads to a lightweight message-passing
library that only uses ~ 15 kB of memory footprint (using
armcc -02), which is suitable for distributed-memory em-
bedded and clustered SoCs.

Table T shows the 23 standard MPI functions supported by
ocMPI. To keep reuse and portability of legacy MPI code, the
ocMPI library follows the standardized definition and proto-
types of MPI-2 functions.

All ocMPI advanced collective communication routines
(such as ocMPI Gather, ocMPI Bcast(), ocMPI Scatter(),
etc.) are implemented using simple point-point ocMPI_Send()
and ocMPI Recv().

As shown in Fig. 4, each ocMPI message has the following
layout: 1) source rank (4 B); 2) destination rank (4 B); 3) mes-
sage tag (4 B); 4) packet datatype (4 B); 5) payload length (4 B);
and, finally, 6) the payload data (a variable number of bytes).
The ocMPI message packets are extremely slim to avoid big
overhead for small and medium messages.

In this vertical hardware-software approach to support run-
time QoS-driven reconfiguration at system-level and applica-
tion-level, the next step is to expose the QoS hardware support
and these middleware functions on top of the ocMPI library. In
this work, rather than invoking manually the QoS middleware
API, the programmer in a lightweight manner can explicitly de-
fine or annotate critical tasks according to a certain QoS level
by means of using an extended API functionality of the ocMPI
library [see Fig. 1(b)].

1618

W File Edit Chart Filter Window Help
ENLOTERL2SE & 2

700 ps 70 us 800 us 850us 900 s 950 s 1,000ps 1,00us

1,100 s

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

[=][=][*

ax Function Summary
All Processes, Accumulated Exdusive Time per Function
3.00ms 225ms 1.50 ms

0.75ms 0.00ms

x ocMPI_Gather

Process/CPU O a H ocMPI_Send
main
Process/CPU 1 ocMP]_Barrier
S ——] 231.027ps ocMPI_Beast
Process/CPU 2 137.16 ps I ocMPI_Recv
AT VAR Y A B =" ae—
Process/CPU 3
O A A7 47502 N N) O W B A
Process/CPU 4
i AN KA NN A = S
Process/CPU 5 | Master Timeline 8 -+
S AW AYATAS NN R R VA U W L U Property Value
Process/CPU 6 Display Master Timeline
A A A/ A 7 [T O T N <, e S F e :‘;;‘l"”ca ther
Process/CPU 7 Function Group MPL
A [S (R] B 2l R R A (), IntervalBegn 1.03578ms
IntervalEnd 1.08482ms
Process/CPU 8 Duration 49,04 ps
o A B e A T o R L
Process/CPU 9
Process/CPU 10
A Y N —— T R W _— CallTree
Process/CPU 11 e
Function Max# Invocations MaxInclusive Time Max Exclusive Time |
Process/CPU 12 B oa¥P1_Send 1 267.760 s 267.760 s
B oaWPT_Recv 15 137.160 s 137.160 ps
M ocvP1_Gather 5 294,480 s 294.480 ps
R ICR 13 I ocMPY_Beast 1 284.260 15 284.260 s
B odvP1_Barrier 1 221.780 ps 221,780 ps
Process/CPU 14 W man 1 611.680 s 105.000 ps
Process/CPU 15

«

Fig. 5. Vampir view of the traces from an ocMPI program.

Thus, we extend the ocMPI library reusing part of the infor-
mation on the ocMPI packet header (i.e., ocMPI Tag) in order
to trigger specific QoS services on the system. Later, the library
automatically will invoke in-lining the corresponding QoS mid-
dleware function(s) presented in Listing 1. This will enable pri-
oritized traffic or end-to-end circuits reconfiguring the system
during the execution of message-passing parallel programs for
a particular tasks or group of tasks.

VI. INSTRUMENTATION AND TRACING SUPPORT FOR
PERFORMANCE ANALYSIS

The verification, the debugging, and the performance analysis
of embedded MPSoCs running multiple software stacks with
even runtime reconfiguration will become a hard problem when
the number of cores increase. The HPC community has already
faced this problem, however it has not been tackled properly in
the embedded domain.

In this paper, we present a novel way to reuse some of the
methods from the HPC world to be applied in the emerging
many-core MPSoCs. In HPC, performance analysis and opti-
mization specially in multicore systems is often based on the
analysis of traces. In this work, we added support in the pre-
sented ocMPI library to produce OTF traces [48], [49].

OTF defines a format to represent traces which is use in large-
scale parallel systems. The OTF specification describes three
types of files: 1) a .otf file that defines the number of processors
on the system; 2) a .def file which includes the different func-
tions that are instrumented; and 3) a .event files containing the
data traces of each specific event according to each processor.

We created a custom lightweight API to generate OTF events
and dump them through JTAG in the proposed FPGA-based
many-core MPSoC platform. Later, tools like Vampirtrace and
Vampir [50], [51], Paraver [52], TAU [53] are used to view
the traces and to perform, which is known as postmortem anal-
ysis, in order to evaluate the performance of the application,

but also to detect bottlenecks, communication patterns, and even
deadlocks.

To enable tracing, the original ocMPI library can be instru-
mented automatically by means of a precompiler directives (i.e.,
-DTRACE_OTF). This will inline, at the entry and the exit of each
ocMPI function, the calls to generate OTF events. In addition,
other user functions, can also be instrumented manually adding
properly calls to the OTF trace support. Later, using the logs,
we can analyze for instance, the time that the processor has been
executing an ocMPI Bcast(), ocMPI Barrier(),..., and/or to
know how many times an ocMPI function is called. In Fig. 5
we show a trace and its associated information from a parallel
program using Vampir.

