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Buffers in on-chip networks constitute a significant proportion of the power consumption and area of the interconnect, and hence
reducing them is an important problem. Application-specific designs have nonuniform network utilization, thereby requiring
a buffer-sizing approach that tackles the nonuniformity. Also, congestion effects that occur during network operation need to
be captured when sizing the buffers. Many NoCs are designed to operate in multiple voltage/frequency islands, with interisland
communication taking place through frequency converters. To this end, we propose a two-phase algorithm to size the switch
buffers in network-on-chips (NoCs) considering support for multiple-frequency islands. Our algorithm considers both the static
and dynamic effects when sizing buffers. We analyze the impact of placing frequency converters (FCs) on a link, as well as pack
and send units that effectively utilize network bandwidth. Experiments on many realistic system-on-Chip (SoC) benchmark show
that our algorithm results in 42% reduction in amount of buffering when compared to a standard buffering approach.

1. Introduction

In modern SoC designs, power consumption is a critical
design constraint as they are targeted as low-power devices.
To achieve this, SoC designs employ power gating, where
the cores are shutdown when they are unused. Instead of
shutting down each core, certain techniques cluster cores into
voltage and frequency (VF) islands, and when all the cores in
an island are unused, the entire VI is shut down. The cores
in a single VI have same operating voltage but can operate at
different frequencies. Running cores at different frequencies
is an effective method to trade off performance and power
consumption.

Scalable on-chip networks, network-on-chips (NoCs),
have evolved as the communication medium to connect the
increasing number of cores and to handle the communi-
cation complexity [1–3]. With designs having multiple VF
islands, the interconnect can reside in a separate island.
By clustering the NoC into a single island, routing the

VDD and ground lines across the chip becomes difficult.
Instead, the NoC is spread across the entire chip with
different components of the network operating at different
voltage/frequency. If the core in an island is operating in a
different frequency than the switch to which it is connected,
the NI does the frequency conversion, and when a switch
from one island is connected to another switch in a different
island, frequency converters (FCs), such as the ones in [4, 5],
are used to do the frequency conversion. Even if the two
switches are operating at same frequencies, there might be
clock skew for which synchronization is required.

In an NoC, a packet may be broken down into multiple
flow control units called flits, and NoC architectures have the
ability to buffer flits inside the network to handle contention
among packets for the same resource link or switch port.
The buffers at the source network interfaces (NIs) are used
to queue up flits when the network-operating frequency is
different from that of the cores or when there is congestion
inside the network that reaches the source. NoCs also employ
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Figure 1: Bubbles generated moving from slow to fast clock.

some flow control strategy that ensures flits are sent from
the switch (NI) to another switch (NI) only when there are
enough buffers available to store them in the downstream
component.

In many NoCs, a credit-based flow control mechanism is
used to manage transfer of flits at full throughput. In this
scheme the upstream router keeps a count of the number
of free buffers in the downstream router. Each time a flit is
communicated from an upstream router and is consumed by
the downstream router, the credit counter is decremented.
Once the downstream router forwards the flit and frees a
buffer, a credit is sent to the upstream router and hence
incrementing the credit count.

The network buffers account for a major part of the
power and area overhead of the NoC in many architectures.
For example, in [6], the buffers account for more than
50% of the dynamic power consumption of the switches. A
major application domain for NoCs is in mobile and wireless
devices, where having a low-power consumption is essential.
Thus, reducing the buffering overhead of the NoC is an
important problem.

As such NoCs are targeted for specific applications, the
buffers and other network resources can be tuned to meet the
application bandwidth and latency constraints. Several ear-
lier works have dealt with application-specific customization
of various NoC parameters, such as the topology, frequency
of operation, and network paths for traffic flows [7–9]. In
fact, several works have also addressed the customization
of NoC buffers to meet application constraints [10, 11].
Many of the existing works utilize methods such as queuing
theory and network calculus to account for dynamic queuing
effects. While such methods could be used to compute the
buffer sizes quickly, they have several limitations in practice.
Most queuing theory-based works require the input traffic
injection to follow certain probabilistic distributions, such as
the Poisson arrival process. Other schemes require regulation
of traffic from the cores, which may not be possible in many
applications (details given in the next section).

