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Abstract—We introduce two methods for quantifying and
evaluating the amount of surface receptors within a group of
cells from fluorescence microscope images. First, the average
fluorescence intensity method (AFIM), based on the fluores-
cent pixels average intensity, shows interesting properties for
quantifying variations of the amount of surface receptors. It
however shows an inherent limit coming form pixels saturation.
Second, the amount of fluorescent pixels method (AFPM) is based
on the amount of fluorescent pixels by modeling its relation
with the amount of surface receptors. The established non-
linear model is a tool for quantitatively evaluating the amount
of receptors. The images used for establishing and developing
these methods are originating from a simulated environment.
Synthetic images featuring simulated cells with fluorescently-
stained surface receptors were used. The two methods have been
carefully evaluated based on those synthetic images.

I. INTRODUCTION

Fluorescence microscopy is a basic and useful tool for in-
situ biological cell studying and analysis. Nowadays, it uses
digital image processing methods for extracting and analyzing
the gathered images. Fluorescence microscopy is based on
light microscopy and, thus, has an optical resolution limited by
the diffraction of light. Targets smaller than Rayleigh’s limit,
such as cell surface receptors, appear in the image as a bright
spot spread over multiple pixels. Quantification problems arise
when such small targets are clustered together, as this situation
is imaged as a cluster of overlapping bright spots. Despite this
limitation, quantification based on conventional fluorescence
microscopy is required to understand sub-cellular behaviors
[1]. As an example application, part of our research focuses
on quantifying the response of immune cells against various
pathogens [2]. The current state-of-the-art in image processing
in this area revolve around precise location of fluorescent
targets [3], [4] by filtering high frequency noise and using
Gaussian fitting techniques. The estimated location of the
fluorescent targets is sometimes improved by using super-
resolution techniques [5], [6]. Those methods rely on the
sparsity of the fluorescent targets to resolve their location
and amount. Their precision comes at the cost of high pro-
cessing power and extended computational time. Quantitative
evaluation methods for fluorescent targets has already been
developed by Mutch [7] and Pölönen [8]. Mutch’s approach
being the deconvolution of clustered targets intensities by
modeling the intensity of a single target. Pölönen is directly
working on a single cluster, fitting a mixture of diffraction

patterns using optimization problem solving techniques.
The goal of this paper is to present two methods that can be

used for surface receptors quantification within a given group
of cells. A large amount of synthetic microscope images has
been analyzed and processed in order to detect relationships
between the amount of surface receptors and the processing
results. The images have been generated using a simulation
tool [9] generating synthetic fluorescent microscope images.
The synthetic cells are featuring surface receptors, each stained
by a fluorophore. Images are generated by convolving the
fluorophore distribution with a model of the bright spot emitted
by each of them.

This paper is organized as follow. Section II presents the
methodology used to generate synthetic images and presents
the approaches taken by AFIM and AFPM to solve the
problem. Section III discusses the results obtained from the
synthetic images and describes how, from the results, AFIM
and AFPM are developed. Finally, Section IV concludes this
paper.

II. METHODOLOGY

We have generated hundreds of synthetic microscope im-
ages. Those images feature various amount of cells with
various amount of surface receptors. Section II-A details the
simulation procedure. Section II-B and Section II-C poses the
problem we want to solve by analyzing the average intensity
(AFIM) and the amount (AFPM) of the pixels carrying the
fluorescent signal respectively.

A. Synthetic images

A simulation tool [9] was used to generate synthetic images
of fluorescently-stained groups cells. The particularity of this
tool is to be able to simulate the imaging process undergoing in
epi-fluorescence microscopy. It emulates cell populations and
the distribution of surface receptors within the cells. Based on
the generated distribution of receptors, the tool is simulating
the optical behavior of a microscope and the sampling effects
of an image sensor.

Three sets of images have been generated, each set is
defined by the amount of synthetic cells Nc present in the
image, either 1, 3 or 13. For each set, synthetic images
with a varying amount of surface receptors per cell Nr have
been generated. In order to gather enough data and have
statistically relevant measurements, 100 images have been
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Fig. 1. Examples of generated images prior to segmentation with Ridler’s method for 1, 3 and 13 cells. Each image covers and area of 52µm by 52µm
on the generated cell samples.

generated for each given Nc. For example, a configuration
defined by Nc = 3 and Nr = 1200 was used to generate
100 images. The location of each receptor is randomized in
space and each receptor is assumed to be bound to a single
chromophore.

Some examples of synthetic images are found in Fig. 1.
The tool was configured in order to generate cells having an
approximate diameter of 8 µm. The simulated microscope an
overall magnification of 28X with a numerical aperture of 0.9.
The simulated imager has a 12 bits resolution and features an
array of 500 by 500 square pixels each of size 4.4 µm2. It has
a readout noise 10 ± 5 e− and generates dark current at the
rate of 10 e−/s. The gain was set to 10 e−/ADU (electrons
per Analog-to-Digital Units). The simulated exposure time is
set to 2 s and the light emitted by staining chromophores is
590 nm.