Rather than a profiler, Vampir gives much more information
adding at the same time dynamics and preserving the spatial and
temporal behavior of the parallel program.

This is very useful, however there are several drawbacks due
to the instrumentation of the original application. When the ap-
plication is instrumented, a small number of instructions must
be added to produce the trace and as a consequence an over-
head is introduced. To reduce it, logs are stored in memory first
to minimize the time spent to dump continuously the traces. Af-
terwards, when the execution finished or the memory buffers
have been filled, the logs are flushed.

The outcome is full insight into the proposed many-core
system, where we can analyze and control the execution of
multiple SW stacks, or parallel applications with reconfigura-
bility in order to improve the overall system performance.

VII. MESSAGE-PASSING EVALUATION IN OUR CLUSTERED
NoOC-BASED MPSoC

In this section, we investigate the performance of the pro-
posed ocMPI library executing a broad range of benchmarks,
low-level communication profiling tests, and the scalability and
speedups of different message-passing parallel applications in

JOVEN et al.: QOS-DRIVEN RECONFIGURABLE PARALLEL COMPUTING FOR NOC-BASED CLUSTERED MPSOCS

30000 14000
»#13073
’

12000

25000

10000

8000

Clock cycles

6000

Synch. per second
o
wv
o
o
o
:

4000

2000

8 Cortex-M1

4 Cortex-M1 16 Cortex-M1

l = ocMPI_Init() / sec mmmocMPI_Barrier() / sec OCMPI_Init() == ocMPI_Barrier()]

Fig. 6. Profiling of the ocMPI Init() and ocMPI_Barrier() synchronization
routines.

our distributed-shared memory ARM-based cluster-on-chip
MPSoC architecture.

Apart from the tracing support presented in Section VI, in
order to enable profiling in our cluster-based MPSoC, we used
the Nested Vector Interrupt Controller (NVIC). The NVIC is a
peripheral closely coupled with each Cortex-M1 soft-core pro-
cessor. It has a very fast access which leverage a high-accuracy
profiling support. The NVIC contains a memory-mapped con-
trol registers and hardware counters which can be configured to
enable low-latency interrupt handling (in our case 1 ms with a
reload mechanism) in order to get timestamps at runtime.

Later, this hardware infrastructure is used by ocMPI _Wtime()
and ocMPI _Wtick() profiling functions. Thus, we can measure
the wall-clock time of any software task running on each pro-
cessor in the cluster in the same way as in traditional MPI pro-
grams, as well as to obtain the equivalent number of clock ticks
consumed by the message-passing library.

A. Benchmarking the OCMPI Library

In this section, the first goal is the evaluation of the zero-load
execution time of the most common ocMPI primitives to ini-
tialize and synchronize the process in message-passing parallel
programs (i.e., ocMPI_Init() and ocMPI Barrier()).

In the ocMPI library an initialization phase is used to assign
dynamically the ocMPI rank to each core involved in the
parallel program. In Fig. 6, we report the number of cycles
of ocMPI Init() to set up the ocMPI_COMM_WORLD. The plot
shows that 980, 2217, and 6583 clock cycles are consumed
to initialize the ocMPI stack in a 4, 8, and 16-core pro-
cessor system, respectively. Moreover, running the MPSoC at
24 MHz, the outcome is that, for instance, we can reassign part
of the ocMPI ranks within each communicator, performing up
to ~10 000 reconfigurations per second inside each eight-core
subcluster, or 3500 in the entire 16-core system.

Similarly, in Fig. 6, we show the amount of clock cycles
required to execute an ocMPI Barrier() according to the
number of processors involved. Barriers are often used in
message-passing to synchronize all tasks involved in parallel
workload. Thus, for instance, to synchronize all Cortex-M1s
on a single-side of each subcluster, the barrier only takes 1899
clock cycles, whereas to execute it in the proposed 16-core
cluster-on-chip, it consumes 13 073 clock cycles.

1619

100000
M Intra-cluster unidrectional

90000 1 m Inter-cluster unidrectional
Intra-cluster ping-pong

80000 -+
M Inter-cluster ping-pong

70000

60000

50000

Clock cycles

40000

30000

20000 -

10000
0 —‘Lv——-v—-ﬂ——-—y——-ﬂ——lv-—lT-l—.-r-.-l-v—J-I-v—J— 7—.— L

1 2 4 8 16 32 64 128 256 512 1KB 2KB 4KB

Message size

Fig. 7. Intra- and intercluster point-to-point latencies under unidirectional and
ping-pong traffic.

100

=+=Intra-cluster unidrectional
90

-==Inter-cluster unidrectional
Intra-cluster ping-pong
=*=Inter-cluster ping-pong

80 -

70

60 -

50 4

40

30

% memcpy() vs. synchronization

20

10

0

1 2 4 8 16 32 64 128 256 512 1KB 2KB 4KB

Message Size

Fig. 8. Efficiency of the ocMPI synchronous rendezvous protocol under uni-
directional and ping-pong traffic.

The second goal is to profile the ocMPI_Send() and
ocMPI Recv() functions using common low-level benchmarks
presented MPIBench [54] in order to measure point-to-point
latency.

In the proposed hierarchical clustered MPSoC platform, we
can distinguish between two different types of communication:
1) intracluster communication, when the communication is be-
tween processes on the same 8-core subcluster; and 2) inter-
cluster communication, if the communication is between tow
processes on different subclusters.