Although these methods can be used for fast design
space exploration, for example, during topology synthesis,
final buffer allocation needs to consider simulation effects
to accurately capture the congestion effects. In this paper,
we present a simulation-based algorithm for sizing NoC

buffers for application traffic patterns. We present a two-
phase approach. In the first phase, we use mathematical
models based on static bandwidth and latency constraints
of the application traffic flows to minimize the buffers used
in the different components based on utilization. In the
second phase, we use an iterative simulation-based strategy,
where the buffers are increased from the ideal minimal
values in the different components, until the bandwidth and
latency constraints of all the traffic flows are met during
simulations. While in some application domains, such as in
chip multiprocessors (CMPs), it is difficult to characterize the
actual traffic patterns that occur during operation at design
time, there are several application domains (such as mobile,
wireless) where the traffic pattern is well behaved [12]. Our
work targets such domains where the traffic patterns can
be precharacterized at design time and a simulation-based
mechanism can be effective.

With the communication subsystem running on dif-
ferent operating frequencies, the effective bandwidth and
utilization on the links change. For example, when a switch
operating at a slower clock frequency communicates to a
switch at a higher operating frequency, bubbles may be
introduced between flits. This will lead to overutilization of
resources at the faster switch. As an example, consider a setup
as illustrated in Figure 1. Here the destination is operating
twice as fast as the source. Assume flits are forwarded at every
cycle of the source switch. Since the destination is faster,
the forwarded flits are consumed every other cycle (of the
faster clock). This results in empty flits being generated in
between the flits of a packet. The destination buffer is held
by the packet till the tail flit leaves. And hence this leads
to overutilization of the destination buffer, which otherwise
would have been half this utilization. One way to effectively
handle bubbles in the network is by employing pack and send
(PS) units (discussed later in the paper).

Moreover, when switches of different frequencies com-
municate with each other, the number of buffers required
varies depending where the frequency converters are placed.
When the converters are placed to the slower clock, the link
operates at the faster clock domain, thereby incurring smaller
delay in transferring flits and credits. Thus, fewer buffers are
required as the number of in-flight flits that need to be stored
at the buffers is fewer. However, placing the converters near
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the slower clock leads to higher power consumption on the
links as they are operating at a higher frequency. This effect
also needs to be considered during sizing of buffers.

In this paper, we present a buffer-sizing algorithm for
application-specific NoCs having multiple VF islands. We
consider a complex mobile benchmark to validate the buffer-
sizing algorithm presented. We also analyze the effect of
placement of frequency converters on the buffer size. Our
results show that there is 42% reduction in the buffer budgets
for the switches, on an average. Based on the models from
[6], this translates to around 35% reduction in the overall
power consumption of the NoC switches. We also apply the
approach on a variety of system-on-chip (SoC) benchmarks,
which show a significant 38% reduction in buffer budget.
Also, we study the impact of pack and send units on the
buffer utilization. Results show that the PS units have a better
utilization of network resources.

2. Related Work

A lot of work has gone into proposing techniques for scaling
the voltage and frequencies of different IP cores on a chip.
The authors of [13] propose techniques to identify optimal
voltage and frequencies levels for a dynamic voltage and
frequency scaling (DVFS) chip design. In [14] the authors
propose methods of clustering cores into islands, and DVFS
is applied for these islands. In our work, we assume such
clustering of cores and NoC components as a part of the
architecture specifications. In [15] the authors identify the
theoretical bounds on the performance of DVFS based on
the technology parameters.

With such partitioning of cores into VF islands becoming
prevalent, globally asynchronous- and locally synchronous-
(GALS-) based NoC designs have become the de facto
interconnect paradigm. In [16] the authors propose an
algorithm to synthesize an NoC topology that supports VF
islands. This is one of the first approachs to design an NoC
considering the support for shutting down of VF islands.
The output of this algorithm can serve as input to our
approach. In [17], the authors propose an reconfigurable
NoC architecture to minimize latency and energy overhead
under a DVFS technique. In [18], the authors propose
asynchronous bypass channels to improve the performance
of DVFS enabled NoC.

In this work we extend the proposed buffer-sizing
algorithm to designs with VF islands to optimize NoC power
and area while meeting the design requirements. Sizing
buffers is critical for reducing the power and area footprint
of an NoC.

