
193

9.1 Introduction

Today, many integrated circuits contain several processor cores, memories, hard-
ware cores and analog components integrated on the same chip. Such Systems on
Chips are widely used in high volume and high-end applications, ranging from mul-
timedia, wired and wireless communication systems to aerospace and defense ap-
plications. As the number of cores integrated on a SoC increases with technology
scaling, the two-dimensional chip fabrication technology is facing lot of challenges
in utilizing the exponentially growing number of transistors.

As the number of transistors and the die size of the chip increase, the length of
the interconnects also increases. With smaller feature sizes, the performance of the
transistors have increased dramatically. However, the performance improvement
of interconnects has not kept pace with that of the transistors [1]. With reducing
geometries, the wire pitch and cross section also reduce, thereby increasing the RC
delay of the wires. This coupled with increasing interconnect length leads to long
timing delays on global wires. For example, in advanced technologies, long global
wires could require up to 10 clock cycles for traversal [2]. Another major impact of
increased lengths and RC values is that the power consumption of global intercon-
nects become significant, thereby posing a big challenge for system designers.

9.1.1   3D-Stacking

Recently, 3D-stacking of silicon layers has emerged as a promising solution that
addresses some of the major challenges in today’s 2D designs [1, 3–8]. In the 3D

A. Sheibanyrad et al. (eds.), 3D Integration for NoC-based SoC Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-1-4419-7618-5_9,
© Springer Science+Business Media, LLC 2011

Chapter 9
3D Network on Chip Topology Synthesis:
Designing Custom Topologies for Chip Stacks

Ciprian Seiculescu, Srinivasan Murali, Luca Benini and Giovanni De Micheli

C. Seiculescu ()
Doctoral-assistent in Integrated Systems Laboratory, Swiss Federal Institute
of Technology Lausanne (EPFL),
EPFL IC ISIM LSI1 INF 339 (Bâtiment INF),
Station 14, 1015 Lausanne, Switzerland
Tel.: +41 21 693 0916
e-mail: ciprian.seiculescu@epfl.ch

194

stacked technology, the design is partitioned into multiple blocks, with each block
implemented on a separate silicon layer. The silicon layers are stacked on top of
each other. Each silicon layer has multiple metal layers for routing of horizontal
wires. Unlike the 3D packaging solutions that have been around for a long time
(such as the traditional system-in-package), the different silicon layers are connect-
ed by means of on-chip interconnects.

The 3D-stacking technology has several major advantages: (1) the foot-print on
each layer is smaller, thus leading to more compact chips (2) smaller footprints
lead to shorter wires within each layer. Inter layer connections are obtained using
efficient vertical connections, thereby leading to lower delay and power consump-
tion on the interconnect architecture (3) allows integration of diverse technologies,
as each could be designed as a separate layer. A detailed study of the properties and
advantages of 3D interconnects is presented in [1] and [9].

There are several methods for performing 3D integration of silicon layers, such
as the Die-to-Die, Die-to-Wafer and Wafer-to-Wafer bonding processes. In the Die-
to-Die bonding process, individual dies are glued together to form the 3D-IC. In the
Die-to-Wafer process, individual dies are stacked on top of dies which are still not
cut from the wafer. The advantages of these processes are that the wafers on which
the different layers of the 3D stack are produced can be of different size. Another
advantage is that the individual dies can be tested before the stacking process and
only “known-good-dies” can be used, thereby increasing the yield of the 3D-IC. In
the Wafer-to-Wafer bonding, full wafers are bonded together. The vertical intercon-
nection is usually achieved using Through Silicon Vias (TSVs). For connection from
one layer to another, a TSV is created in the upper layer and the vertical interconnect
passes through the via form the top layer to the bottom layer. Connections across
non-adjacent layers could also be achieved by using TSVs at each intermediate
layer. The integration of the different layers could be done with either face to face
or face to back topologies [10]. A die’s face is considered to the metal layers and
the back is the silicon substrate. The copper half of the TSV is deposited on each
die and the two dies are bonded using thermal compression. Typically, the dies are
thinned to reduce the distance between the stacked layers. Several researches have
addressed 3D technology and manufacturing issues [1, 4, 11]. Several industrial
labs, CEA-LETI [12], IBM [13], IMEC [14] and Tezzaron [15], to name a few, are
also actively developing methods for 3D integration.

In Fig. 9.1, we show a set of vertical wires using TSVs implemented in SOI
and bulk silicon technologies [11]. We also show the schematic representation of a
bundle of TSV vias in Fig. 9.2. In [11], a 4 × 4 µm via cross section, 8 µm via pitch,
1 µm oxide thickness and 50 µm layer thickness are used.

The use of 3D technology introduces new opportunities and challenges. The tech-
nology should achieve a very high yield and commercial CAD tools should evolve
to support 3D designs. Another major concern in 3D chips is about managing heat
dissipation. In 2D chips, the heat sink is usually placed at the top of the chip. In 3D
designs, the intermediate layers may not have a direct access to the heat sink to ef-
fectively dissipate the heat generated. Several researchers have been working on all
these issues and several methods have been proposed to address them. For example,
the problem of partitioning and floorplanning of designs for 3D integration has been

C. Seiculescu et al.

195

addressed in [4–8]. Today, several 3D technologies have matured to provide high
yield [16]. Many methods have been presented for achieving thermally efficient 3D
systems. The methods span from architectural to technology level choices. At the
architectural level, works have addressed efficient floorplanning to avoid thermal
hot-spots in 3D designs [17]. At the circuit level, use of thermal vias for specifically
conducting heat across the different silicon layers has been used [4]. In [13], use of
liquid cooling across the different layers is presented.