Fig. 7 shows the trend of point-to-point latencies to execute
unidirectional and ping-pong message-passing tests varying the
payload of each ocMPI message from 1 B up to 4 kB. For in-
stance, the latency to send a 32-bit intracluster ocMPI mes-
sage is 604 and 1237 cycles, under unidirectional and ping-pong
traffic, respectively. For intercluster communication, the trans-
mission of unidirectional and ping-pong 32-bit messages takes
992 and 2021 clock cycles. Similarly, for larger message than 4
kB the peer-to-peer latencies are following the trend presented
in Fig. 7.

The proposed rendezvous protocol implemented has the
advantage of not requiring intermediate buffering. However,
due to the synchronization between sender and receiver, it adds
some latency overhead that can degrade the performance of
ocMPI programs. An important metric is to show the efficiency
of the rendezvous protocol for inter and intracluster communi-
cation under unidirectional and ping-pong ocMPI traffic.

1620

15 - ---Ideal speedup az” 15 -|-+-Ideal speedup
14 -+ -m-N=1000 ettt 14 |-m-N=64

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

15 -|-+-Ideal speedup

| -+-N=128
3 ~4+-N=10000 = 12 {|¢N=256

—-N=100000 | —N=512
10 - =*=N=1000000 s 10 H-e-N=1024
9 - -e-N=10000000 - ~N=2048

Speedup
Speedup

14 +-m-step=100
[|--step=200
|| >«step=300
10 -|step=400
9 -H{-e-step=500

Speedup

= - . v -
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cortex-M1s

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cortex-M1s

Ty i‘!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cortex-M1s

(b) (©

Fig. 9. Scalability of message passing applications in our ARM-based cluster-on-chip many-core platform (a) PI approximation (b) Dot product (c) Heat 2-D.

In Fig. 8, it is possible to observe that in our distributed-
shared memory system, for very small messages, the efficiency
of the protocol is around 40%-50%. In other words, the syn-
chronization time is comparable to the time to copy ocMPI mes-
sage payload. However, for messages of few kBs, still a small
ocMPI message, the percentage rise up until about 67%—75%,
which is an acceptable value for such small messages.

The efficiency of the protocol for intercluster communication
is higher than for intracluster. Essentially this is because even
if the time to poll the flags is a bit larger on the ZBTRAM, the
overall number of pollings decreases. Besides, the overall time
to copy the message data is larger than for intracluster, which
makes the intercluster efficiency higher.

In the experiments presented in Fig. 8, we show that the effi-
ciency of sending relatively small ocMPI messages (i.e., up to 4
kB) is at maximum 75% because of the synchronization during
the rendezvous protocol. Nevertheless, preliminary tests with
larger ocMPI messages achieve efficiencies over 80%.

B. Scalability of Parallel Applications Using OcMPI Library

In this section, we report results, in terms of runtime speedup,
extracted from the execution of some scientific message-passing
parallel applications in the proposed cluster-on-chip many-core
MPSoC. The selected parallel applications show the tradeoffs in
terms of scalability, varying the number of cores and the granu-
larity of the problem playing with the computation and the com-
munication ratio.

The first parallel application is the approximation of number
7 using (3). We parallelized this formula so that every pro-
cessor generates a partial summation, and finally the root uses
ocMPI Reduce() to perform the last addition of the partial
sums. This is possible because every point of (3) can be com-
puted independently

N=00 -
T DY
4 \Z:O 2N +1°)

In Fig. 9(a), we show that as the precision increases, then
the computation to communication becomes higher and there-
fore the speedups are close to ideal growing linearly with to the
number of processors. Even more, when N — oo this applica-
tion can be considered as an embarrassingly parallel having a
coarse-grain parallelism.

As second parallel application, in Fig. 9(b), we report the re-
sults to parallelize the computation of the dot product between
two vectors following (4)

N
a-b= Z a;b; = a1by + agbs +---+anby
i=1
where a;, b; € R. 4)

The data is distributed using ocMPI_Scatter(). Once each
processor receives the data, it computes the partial dot product,
then the root gathers them, and it performs the last sum using
ocMPI Reduce(). We execute this parallel application varying
N, the length of the vector, from 1 B to 2 kB.

In Fig. 9(b), it is easy to observe that, the application does not
scale when more processors are used. This is because the over-
head to scatter the data is not amortized during the computation
phase for the selected data set.

In fact, we can highlight that in this fine-grained application,
the best speedup point is when the data set is 2 kB, and the par-
allelization is performed in only 4-cores achieving a speedup
0f 2.97x. On the other hand, when the parallel program is exe-
cuted on 16-cores the maximum speedup is only 1.25x.

As a final parallel application, we execute in the cluster-based
MPSoC, the parallelization of Heat 2-D grid model in order to
compute the temperature in a square surface. Equation (5) shows
that the temperature of a point is dependent on the neighbor’s
temperature

Uiy =Usiy + Co - (Ungr,y + Va1 y — 22 Usy)
+ Cy : (Uw,y+1 + Uw,'y—l -2 Uw,y)
where U, ,, € R. (5)

We parallelize dividing the grid by columns with some points
according to the number of ocMPI tasks. Thus, the temperature
in the interior elements belonging to each task is independent, so
that it can be computed in parallel without any communication
with other tasks. On the other side, the elements on the border
depend on points belonging to other tasks, and therefore, they
need to exchange data with other.

In Fig. 9(c), we show the results when parallelizing a 40 x 40
2-D surface changing the number of steps to allow the (5) to
converge. It is easy to realize that the application scales quite
well with the number of processors. Thus, best-case speedup are
2.71x,6.49x and 14.42x in our 4-, 8-, and 16-core architec-
ture, respectively. This is a message-passing computation with
medium computation to communication ratio for the selected
data size.