In [10], the authors proposed an iterative algorithm
to allocate more buffers for the input ports of bottleneck
channels found using analytical techniques and also pro-
posed a model to verify the allocation. The model assumes
the Poisson arrival of packets. In [19], buffer sizing for
wormhole-based routing is presented, also assuming the
Poisson arrival of packets. The problem of minimizing
the number of buffers by reducing the number of virtual
channels has been addressed in [20] assuming that input
traffic follows certain probabilistic distributions. In [21],

a queuing theory-based model to size the number of virtual
channels is proposed by performing a chromosome encoding
of the problem and solving it using standard genetic
algorithm, again assuming the Poisson arrival of packets. The
authors of [22] proposed an analytical model to evaluate
the performance of adaptively routed NoCs. This work again
assumes the Poisson arrivals for the flows. In [23] the authors
proposed a probabilistic model to find the average buffer
utilization of a flow accounting for the presence of other
flows across all ports. The authors of [24] used an approach
to minimize buffer demand by regulating traffic through a
delayed release mechanism and hence achieving the goal of
appropriate buffer sizing. Unlike all these earlier works, we
make no assumption on the burstiness of input traffic and
the arrival pattern for packets.

In [25], the authors propose an algorithm to size the
buffers, at the NIs, using TDMA and credit-based flow
control. This work is complimentary to ours, as the authors
target designing NI buffers to match the different rate of
operation of cores and the network. A trace-driven approach
to determine the number of virtual channels is presented in
[26]. While the notion of simulation-driven design method is
utilized in the work, the authors do not address the sizing of
buffers. Our buffer-sizing methods are significantly different
from methods for virtual channel reduction, as we need
a much more fine grained control on buffer assignment.
Towards this end, we present an iterative approach to buffer
sizing that utilizes multiple simulation runs.

3. Design Approach

In this section, we give a detailed explanation of the design
approach used for buffer sizing. The approach is presented in
Figure 2. We use a two-phase method: static sizing, involving
constraint solving, followed by a simulation-based approach.

We obtain two sets of inputs for the buffer-sizing
approach: application and architecture specifications. The
application specifications include the bandwidth and latency
constraints for the different flows. The architecture specifica-
tions include the NoC topology designed for the application,
routes for the traffic flows, the number of voltage/frequency
islands, and flit width of the NoC.

We have the following assumptions about the architec-
ture and application.

(i) For illustrative purposes, we consider input-queued
switches for buffer sizing. In fact, the algorithm
presented in generic and can be easily extended to
output-queued (and hybrid) switches as well.

(ii) We define the term number of buffers used at a port
to be the number of flits that the buffers can store at
that port.

(iii) A wormhole, credit-based flow control is assumed in
the NoC, which is widely used.

(iv) We do not explicitly consider the use of virtual chan-
nels. The algorithm, in fact, can be easily applied to
architectures that support multiple virtual channels
as well.
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Figure 2: Buffer sizing design approach.

(v) We assume a uniform flit width across the whole
network, which is again commonly observed in many
NoCs.

(vi) We apply the buffer-sizing algorithm for a single
application. In many designs, multiple applications
can be run on the same device. The extension of the
buffer-sizing method to support multiple application
scenarios is similar to the extension of topology syn-
thesis methods to consider multiple applications and
has been thoroughly addressed by several researchers
before [27]. Hence, we only show the core method
applicable for a single application here.

The output of the buffer-sizing algorithm is the number
of flit buffers at each input port of the different switches. We
only perform the sizing of the switch buffers, and we refer the
reader to earlier works on sizing NI buffers that consider the
different rates of the cores and the network [25].

The algorithm phases are as follows.

Phase 1 (Static Sizing). To achieve full throughput and
utilization on all the switches and links, the credit-based
flow control mechanism requires a minimum number of
buffers that depends on the number of cycles to traverse the
links. In an application-specific topology, many parts of the
network can have much less than 100% utilization. In this
first phase, we formulate mathematical models relating the
buffering at a port with the bandwidth utilization of the port
and capturing latency constraints of traffic flows. We build a
linear program- (LP-) based model to minimize the number
of buffers at a port based on the utilization at the port and to
respect the latency constraints of all flows across the different
paths.

Phase 2 ( Simulation-Based Sizing). In the second phase, we
perform simulation of the NoC with the buffering values
obtained from Phase 1. There are three important parame-
ters of a traffic flow that significantly affect the congestion

behavior: the bandwidth of the flow, the burstiness, and
the number of flows overlapping at each link/switch port.
While the static sizing mechanism considers the bandwidth
of flows to compute utilization, the effects of burstiness
and overlapping flows are considered during this second
phase. We run simulations and utilize methods to iteratively
increase buffers at ports until the bandwidth and latency
constraints of all flows are met.