B. AFIM

The final goal of the research is to detect and measure
variations of the cell receptors of an imaged group of cells.
The synthetic images have been segmented by Ridler’s adap-
tive thresholding method [10]. This algorithm makes the
assumption that target objects, such as the diffraction patterns
generated by the chromophores, are having a different average
gray level from that of their surrounding. This is why the
generated images are having a high enough signal-to-noise
ratio, so that their histogram would be bimodal.

For each image and from the computed threshold value T ,
the average fluorescence intensity of all the pixels with an
intensity I > T can be computed. This average intensity value
is denoted as Īf and pixels falling under the condition I > T
are called fluorescent pixels.

As stated in section II-A, 100 synthetic images were gen-
erated for each configuration (i.e. for each couple {Nc, Nr}).
So, for a given configuration, we assume Īf to be a random
variable out of which we can compute its expected value E[Īf ]
and its standard deviation.

AFIM tries to establish a link between Īf computed on a
fluorescent image and the actual amount of receptors per cell
Nr for a group of cells. We want to find a function f(·) that

embodies the relationship between that measurement and an
approximated value Ñr of the real, unknown, value of Nr

Īf = f(Ñr) (1)

The results of the processed images are gathered in section
III-A where the link f(·) is established by relating the com-
puted expected value E[Īf ] and the simulation input parameter
Nr.

C. AFPM

AFPM follows the same objective as AFIM. The only
difference is that we want to find a link g(·) to retrieve an
approximated value of the amount of receptors per cell Ñr
from the amount of fluorescent pixels per cell N̄f , instead of
their average intensity Īf , for a fluorescent image of a given
group of cells. Thus the target link can we written as

N̄f = g(Ñr) (2)

Similarly, and using the same synthetic images, we assume
N̄f to be a random variable and extract its expected value
E[N̄f ] and its standard deviation. The results of the processed
images are gathered in section III-B where the link g(·) is
established by relating the computed expected value E[N̄f ]
and the simulation input parameter Nr.

III. RESULTS AND DISCUSSION

Based on the measurements made on the thresholding
results, E[Īf ] and E[N̄f ], we introduce a mathematical for-
mulation to describe f(·) and g(·). Based on the approach
taken by Mascetti [11], we link the unknown biological value
Nr with the measurements made on a fluorescent images using
synthetic images.

A. AFIM

The main idea behind this method is based on the graphs
plotted in Fig. 2, showing the evolution of the expected
fluorescent pixel average intensity E[Īf ] versus the amount
of receptors per cell Nr for three different groups of cells.

Each graph can be divided into two regions. A non-saturated
and a saturated region. The former is characterized by fluo-
rescent pixels that are not saturated due to the relative low
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Fig. 2. Normalized average intensity of the fluorescent pixels E[Īf ] with
respect to the amount of receptors per cell Nr within the processed images.
From top to bottom curve, the amount of imaged cells is 13, 3 and 1
respectively.

TABLE I

Cells Nr E[Īf ] E[Īf ]− β
13 20 0.231± 0.006 −0.009± 0.006

13 40 0.244± 0.007 0.004± 0.007

13 500 0.471± 0.030 0.231± 0.030

13 1000 0.676± 0.016 0.436± 0.016

amount of stained receptors in the imaged cells. On the other
hand, a high amount of receptors emit too much light and
the fluorescent pixels are saturating. This characterizes the
saturated region.

AFIM is based on the linear relationship between E[Īf ] and
Nr that the non-saturated region exhibits. Relating to (1), we
can model f(·) by

Īf = f(Ñr) = αÑr + β (3)

⇔ Ñr =
Īf−β
α (4)

where α and β are constants whose values depend on various
experimental parameters. The value of β can be estimated by
computing the expected value E[Īf ] for a single receptor (i.e.
Nr = 1) and assuming α� β. Using a simulation tool like the
one presented in [9] and for the experimental setup described
in Section II-A, the value of β for the graphs in Fig. 2 is
estimated as β = 0.24. On the other hand, the value of α
cannot be easily estimated without knowing the values of Nr,
which is the unknown in our problem, since it depends on
various biological parameters.

Practically, this linear relation allows us to quantitatively
evaluate variations in Nr as long as we stay in the non-
saturate region. For example, knowing β, we can easily detect
a doubling of Nr if the value of Īf −β has doubled. Note this
is only true if we are in the non-saturated region but also if the
amount of receptors is not too low, as reported in Table I. For
very low amount of receptors, the error on measurement Īf is
too high as the light intensity emitted by a receptor depends
on its location in space. In focus receptors will appear brighter
than out-of-focus ones. In these cases, we can refer to other
quantification methods [7], [8].
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Fig. 3. Number of fluorescent pixels E[N̄f ] with respect to the amount of
receptors per cell Nr within the processed images. From top to bottom curve,
the amount of imaged cells is 1, 3 and 13 respectively. γδ = 2.41 pixels per
receptor and γπ/2 = {5500, 8000, 9000} pixels respectively.