However, an issue arises, when the number of steps increases.
As shown in Fig. 9(c), the speedup decrease slightly according
to the increment of the steps. This is because in between each
iteration step, due to the blocking rendezvous protocol, the
system blocks for a short time before to progress to the next
iteration. As a consequence, at the end of the day after many
iterations, it turns out in a small performance degradation.

JOVEN et al.: QOS-DRIVEN RECONFIGURABLE PARALLEL COMPUTING FOR NOC-BASED CLUSTERED MPSOCS

Left-side
15t sub-cluster

——————————

Right-side

2nd sub-cluster Tt sub-cluster

Tt sub-cluster

1621

Left-side
2nd sub-cluster

Right-side
2nd sub-cluster
)

c’o’do‘o’o‘&o’o’o‘e@@c’&a

m Best-effort (FP) ® Second sub-cluster prioritized
(@)
Left-side

1st sub-cluster
.

m Best-effort (FP)

Left-side
2nd sub-cluster

Right-side
Ist sub-cluster

Right-side
2nd sub-cluster
v v

rmalized exect

So2

§E AT

wwwwwﬁﬁﬁﬁﬁﬁﬁﬁﬁyﬁ

 Best effort (RR)
® Right-side 2nd sub-cluster P=3 & left-side P=2, others Best-Effort (RR)

(d)

o‘o‘o‘o‘o‘o‘o‘c‘c’o’@aay&o’

® Right-side of each sub-cluster prioritized

(b)

o‘o‘&&o’&&&o’&@@@aaa

® Best-effort (FP) M In order execution (GT channels)

(©)

LRI IR IR IR B I IS

PSP S P PSP S P I SV N SN N
m Besteffort (RR) @ GT channel in CM_S

(e)

Fig. 10. QoS-driven reconfigurable parallel computing based on fixed priority (FP) and round-robin (RR) best-effort allocator. (a) Prioritized ocMPI tasks located
on the second-cluster. (b) Prioritized ocMPI tasks on the right-side of each cluster. (¢) Guaranteed in-order completion on ocMPI execution. (d) Second subcluster
(right-side P = 3 and left-side P = 2), others RR. (¢) Guaranteed throughput in Cortex-M1 with rank = 3, others RR.

VIII. QOS-DRIVEN RECONFIGURABLE PARALLEL COMPUTING
IN OUR CLUSTERED NOC-BASED MPSoC

As final experiments, we explore the use of the presented
runtime QoS services when multiple parallel applications are
running simultaneously in the proposed ARM-based clustered
MPSoC platform.

One of the big challenges in parallel programming is to
manage the workloads in order to have performance improve-
ments during the execution of multiple parallel kernels. Often,
message-passing parallel programs do not achieve the desired
balance even by allocating similar workload on each process.
Even more, multiple applications running simultaneously in
many-core system can degrade the overall execution time. This
is due to different memory latencies and the access patterns to
them, and the potential congestion that can occur in homoge-
neous and specially in heterogeneous NoC-based MPSoCs.

As a consequence, in this section, we show the benefits to
reconfigure the NoC backbone using the QoS middleware API
used by the ocMPI library. The target is to be able to recon-
figure and to manage at runtime potential interapplication traffic
from ocMPI workloads in the proposed hierarchical distributed-
shared memory NoC-based MPSoC under different intra and in-
tercluster nonzero-load latency communication patterns. In the
proposed experiments, we explore the following:

+ the effectiveness to assign multiple different priority-levels
to a tasks or group of tasks which are executing
simultaneously;

* to guarantee the throughput using end-to-end circuits, in a
particular critical task or group of tasks.

In Fig. 10, we show the normalized execution time to exe-
cute a two similar benchmarks in each Cortex-M1 processor.
The first benchmark is composed by three-equal subkernels and
the second contains two subkernels. The benchmarks perform
an intensive interprocess communication among all the 16 pro-
cessors in the cluster-on-chip platform. At the end of each sub-
kernel, a synchronization point is reached using a barrier. The

idea is to set up and tear down priorities and GT channels be-
tween each ocMPI Barrier() call in order to achieve different
execution profiles.

In Fig. 10(a)—(c) (first row in Fig. 10) runtime QoS services
are implemented on top of a fixed priority (FP) best-effort
allocator, whereas in Fig. 10(d) and (e) (second row in Fig. 10),
a round-robin best-effort allocator have been used. As a con-
sequence, under no priority assignment, the tasks in each
processor completes according to the corresponding best-effort
scheme. However, once we use the proposed runtime QoS ser-
vices, the execution behavior of the parallel program and each
subkernel change radically depending on how the priorities and
the GT channels are set up and torn down.

In Fig. 10(a), we show the execution of the first subkernel in
a scenario when the tasks on the second subcluster, i.e., Tasks
8-15 on Cortex-M1 processors with rank 815, are prioritized
over the first subcluster. The speedup of the prioritized tasks
ranges between 7.77% and 43.52%. This is because all the tasks
in the second subcluster are prioritized with the same priority
level. Similarly, the average performance speedup of the pri-
oritized subcluster is 25.64%, whereas Tasks 0—7 mapped on
the nonprioritized subcluster have an average degradation of
26.56%.

In the second subkernel of the first benchmark, we explore a
more complex priority scheme, triggering high-priority on each
task on the right-side of each subcluster, and prioritizing at the
same time, all tasks on the first subcluster over the second one.
As shown in Fig. 10(b), on average Tasks 4—7 and Tasks 12—15
are sped up 51.07% and 35.93%, respectively. On the other
hand, the tasks on the left-side of each subcluster which are non-
prioritized are penalized 62.28% and 37.97% for the first and the
second subcluster, respectively.