4. Buffer Sizing

4.1. Basic Architecture. In this section, we formulate the
problem of buffer sizing.

We represent the communication constraints between
the cores using a core graph.

Definition 1. The core graph is a directed graph, G(V ,E)
with vertex vi ∈ V representing the core and the directed
edge ei, j ∈ E connecting vertices vi and vj , representing
the communication link between the cores. The edge weight,
commi, j , denotes the communication bandwidth between vi
and vj . The set F represents the set of flows between the cores.

An NoC graph denotes the NoC topology and the
capacity of the links in the topology.

Definition 2. The NoC graph is a directed graph, T(P,Q)
with vertex pi ∈ P representing the switch and the directed
edge qi, j ∈ Q connecting the vertices pi and pj representing
the link connecting the switches. The edge weight, bwi, j ,
denotes the link bandwidth or capacity available across pi
and pj .

Definition 3. Let the set of operating frequencies of various
domains (in GHz) be denoted by the set D. Let freqency (i)
be a mapping function that maps a chip component to the
frequency at which the domain is operating at:

frequency (i) : {V ,P} −→ D, i ∈ V ,P (1)
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Figure 3: Timing diagram of two different buffer configurations. ST—switch traversal delay, L—link latency, C— credit latency.

When crossing VF islands, converters are required to do
the frequency conversion. For this purpose, we use FC units
that are basically dual-clocked FIFOs. The size of the FCs
is uniform throughout the design. Most FCs incur a delay
penalty for traversal, which is typically few cycles of the slow
clock [28]. We denote this latency by FC lat.

The latency of a link is the sum of the latency to
traverse the FC and link traversal latency. The link traversal
latency is defined by the frequency at which the link is
operated. Let unit len denote the distance in mm a signal can
traverse in 1ns. This can be determined based on the design’s
technology node. Then the latency of a link is given by

Ni, j = FC lat +
1

freq
× lengthi, j

unit len
(2)

freq =
⎧
⎨

⎩

frequency (i) FC near destination,

frequency
(
j
)

FC near source,
(3)

where freq denotes the operating frequency of the link and it
depends on where the FC is placed on the link, and lengthi, j

denotes the length of the link in mm.
The bandwidth or capacity of a link is given by the

product of link width and frequency of operation of the link:

bwi, j = freq× link widthi, j . (4)

Definition 4. The links traversed by a flow, fk, ∀k ∈ F,
connecting source sk and destination dk is represented by the
set pathk.

The utilization Ui, j of a link qi, j is the sum of the
bandwidths of all the flows using the link divided by the
capacity:

Ui, j =
∑

l,m comml,m

bwi, j
, ∀l,m, k,

s.t. qi, j ∈ Pathk, sk = vl, dk = vm.

(5)

We assume a pack and send (PS) unit that can be used to
better utilize the network resource. A PS unit is a 1-packet-
long buffer that holds an entire packet before forwarding it
to the downstream buffer. Employing PS units changes the
above link utilization Ui, j .

The NoC architecture assumes a credit-based flow con-
trol mechanism. The following is a lemma for the number
of buffers required in the downstream switch for credit-
based flow control mechanism to support full throughput
and utilization [29].

Lemma 5. For a link with delay N cycles, in credit-based flow
control, the number of flit buffers required at the downstream
router in order to get 100% throughput is at least (2N + 1).

The intuitive reasoning for this buffering value is as
follows. A flit takes N cycles to reach the next switch
and, when it leaves the downstream buffer, the credit takes
another N cycles to reach back and it takes one more cycle
to process the credit. Thus, the overall time delay between
sending a flit and processing the corresponding credit is
(2N + 1). During that time, under full utilization, the same
number of flits could be sent from the sender switch which
needs buffering at the downstream switch.