TABLE II

Cells Nr E[N̄f ]

1 400 1742± 116

3 400 1594± 92

13 400 1341± 61

For estimating Nr in the saturated-region, we need to use
AFPM, discussed in Section III-B.

B. AFPM

Measurements of the expected amount of fluorescent pixels
E[N̄f ] versus the amount of receptors per cell Nr are shown in
Fig. 3 and in Table II. Fig. 3 displays three graphs, one for each
image set (1, 3 or 13 cells). Table II shows quantitative values
extracted from the graphs, related to the example images in
Fig. 1.

Each group of cell can be described by a fixed curve, similar
to the ones presented in Fig. 3. The non-linear characteristic
of these curves can be explained by proximity of the receptors
or fluorophores. As already introduced, in a fluorescent image,
the diffraction pattern of a single chromophore spreads over
multiple pixels. Thus, when many chromophores are close
enough together (i.e. below Rayleigh’s limit), the diffraction
patterns will overlap.

As a result, even if a thresholded image of a single in-
focus fluorophores contains A fluorescent pixels, a thresholded
image N clustered chromophores will not contain N × A
fluorescent pixels. Eventually, when there are too many flu-
orophores, the amount of fluorescent pixels tends to stabilize.

Let’s assume we are analyzing a single group of cells. We
want to determine the relation g(·) as introduced in (2). The
curve describing this relation behaves like an arctangent. When
Nr is low, the relation is quasi-linear, while for high values of
Nr, the amount of fluorescent pixels is saturating. Thus, we
can model g(·) by

N̄f = g(Ñr) = γ arctan(δ.Ñr) (5)

⇔ Ñr = 1
δ tan(

N̄f

γ ) (6)
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where γ and δ are constants whose values depend on various
experimental parameters. Practically, using (6), we can get an
approximation on the amount of receptors per cell Ñr based
on the measurement N̄f done on a single fluorescent image.
Thus, we need to determine the value of γ and δ bound to the
imaged group of cells. A discussion on what γ and δ represent
and how to evaluate them is done hereunder.

1) Limit conditions: In order to determine what experimen-
tal parameters are influencing the constants γ and δ, we need to
extract some of the limit conditions of the modeling function
(6). First, by computing the following limit

lim
Ñr→+∞

g(Ñr) =
γπ

2
(7)

we can link the constant γ with the size of the group of cells
and the distribution of the stained receptors within. This limit
extracts the behavior of Ridler’s method [10] when the amount
of receptors is high. In other words, when an extra receptor
in the group of cells do not affect the amount of fluorescent
pixels. So, the constant γπ/2 is the maximum amount of
fluorescent pixels that can be detected and γ has the unit
[pixel].

Second, the parameter δ can be extracted by analyzing how
the amount of detected fluorescent pixels vary for low amount
of surface receptors per cell. Mathematically, we have

dg(0)

dÑr
= γδ (8)

The resulting expression, γδ, simply defines the average
amount of fluorescent pixels that a single receptor will induce
in the processed image (i.e average size of the diffraction
pattern). The unit for the constant γδ is [pixels/receptor]
and therefore, the unit of δ is [1/receptor].

2) Constant evaluation: The first expression we want to
evaluate for a given setup is γδ. This can be done using the
σ parameter of the normalized 2D Gaussian model of the
microscope PSF [12]

σ =
0.21λem

NA
(9)

where NA is the numerical aperture and λem the wavelength
of the photons emitted by the chromophores. Approximating
the radius of the diffraction pattern of a receptor by σ, an
approximation of the value of γδ can be

γ̃δ =
π(M.σ)2

pa
(10)

where M is the overall magnification of the optical system
and pa is the pixel area on the image sensor.

The evaluation of the constant γπ/2 can be done after
gathering images of the group of cells. Assuming the cells
have expressed enough surface receptors, the fluorescent pixel
mask (i.e. a binary image) corresponding to a collected image
featuring the most fluorescent signal can be used to estimate
γ. A morphological dilation on this mask should be performed
using a kernel having the same area, in pixels as γδ. A circular
kernel is suited as a chromophore appears on the mask as such.

IV. CONCLUSION AND FUTURE WORK

Fluorescence detection systems are extensively used nowa-
days and quantification methods are becoming a major trend.
In this paper, we focused on quantification of sub-resolution
size targets such as cell surface receptors, taken here as
an example. By generating and processing large amount of
synthetic fluorescent images, we have extracted two quantifi-
cation methods for measuring variations and estimating the
amount of fluorescently-stained surface receptors. The first
method, AFIM, is based on the linear dependency between
the fluorescent pixels average intensity with the amount of
receptors, assuming a large enough amount of receptors and
non-saturated pixels. The second method, AFPM, relies on
modeling the amount fluorescent pixels per cell versus the
amount of receptors per cell. This method having the advan-
tage of being independent of whether pixels are saturated or
not.
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