Finally, during the execution of the last subkernel of the
first benchmark, we experiment with a completely different
approach using GT channels. Often, MPI programs complete
in unpredictable order due to the traffic and memory latencies

1622

on the system. In this benchmark, the main target is to enforce
a strict completion ordering by means of GT channels ensuring
latency and bandwidth guarantees once the channel is estab-
lished in each processor.

In Fig. 10(c), we show that in-order execution can effort-
lessly be achieved through GT channels triggered from ocMPI
library, instead of rewriting the message-passing application to
force in-order execution in software. On average, in the first sub-
cluster, the average improvement over best-effort for Tasks 0—7
is 39.84%, but with a peak speedup in Task 7 of 63.45%. On
the other hand, it is possible to observe that, the degradation in
the second subcluster is not much, in fact it is only 8.69% on
average.

On the other hand, in Fig. 10(d), we show the normalized
execution of the first subkernel of the second benchmark when
multiple priority levels are assigned in the same subcluster to
a group of tasks. The setup is that, the right-side of the second
subcluster is prioritized with P = 3 (i.e., Tasks 12—15), whereas
the left-side (i.e., Tasks 8—11) is prioritized but with less priority,
i.e., P = 2. The remaining tasks are not prioritized, and there-
fore they use the round-robin best-effort allocator.

The results show that all prioritized tasks with the same pri-
ority level are almost improving equally thank to the round-
robin mechanism implemented on top of the runtime QoS ser-
vices. Thus, Tasks 12—15 improve around 35.11%, whereas the
speedup in Tasks 8—11 range between 19.99% and 23.32%. The
remaining nonprioritized tasks also finish with almost perfect
load balancing with a performance degradation of 0.05%.

Finally, in the second subkernel of the second benchmark,
we explored a scheme where only one processor, i.e., the
Cortex-M1 with rank = 5, requires to execute a task with GT.
As we can observe, in Fig. 10(e), the Task 5 finishes with a
speedup of 28.74%, and the other tasks are perfectly balanced
since they use again the best-effort round-robin allocator be-
cause no priorities were allocated.

In contrast, to the experiments presented in Fig. 10(a)—(c),
in Fig. 10(d) and (e), under similar workloads executed in each
processor, a load balancing is possible thanks to the imple-
mentation of the runtime QoS services within the round-robin
allocator.

In this section, we have demonstrated that using the presented
QoS-driven ocMPI library, we can effortlessly reconfigure the
execution of all tasks and subkernels involved in a message
passing parallel program under a fixed-priority or round-robin
best-effort arbitration schemes. In addition, we can potentially
deal with some performance inefficiencies, such as early-sender,
late-receiver, simply by boosting this particular task of group of
tasks with different priority-levels or using GT channels, recon-
figuring the application traffic dynamism during the execution
of generic parallel benchmarks.

IX. CONCLUSION AND FUTURE WORK

Exposing and handling QoS services for traffic management
and runtime reconfiguration on top of parallel programming
models has not been tackled properly on the emerging cluster-
based many-core MPSoCs. In this work, we presented a vertical
hardware-software approach thanks to the well-defined NoC-
based OSI-like stack in order to enable runtime QoS services
on top of a lightweight message-passing library (ocMPI) for
many-core on-chip systems.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

We propose to abstract away the complexity of the NoC-
based communication QoS services on the backbone at the hard-
ware level, raising them up to system-level through an efficient
lightweight QoS middleware API. This allows to build an infra-
structure to assign different priority levels and guaranteed ser-
vices during parallel computing.

In this work, both the embedded software stack, and the
hardware components have been integrated in a hierarchical
ARM-based distributed-memory clustered MPSoC prototype.
Additionally, a set of benchmarks and parallel application
have been executed showing good results, in terms protocol
efficiency (i.e., 67%—75% with medium size ocMPI packets),
fast interprocess communication (i.e., few hundred cycles to
send/recv ocMPI small packets), and acceptable scalability
in the proposed distributed-memory clustered NoC-based
MPSoC.

Furthermore, using the presented lightweight software stack
and running ocMPI parallel programs in clustered MPSoCs,
we illustrate the potential benefits of QoS-driven reconfigurable
parallel computing using a message-passing parallel program-
ming model. For the tested communication-intensive bench-
marks, an average improvement of around 45% can be achieved
depending on the best-effort allocator, with a peak of speedup
of 63.45% when GT end-to-end circuits are used.

The results encourage us to believe that the proposed QoS-
aware ocMPI library even if is not the only possible solution
to enable parallel computing and runtime reconfiguration, it is
a viable solution to manage workloads in highly parallel NoC-
based many-core systems with multiple running applications.
Future work will focus on further exploration on how to select
properly QoS services in more complex scenarios.

REFERENCES

[1] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.
44th Annu. Design Automation Conf. (DAC), 2007, pp. 746—749.

[2] A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips.
Mateo, CA: Morgan Kaufmann, 2005.

[3] R. Obermaisser, H. Kopetz, and C. Paukovits, “A cross-domain mul-
tiprocessor system-on-a-chip for embedded real-time systems,” [EEE
Trans. Ind. Inf., vol. 6, no. 4, pp. 548-567, Nov. 2010.

[4] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFEFS in 45 nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers (ISSCC), Feb. 2010, pp. 108—109.

[5] S. R. Vangal et al., “An 80-tile sub-100-W TeraFLOPS processor in
65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 29-41,
Jan. 2008.

[6] S. Bell et al., “TILE64—Processor: A 64-core SoC with mesh inter-
connect,” in Solid-State Circuits Conf., 2008. ISSCC 2008. Digest of
Technical Papers. IEEE International, Feb. 2008, pp. 88-598.