When the link utilization is less than 100%, the down-
stream router needs not have (2N + 1) buffers and can be
sized according to the utilization. The illustration in Figure 3
shows that buffers in the downstream router can be less than
(2N+1). In the example, two setups with downstream router
having 3 and 2 buffers and link latency of 1 cycle are shown.
The flow is assumed to have a 50% link utilization with the
packet comprising of 1 flit. The packets are generated every
other cycle, hence having utilization of 50%. In Figure 3(a),
the timing diagram for a setup with 3 buffers and the credit
counter value (available buffers at downstream router) at
each cycle are shown. The same throughput (50%) can be
achieved with 2 (lesser than (2N + 1)) buffers (Figure 3(b)).
However, when the number of buffers is reduced from
the ideal values, the packet latencies increase. For example,
consider a 4-flit packet in the above scenario with 2 buffers.
Since, the buffers are reduced from the ideal, the flits can
be sent only every other cycle, and hence the packets have
a latency of 7 cycles to be sent from the upstream to the
downstream switch. Thus, when reducing the buffer size, we
should also consider whether the latency constraints for the
flows are met.

Table 1 summarizes the different parameters of the
network.

5. Static Buffer Sizing

The latency of a link in the network is defined by the rate
at which the link is clocked. Without loss of generality, let
us assume Ni, j to be the number of cycles needed to traverse
the link qi, j . Then the minimum buffering required at a port,
based on the utilization at the port, is given by

βi, j ≥
(

2Ni, j + 1
)

∗Ui, j , (6)
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Table 1: Network parameters.

Parameter Description

V Set of IP cores

P Set of NoC switches

D Set of frequencies of VF islands

F Set of flows in the network

FC lat Latency of frequency converter

lengthi, j length of link in mm

Ni, j Link latency in cycles

Ui, j Link utilization

βi, j Buffer size at link qi, j
psk Packet size of flow k

LCk Latency constraint of flow k

where βi, j represents the buffers statically assigned at the port
connecting switches pi & pj ∈ P.

Let the latency constraint that needs to be met by a
flow fk, which is obtained as part of the input application
specifications, be LCk. The latency of a flow depends on the
size of the buffers along its path and the size of packet (in
flits). For the first flit of the packet, the latency is given by
the length of the path (hops), and for the consequent flits it
is determined by the buffering available at the downstream
router. When buffering is less than the ideal value at an input
port that is connected to the link qi, j , the body (and tail) flits
may need to wait at the upstream switch for credits to reach
back. This delay for the flits at a link qi, j is given by

(

2Ni, j + 1
)

βi, j
× (psk − 1

)
, (7)

where psk denotes the number of flits in a packet.
A packet encounters this delay at that part of the path

where the amount of buffering, when compared to the ideal
value, is lowest.

Under zero load conditions, the latency constraint on a
flow is met if the following constraint is satisfied:

max
∀i, j, s.t. qi, j ∈ Pathk

⎧
⎨

⎩

(

2Ni, j + 1
)

βi, j
× (psk − 1

)

⎫
⎬

⎭
+ Hk ≤ LCk,

(8)

where Hk denotes the hop count of the flow fk. The first term
on the left-hand side accounts for the maximum delay across
the entire path due to the reduced buffering.

The problem of computing the minimum number of
buffers required at the different ports to meet the bandwidth

and latency constraints can be formulated as a linear program
(LP) as follows:

min :
|P|∑

i=1

|P|∑

j=1

βi, j , i /= j,

s.t. βi, j ≥
(

2Ni, j + 1
)

∗Ui, j ,

max
∀i, j, s.t. qi, j ∈ Pathk

⎧
⎨

⎩

(

2Ni, j + 1
)

βi, j
× (psk − 1

)

⎫
⎬

⎭
+ Hk ≤ LCk

βi, j ≤
(

2Ni, j + 1
)

, βi, j ≥ 0, ∀i, j ∈ P.

(9)

The objective function to be minimized is the total
buffering used in the switches. The bandwidth and latency
constraints, obtained from (6) and (8), form the constraints
of the LP. The formulation can be solved quickly and
efficiently by any linear/convex program solver, such as the
lp solve [30]. Since the resulting buffer values by solving
the LP can be fractional, we round up the value to the
next integer. In fact, we could have formulated the above
equations as an integer linear program (ILP), where we can
force the buffer values to be integers. However, as solving the
ILP formulation has exponential time complexity, it will be
unfeasible to apply in practice. Hence, we use the heuristic of
LP formulation with the rounding scheme.

6. Simulation-Based Buffer Sizing

After Phase 1, we perform simulation of the NoC using
the computed buffer sizes and injecting packets to model
the application communication patterns that are taken as
inputs. The simulation-oriented approach is iterative, where
buffers are added and simulations performed iteratively, until
all the flows meet the bandwidth and latency requirements.
To perform the sizing, we propose two strategies called as
uniform increment and flow-based increment.