[7] L. Benini and G. D. Micheli, Networks on Chips: Technology and
Tools. San Francisco, CA: Morgan Kaufmann, 2006.

[8] AMBA 3 AXI overview ARM Ltd., (2005). [Online]. Available: http://
www.arm.com/products/system-ip/interconnect/axi/index.php

[9] Open Core Protocol Standard OCP International Partnership (OCP-
IP), (2003). [Online]. Available: http://www.ocpip.org/home

[10] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no.
1, pp. 46-55, 1998.

[11] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming With the Message-Passing Interface. Cambridge, MA:
MIT Press, 1999.

[12] L. Seiler et al., “Larrabee: A many-core x86 architecture for visual
computing,” IEEE Micro, vol. 29, no. 1, pp. 10-21, Jan. 2009.

[13] J. Nickolls and W. Dally, “The GPU computing era,” I[EEE Micro, vol.
30, no. 2, pp. 56-69, Mar./Apr. 2010.

[14] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken, “CoMPSoC:
A template for composable and predictable multi-processor system on
chips,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1, pp.
1-24, 2009.

San

[15] E. Carara, N. Calazans, and F. Moraes, “Managing QoS flows at task
level in NoC-based MPSoCs,” in Proc. IFIP Int. Conf. Very Large Scale
Integr. (VLSI-SoC), 2009, pp. 133-138.

[16] J. Joven, F. Angiolini, D. Castells-Rufas, G. De Micheli, and J. Carra-
bina, “QoS-ocMPI: QoS-aware on-chip message passing library for
NoC-based many-core MPSoCs,” presented at the 2nd Workshop Pro-
gram. Models Emerging Archit. (PMEA), Viena, Austria, 2010.

[17] T. Marescaux and H. Corporaal, “Introducing the SuperGT net-
work-on-chip; SuperGT QoS: More than just GT,” in Proc. 44th
ACM/IEEE Design Automat. Conf. (DAC), Jun. 4-8, 2007, pp.
116-121.

[18] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J.. van
Meerbergen, P. Wielage, and E. Waterlander, “Trade offs in the design
of a router with both guaranteed and best-effort services for networks
on chip,” in Proc. Design, Automat. Test Eur. Conf. Exhib., 2003, pp.
350-355.

[19] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS archi-
tecture and design process for network on chip,” J. Syst. Archit., vol.
50, pp. 105-128, 2004.

[20] B. Li et al., “CoQoS: Coordinating QoS-aware shared resources in
NoC-based SoCs,” J. Parallel Distrib. Comput., vol. 71, pp. 700-713,
May 2011.

[21] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli,
“A methodology for mapping multiple use-cases onto networks on
chips,” in Proc. Design, Automat. Test Eur. (DATE), Mar. 6-10, 2006,
vol. 1, pp. 1-6.

[22] A.Hansson and K. Goossens, “Trade-offs in the configuration of a net-
work on chip for multiple use-cases,” in NOCS °07: Proc. First Int.
Symp. Networks-on-Chip, 2007, pp. 233-242.

[23] T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, and G. Lipari, “On the
integration of application level and resource level QoS control for real-
time applications,” IEEE Trans. Ind. Inf., vol. 6, no. 4, pp. 479491,
Nov. 2010.

[24] S. Whitty and R. Ernst, “A bandwidth optimized SDRAM controller
for the MORPHEUS reconfigurable architecture,” in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE Int. Symp., Apr. 2008,
pp. 1-8.

[25] D. Gohringer, L. Meder, M. Hiibner, and J. Becker, “Adaptive multi-
client network-on-chip memory,” in Proc. Int. Conf. Reconfigurable
Comput. FPGAs (ReConFig), Dec. 2011, pp. 7-12.

[26] F. Liu and V. Chaudhary, “Extending OpenMP for heterogeneous
chip multiprocessors,” in Proc. Int. Conf. Parallel Process., 2003, pp.
161-168.

[27] A.Marongiu and L. Benini, “Efficient OpenMP support and extensions
for MPSoCs with explicitly managed memory hierarchy,” in Proc. De-
sign, Automat. Test Eur. Conf.. Exhib. (DATE), Apr. 20-24, 2009, pp.
809-814.

[28] J.Joven, A. Marongiu, F. Angiolini, L. Benini, and G. De Micheli, “Ex-
ploring programming model-driven QoS support for NoC-based plat-
forms,” in Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardw./Sofiw. Code-
sign Syst. Synth., 2010, pp. 65-74, CODES/ISSS ’10.

[29] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and A.
Gatherer, “Implementing OpenMP on a high performance embedded
multicore MPSoC,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.
(IPDPS), 2009, pp. 1-8.

[30] W.-C. Jeun and S. Ha, “Effective OpenMP implementation and trans-
lation for multiprocessor system-on-chip without using OS,” in Proc.
Asia South Pac. Design Automat. Conf. (ASP-DAC), Jan. 23-26, 2007,
pp. 44-49.

[31] T. Mattson et al., “The 48-core SCC processor: The programmer’s
view,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.
(SC), 2010, pp. 1-11.

[32] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on Intel’s single-chip cloud computer processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73-83, Feb. 2011.

[33] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani, “MPI
microtask for programming the cell broadband engine processor,” IBM
Syst. J., vol. 45, no. 1, pp. 85-102, 2006.

[34] J. Psota and A. Agarwal, “rMPI: Message passing on multicore pro-
cessors with on-chip interconnect,” Lecture Notes Comput. Sci., vol.
4917, pp. 22-22, 2008.

[35] M. Saldaiia and P. Chow, “TMD-MPI: An MPI implementation for
multiple processors across multiple FPGAs,” in Proc. Int. Conf. Field
Program. Logic Appl. (FPL), Aug. 2006, pp. 1-6.

[36] P. Mabhr, C. Lorchner, H. Ishebabi, and C. Bobda, “SoC-MPI: A flex-
ible message passing library for multiprocessor systems-on-chips,” in
Proc. Int. Conf. Reconfigurable Comput. FPGAs (ReConFig), Dec.
3-5, 2008, pp. 187-192.

[37] D. Gohringer, M. Hiibner, L. Hugot-Derville, and J. Becker, “Mes-
sage passing interface support for the runtime adaptive multi-processor
system-on-Chip RAMPSoC,” in Proc. Int. Conf. Embedded Comput.
Syst. (SAMOS), Jul. 2010, pp. 357-364.

JOVEN et al.: QOS-DRIVEN RECONFIGURABLE PARALLEL COMPUTING FOR NOC-BASED CLUSTERED MPSOCS 1623

[38] N. Saint-Jean, P. Benoit, G. Sassatelli, L. Torres, and M. Robert,
“MPI-based adaptive task migration support on the HS-scale system,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), 2008, pp.
105-110.

[39] A.J.Roy, L. Foster, W. Gropp, B. Toonen, N. Karonis, and V. Sander,
“MPICH-GQ: Quality-of-service for message passing programs,” in
Proc. ACM/IEEE Conf. Supercomput. (CDROM), 2000, pp. 19-19.

[40] R. Y. S. Kawasaki, L. A. H. G. Oliveira, C. R. L. Francé, D. L. Car-
doso, M. M. Coutinho, and A. Santana, “Towards the parallel com-
puting based on quality of service,” in Proc. Int. Symp. Parallel Dis-
trib. Comput., 2003, pp. 131-131.

[41] ARM Versatile Product Family ARM Ltd. [Online]. Available:
http://www.arm.com/products/tools/development-boards/versa-
tile/index.php

[42] J. Joven, P. Strid, D. Castells-Rufas, A. Bagdia, G. De Micheli, and J.
Carrabina, “HW-SW implementation of a decoupled FPU for ARM-
based Cortex-M1 SoCs in FPGAs,” in Proc. 6th IEEE Int. Symp. Ind.
Embedded Syst. (SIES), Jun. 2011, pp. 1-8.

[43] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip architecture
for gigascale systems-on-chip,” IEEE Circuits Syst. Mag., vol. 4, no.
2, pp. 18-31, 2004.

[44] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G. De
Micheli, “x pipes lite: A synthesis oriented design library for networks
on chips,” in Proc. Design, Automat. Test Eur., 2005, pp. 1188—1193.

[45] D. W. Walker and J. J. Dongarra, “MPI: A standard message passing
interface,” Supercomputer, vol. 12, pp. 5668, 1996.

[46] T.P. McMahon and A. Skjellum, “eMPI/eMPICH: Embedding MPIL,”
in Proc. 2nd MPI Develop. Conf., Jul. 1-2, 1996, pp. 180—-184.

[47] Open MPI: Open Source High Performance Computing (2004). [On-
line]. Available: http://www.open-mpi.org/

[48] A.Kniipfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel, “Introducing
the open trace format (OTF),” in Proc. Comput. Sci.—(ICCS), 2006,
vol. 3992, pp. 526-533.

[49] A.D.Malony and W. E. Nagel, “The open trace format (OTF) and open
tracing for HPC,” in Proc. ACM/IEEE Conf. Supercomput., 2006, p. 24.

[50] M. S. Miiller, A. Kniipfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel, “Developing scalable applications with vampir, vam-
pirserver and vampirtrace,” in PARCO, 2007, pp. 637-644.

[51] W.E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of MPI resources,” Supercom-
puter, vol. 12, pp. 69-80, 1996.

[52] V. Pillet, J. Labarta, T. Cortés, and S. Girona, “PARAVER: A tool to
visualize and analyse parallel code,” in Proc. WoTUG-18: Transputer
Occam Develop. Vol. 44—Transputer Occam Eng., 1995, pp. 17-31.

[53] R. Bell, A. Malony, and S. Shende, “ParaProf: A portable, extensible,
and scalable tool for parallel performance profile analysis,” Euro—Par
Parallel Process., vol. 2790, pp. 17-26, 2003.

[54] D. Grove and P. Coddington, “Precise MPI performance measurement
using MPIBench,” in Proc. HPC Asia, 2001.

Jaume Joven received the M.S. and Ph.D. degrees
in computer science from the Universitat Autonoma
de Barcelona (UAB), Bellaterra, Spain, in 2004 and
2009, respectively.

He is currently a postdoctoral Researcher in Ecole
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland. His main research interests are focused
on the embedded NoC-based MPSoCs, ranging from
circuit and system-level design of application-spe-
cific NoCs, up to system-level software development
for runtime QoS resource allocation, as well as middleware and parallel
programming models.

Dr. Joven received the Best Paper Award at the PDP Conference in 2008, and
a Best Paper nomination in CODES + ISSS in 2010.

Akash Bagdia received the dual degree B.E.(Hons.)
degree in electrical and electronics and the
M.Sc.(Hons) degree in physics from the Birla
Institute of Technology and Science, Pilani, India,
in 2003, and the M.Sc. degree in microelectronics
systems and telecommunication from Liverpool
University, London, U.K., in 2007.

He is a Senior Engineer working with the System
Research Group, ARM Limited, Cambridge, U.K.
His research interests include design for high perfor-
mance homogeneous and heterogeneous computing
systems with focus on on-chip interconnects and memory controllers.