In the first strategy, buffers at all the ports are incre-
mented iteratively by a small step. The buffer increment at a
port depends on the burstiness of the flows and the number
of flows contending for the same port. During simulations,
the burst sizes of the flows at each port are tracked and the
average burstiness of a flow is identified. The burstiness of
flow fk is denoted as Bk.

We use the following term to increment the buffers at a
port connected to the link qi, j at each iteration:

∑
∀ fks.t.qi, j ∈ Pathk

α∗ Bk

max∀ fkBk ∗ |F| , (10)

where α is the parameter that is increased from 0 in
small steps with each simulation iteration. Intuitively, the
increment captures the burstiness of flows, scaled by the
maximum burstiness of any flow of the application and
the summation captures the number of contending flows,
normalized to the total number of flows in the application.
Thus, ports that have many contending flows, or flows with
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large burst sizes get a larger increment at each iteration. The
value of α is set experimentally. A very low value would result
in lot more solutions being explored, while requiring more
numbers of simulations.

In the second strategy, we track the flows that violate the
bandwidth or latency constraints, and only the buffers along
the path of such flows are incremented. This approach is an
optimization of the previous strategy, giving finer control
to access individual flows. For faster results, the uniform
increment scheme can be used, while for better results, the
flow-based increment scheme can be used. Thus, the two
schemes allow a tradeoff between having fine control over the
buffer allocation and minimizing the number of simulation
runs required. In Section 9, the results of the two proposed
strategies are discussed.

7. Placement of Frequency Converters

In this section the proposed buffer sizing scheme is extended
to designs with multiple VF islands. We assume that the
architecture characteristics include the VF island informa-
tion.

FCs are used when crossing clock domains. Several kinds
of FCs are proposed in the literature, but the most commonly
used one is a dual clock FIFO (DCFIFO). A DCFIFO
consists of a series of shift registers connected together that
shift the input data from one domain to the output to
the other domain. The input is clocked by one clock and
output is clocked by the other, and the data is stored in the
intermediate registers till the output is ready to consume it.

From the input architectural specification, the clock
domains are identified and DCFIFOs are added along the
links that cross the domains. Placement of the DCFIFOs is a
critical design problem as they affect the power consumption

and buffering required, hence, the performance of the
interconnect.

7.1. Frequency Converters near Fast Domain. In this setup,
the frequency converters are placed close to the fast clock
domain, as shown in Figure 4. By placing the converters
near the fast clock, the link is clocked by the slower clock.
From (2), it is evident that when the link operates at a lesser
frequency, the latency increases. But, since the operating
frequency is lesser, the power consumed by the link is lesser,
as P ∝ f . The increased latency of the link will demand
the downstream router to have more buffering (according to
Lemma 5).

7.2. Frequency Converters near Slow Domain. In this setup,
the FCs are placed closer to the slow clock domain, thereby
clocking the link by the faster clock, as shown in Figure 5.
This makes the link to operate at higher speed, and hence the
latency is lesser (2), thereby reducing the buffering needed at
the downstream router. But the higher operating frequency
makes the link consumes more power.

This tradeoff between power consumed by the link and
power consumed because of extra buffering can be explored
to choose a specific design point that meets the system
requirements. The effects of placement of FCs is analyzed,
and the results are discussed in Section 9.3.

8. Handling Bubbles

In multiclock designs, inherently lot of empty flits are
generated because of difference in the operating speed of
the network components. Network flows traversing from a
faster to slower frequency domain will incur higher latency,
and enough buffering must be provided to meet the design
constraints.

On the other hand, network flows traversing from a
slower to a faster clock domain create bubbles in the network.
Since destination is faster than the source, empty flits
(bubbles) are generated in the network which underutilize
the network resources. These bubbles must be reduced in
order to better utilize the resources, and employing pack
and send (PS) units can help in reducing them. Bubbles in
a flow hold the buffers along the path for a long period
unnecessarily, and hence other flows contending for the links
are delayed. Waiting for the entire packet to arrive before
the flow requests for the downstream buffer allows other
flows contending for the link to proceed. Pack and send unit
holds the flits temporarily till the entire packet is formed,
and then it is forwarded to the downstream router. Hence a
PS unit contains buffers to hold an entire packet. Section 9.4
discusses the results obtained when employing PS units.