1624

Federico Angiolini received the M.S. and Ph.D.
degrees in electronic engineering from the Univer-
sity of Bologna, Bologna, Italy, in 2003 and 2008,
respectively.

He is Vice President of Engineering and Co-
founder of iNoCs SaRL, Switzerland, a company
focused on NoC design and optimization. He has
published more than 30 papers and book chapters
on NoCs, MPSoC systems, multicore virtual plat-
forms, and on-chip memory hierarchies. His current
research interests include NoC architectures and NoC EDA tools.

Per Strid received the M.Sc. in electrical engineering
from the Royal Institute of Technology, Stockholm,
Sweden.

He is currently a Senior Principal Researcher
working with the R&D Department, ARM Limited,
Cambridge, U.K. Prior to this position, he was
working as an ASIC Designer with Ericsson. His
research interests include the design of MPSoC
systems, processor microarchitecture, memory hier-
archies and subsystems, and power characterization
of AMBA systems.

David Castells-Rufas received the B.Sc. degree
in computer science and the M.Sc. in research in
microelectronics from the Universitat Autonoma
de Barcelona, Bellaterra, Spain, where he is
currently working toward the Ph.D. degree in
microelectronics.

He is currently the Head of the Embedded Sys-
tems Unit at CAIAC Research Center, Universitat
Autonoma de Barcelona. He is also Associate
Lecturer in the Microelectronics Department of
the same university. His primary research interests
include parallel computing, NoC-based multiprocessor systems, and parallel
programming models.

Eduard Fernandez-Alonso received the B.Sc.
degree in computer science and the M.Sc. degree
in micro- and nanoelectronics from the Universitat
Autonoma de Barcelona, Bellaterra, Spain, in
2008 and 2009, respectively, where he is currently
working toward the Ph.D. degree.

He is currently with the CaiaC (the center for
research in ambient intelligence and accessibility in
Catalonia), Research Center, Universitat Autonoma
de Barcelona. His main research interests include
parallel computing, NoC-based multiprocessor
systems, and parallel programming models.

> |
B L3>

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 3, AUGUST 2013

Jordi Carrabina graduated in physics from the
University Autonoma of Barcelona (UAB), Bel-
laterra, Barcelona, Spain, in 1986, and received the
M.S. and Ph.D. degrees in microelectronics from
the Computer Science Program, UAB, in 1988 and
1991, respectively.

In 1986, he joined the National Center for Micro-
electronics (CNM-CSIC), Madrid, Spain, where he
was collaborating until 1996. Since 1990, he has been
an Associate Professor with the Department of Com-
puter Science, UAB. In 2005, he joined the new Mi-
croelectronics and Electronic Systems Department, heading the research group
Embedded Computation in HW/SW Platforms and Systems Laboratory and
CEPHIS, technology transfer node from the Catalan IT Network. Since 2010,
he has been heading the new Center for Ambient Intelligence and Accessi-
bility of Catalonia. He is teaching electronics engineering and computer sci-
ence at the Engineering School, UAB, and in the Masters of micro- and nano-
electronics engineering and multimedia technologies at UAB, and embedded
systems at UPV-EHU. He has given courses in several universities in Spain,
Europe, and South America. He has been a consultant for different international
and small and medium enterprises (SMEs) companies. During last five years,
he has coauthored more 30 papers in journals and conferences. He also led the
UAB contribution to many R&D projects and contracts with partners in the
ICT domain. His main interests are microelectronic systems oriented to em-
bedded platform-based design using system-level design methodologies using
SoC/NoC architectures, and printed microelectronics technologies in the am-
bient intelligence domain.

Giovanni De Micheli (S’79-M’83—-SM’89-F’94)
received the nuclear engineer degree from Po-
litecnico di Milano, Italy, in 1979, the M.Sc. and
Ph.D. degree in electrical engineering and computer
science from University of California, Berkeley, in
1983 and 1983, respectively.

He is currently a Professor and the Director
of the Institute of Electrical Engineering and of
the Integrated Systems Center, EPFL, Lausanne,
Switzerland. He is the Program Leader of the
Nano-Tera.ch Program. He was a Professor with the
Electrical Engineering Department, Stanford University, Stanford, CA. He is
the author of “Synthesis and Optimization of Digital Circuits” (New York:
McGraw-Hill, 1994), and a coauthor and/or a coeditor of eight other books
and over 400 technical articles. His current research interests include several
aspects of design technologies for integrated circuits and systems, such as
synthesis for emerging technologies, NoCs, and 3-D integration. He is also
interested in heterogeneous platform designs including electrical components
and biosensors, as well as in data processing of biomedical information.

Prof. Micheli is a Fellow of ACM. He has been serving IEEE in several capac-
ities, including Division 1 Director from 2008 to 2009, Cofounder and President
Elect of the IEEE Council on EDA from 2005 to 2007, President of the IEEE
CAS Society, in 2003, and the Editor-in-Chief of the IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from 1987
to 2001. He has been the Chair of several conferences, including DATE in 2010,
pHealth in 2006, VLSI SOC in 2006, DAC in 2000, and ICCD in 1989. He re-
ceived the D. Pederson Award for the Best Paper on the [IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS in 1987,
two Best Paper Awards at the Design Automation Conference, in 1983 and 1993,
and the Golden Jubilee Medal for outstanding contributions to the IEEE CAS
Society in 2000. He was the recipient of the 2003 IEEE Emanuel Piore Award for
contributions to computer-aided synthesis of digital systems and a Best Paper
Award at the DATE Conference in 2005.