9. Results

We consider a 26-core multimedia benchmark for a detailed
study of the buffer-sizing algorithm. In Section 9.6, we
show the application of the algorithm to a variety of
benchmarks. The system includes ARM, DSPcores, memory
banks, DMA engine, and several peripheral devices [31].
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Figure 6: Histogram of link utilization.

We consider benchmarks with custom topologies, but the
algorithm is extendable to regular topologies too. Some of
the benchmarks involve topologies with large number of
switches (26 cores and 20 switches) which is similar to regular
topologies. For the initial study to validate the buffer-sizing
algorithm we consider no voltage and frequency domains
for the network. The entire interconnect operates at a single
frequency.

We use existing tools to synthesize NoC topologies with
different number of switches [9]. The flit width of the
NoC is set to 32 bits. For each topology synthesized, we
perform simulations with very large (40 buffers at each
port) buffer sizes and set the frequency of operation to
a value where the application constraints are met during
simulations. This ensures a working solution with very large
buffering values, and the objective is to reduce it to much
smaller values. We chose 3 different topologies with few to
large number of switches (3, 14, and 20 switches) for the
study. The number of cycles needed to traverse the links
between the switches depend on the floor plan of the design,
the technology library characteristics, and the operating
frequencies of the components. For this study, we consider
3 different configurations for the link delay: 1, 2, and 3 cycles
across all the links. This allows us to show the effect of link
delays on the efficiency of the proposed methods. We denote
the topology points by the number of switches, link delay.

9.1. Effects of Static Buffer Sizing. In the static sizing, we
reduce the buffering at any port when the utilization at
the port is less than 100%. We observed that in this and
most other embedded benchmarks, the link utilization is
very nonuniform, and only some bottleneck links have
high utilization while others have much lower values. For
example, in Figure 6, we show the utilization of the different
links for a 20-switch benchmark. It can be seen that there are
a lot of flows that have a very low utilization of less than 10%.
Hence, utilization-based sizing can lead to a large reduction
in buffering. Please note that, due to protocol overhead, we
could not achieve 100% utilization on any link and needed
to operate the network at a slightly higher frequency than the
minimum needed to meet the bandwidth constraints.
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Figure 8: Latency versus buffering.

We show the effect of static sizing in Figure 7. We
compare the results with an original uniform buffering,
where the minimum number of buffers for full utilization is
used at all the ports. We can see that the proposed scheme
results in large reduction in buffering requirements.

9.2. Effects of Simulation-Based Buffer Sizing. In this subsec-
tion, we compare the application of the two strategies, uni-
form increment and flow-based increment. For comparisons
we also developed a standard uniform buffering strategy,
where all ports have the same number of buffers. This is set
to the minimum value at which the latency and bandwidth
constraints of all the flows are met during simulations. We
consider 3 different burst sizes for all the traffic flows: 4, 8,
and 16 byte bursts.

Figure 8 shows the average latency across all the flows
for a spectrum of buffer budgets for a benchmark with 3, 3
design and a burst size of 16 for all the flows. Depending on
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the tightness of the average latency constraint, the amount
of buffering achieved by the different schemes varies. When
loose latency constraint is used, the proposed strategies can
provide large reduction in buffering requirements. For a
very tight average latency constraint, all schemes perform
similarly and the simulation-based sizing methods do not
give any savings. Depending on the constraint, the algorithm
can give the best buffer setting.

We set the average latency constraint to 50 cycles and
perform buffer sizing. The buffer budget in the graphs
(Figure 9) denotes the minimum buffer budget at which
the simulation is stable and all constraints are met. We find
that both uniform increment and flow-based increment
strategies perform significantly better when compared to the
standard uniform buffering strategy. The minimum buffer
budget in the case of uniform increment is higher than flow-
based increment in most cases, because the increment to the
buffers is uniform on all the ports, and thus the addition of

buffers is at a coarse level. Moreover, as expected, the savings
are more pronounced when the traffic is more bursty and/or
the link delays are larger. The results show that there is a
42% reduction in the buffer budgets for the switches, on
an average. Based on the models from [6], this translates to
around 35% reduction in the overall power consumption of
the NoC switches.

9.3. Effect of Placement of FCs. We implemented the above
buffer-sizing algorithm to a benchmark with multiple clock
domains. The benchmark consisted of the entire topology
clustered into different VF islands with operating frequencies
ranging from 200 to 600 MHz. An example input topology is
illustrated in Figure 10. One of the above proposed strategies,
uniform increment, was used in this study. The main goal was
to analyze the impact of placement of the FCs. Figure 11
shows the reduction in the buffer budgets compared to the
standard uniform buffering scheme. Also the results show
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Figure 11: Placements of FCs.

that the buffering required when placing the FCs closer to
the slow domain is lesser than the buffering required when
placing it close to fast domain. This however affects the link
power, as the links are clocked higher and hence the link
power is more. With smaller transistor sizes, the link power
is as significant as the logic power, and hence the power
consumed by the links must also be taken into account.

9.4. Impact of Pack and Send. For studying the effect of pack
and send unit, the benchmark with multiple clock domains
was considered. Since the pack and send unit has an effect
only across links where the utilization is high, we scaled the
frequencies to a range of 500–900 MHz and the burstiness
was increased. For the study the proposed buffer-sizing
algorithm was used with PS units placed along links going
from slow to fast clock domain. The effect on buffering with
and without pack and send unit was analyzed. Though the PS
units require extra buffers to hold a packet, results showed
that the total buffering required (including the PS buffers)
remains the same. However the link utilization reduces when
using PS units. Since there is lesser contention among the
flows while using PS units, there is a direct impact in terms of
reduction in the buffering required at the switches. However,
the total buffering required remains the same as the decrease
in buffering at the switches is compensated by the extra
buffers required in the PS units. Figure 12 shows the overall
average link utilization with and without PS unit. This shows
that the PS unit helps in better utilizing the resources, and
this reduction in link utilization can be directly converted to
power savings at lower technology nodes.

9.5. Run Time of the Methods. Since Phase 1 uses LP formu-
lation and not ILP, the solution is tractable and is obtained
quickly. Phase 1 of the algorithm finished in few seconds for
all the benchmarks on a 2.66 GHz Linux Machine. Among
the two strategies presented in Phase 2, there is a tradeoff
between the running time of simulations and the granularity
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Figure 12: Pack and send.

of controlling buffer sizes. Previous sections show that the
fine control of buffer sizes for flow based increment approach
helps in achieving a lower budget. But the running time to
converge to a budget is more. Each simulation run can take
from 20 minutes to few hours, depending on how long a trace
needs to be simulated. The uniform increment approach
took 20–60 simulation runs, while the flow-based increment
approach took 50–100 runs. Thus, the design time required
could be significantly higher for the flow-based increment
strategy. The designer has the choice of the strategy and the
step used for the α values and can make a tradeoff between
buffer reduction and design time.

9.6. Experiments on Other Benchmarks. To show the gener-
ality of the method, we consider 4 other SoC benchmarks:
D 36 4, D 36 6, D 36 8, and D 35. The first 3 benchmarks
have 36 cores, with each communicating to 4, 6, and 8
other cores respectively. The last benchmark has 35 cores and
models bottleneck traffic communication, such as memory
controller traffic. On average, the proposed schemes result in
38% reduction in buffer sizes when compared to the standard
uniform sizing schemes.

9.7. Comparison with Theoretical Models. To show that the
proposed buffer-sizing methodology works for well-behaved
traffic also, we compare our results with queuing theory-
based model proposed in [10]. Figure 13 shows that the
proposed model is able to achieve buffer budgets close to the
theoretical limit proposed in the paper.

10. Conclusion

As buffers account for a large area, power overhead in NoCs,
reducing the amount of buffering is an important problem.
Buffer sizing is closely tied to dynamic congestion effects that
can be observed only during simulations. Towards this end,
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in this paper, we present a two-phase algorithm for buffer
sizing. Our approach considers the nonuniformity in the
utilization of the different parts of the network and uses a
simulation-based iterative mechanism. Our results show a
large reduction in buffering required (42%) when compared
to standard buffering approach. The proposed buffer-sizing
algorithm was extended to designs with multiple clock
domains. Results showed a significant reduction in buffer
budget. We also analyzed the effect of placement of FCs on
the overall buffer budget. Also the use of PS units to handle
bubbles in the network was studied, and results showed that
employing them utilize resources better.

Future Work

In the proposed buffer-sizing approach, the second phase
that involves simulations is the step that consumes a
significant portion of the total run time. We can use intuitive
approaches to reduce the simulation time for that step. But
this is beyond the scope of this work and can be a part of an
extension to this work.
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