9.1.2   Networks on Chips for 3D ICs

One of the major challenges that designers face today in 3D integration is how to
achieve the interconnection across the components within a layer and across the layers

Fig. 9.1 An example set of nine vertical links

Bonding Pad

a b

Via SiO2 Bulk Si

T
ie

r
n

+1
T

ie
r

n
x y

z

Fig. 9.2 3D bundle cross-section

tox

L
W

Pitch

HSiO2

HBulk

SiO2

Pads

Si-Bulk

9 3D Network on Chip Topology Synthesis

196

in a scalable and efficient manner. The use of Networks on Chips (NoCs) has emerged
as the solution to the 3D integration problem. The NoC paradigm has recently evolved
to address the communication issues on a chip [2, 18, 19]. NoCs consist of switches
and links and use circuit or packet switching technology to transfer data inside a chip.
NoCs have several advantages, including achieving faster design closure, higher per-
formance and modularity. An example NoC architecture is shown in Fig. 9.3. A NoC
consists of set of switches (or routers), links and interfaces that packetize data from
the cores. A detailed introduction to NoC principles can be found in [19].

NoCs differ from macro-networks (such as the wide area networks) because of
local proximity and predictable behavior. The on-chip networks should have low
communication latency, power consumption and could be designed for particular
application traffic characteristics. Unlike a macro-network, the latency inside a chip
should be in the order of few clock cycles. Use of complex protocols will lead to
large latencies, NoCs thereby require streamlined protocols. Power consumption
is a major issue for SoCs. The on-chip network routers and links should be highly
power efficient and occupy low area.

The use of NoCs in SoCs has been a gradual process, with the interconnects
evolving from single bus structures to multiple buses with bridges, crossbars and a
packet-switching network. Compared to traditional bus based systems, a network
is clearly more scalable. Additional bandwidth can be obtained by adding more
switches and links. Networks are inherently parallel in nature with distributed arbi-
tration for resources. Thus, multiple transactions between cores take place in paral-
lel in different parts of a NoC. Whereas, a bus-based system use centralized arbitra-

Fig. 9.3 Example NoC design

IP core
master

IP core
slave

IP core
slave

IP core
slave

IP core
master

IP core
master

NI

NI

NI
NI

NI

NI

switch

switch

switch

switch

NoC
topology

C. Seiculescu et al.

197

tion, thereby leading to large congestion. Also, the structure and wiring complexity
can be well controlled in NoCs, leading to timing predictability and fast design clo-
sure. The switches segment long global wires and the load on the links are smaller,
due to their point-to-point nature.

NoCs are a natural choice for 3D chips. A major feature of NoCs is that a large
degree of freedom is available that can be exploited to meet the requirements. For
example, the number of wires in a link (i.e. the link data width) can be tuned ac-
cording to the application and architecture requirements. The data can be efficiently
multiplexed on a small set of wires if needed. This is unlike bus based systems,
that require several set of wires for address, data and control. Thus, communication
across layers can be established with fewer vertical interconnects and TSVs. NoCs
are also scalable, making the integration of different layers easy. Several different
data streams from different sources and destinations can be transferred in parallel
in a NoC, thereby increasing performance. The combined use of 3D integration
technologies and NoCs introduces new opportunities and challenges for designers.

Several researchers are working on building NoC architectures for 3D SoCs.
Router architectures tuned specifically for 3D technologies have been presented in
[20] and [21]. Using NoCs for 3D multi-processors has been presented in [22]. Cost
models for 3D NoCs, computed analytically has been presented in [23]. Designing
regular topologies for 3D has been addressed in [24].

9.1.3   Designing NoCs for 3D ICs

Designing NoCs for 3D chips that are application-specific, with minimum power-
delay is a major challenge. Successful deployment of NoCs require dedicated so-
lutions that are tailored to specific application needs. Thus, the major challenge
will be to design hardware-optimized, customizable platforms for each application
domain. The designed NoC should satisfy the bandwidth and latency constraints of
the different flows of the application.

Several works have addressed the design of bus based and interconnect architec-
tures for 2D ICs [25, 26]. Several methods have addressed the mapping of cores on
to NoC architectures [27–31]. Custom topology synthesis for 2D designs has been
addressed in [32–39].

Compared to the synthesis of NoCs for 2D designs, the design for 3D systems
present several unique challenges. The design process needs to support the con-
straints on the number of TSVs that can be established across any two layers. In
some 3D technologies, only connections across adjacent layers can be supported,
which needs to be considered. Finally, the layer assignment and placement of
switches in each layer need to be performed.

The yield of a 3D IC can be affected by the number of TSVs used, depending on
the technology. In Fig. 9.4, we show how the yield for different processes vary with
the number of TSVs used across two layers. The graphs show a trend that after a
threshold, the yield decreases with increasing number of TSVs. Thus, the topology

9 3D Network on Chip Topology Synthesis

198

synthesis process should be able to design valid topologies meeting a specific yield
and hence a TSV constraint. Moreover, with increasing TSV count, more area needs
to be reserved for the TSV macros in each layer. Thus, to reduce area, a bound on
allowed TSV is important. In [3], the pitch of a TSV is reported to be between 3 and
5 m. Reserving area for too many TSVs can cause a considerable reduction in the
active silicon area remaining for transistors.

The TSV constraint can significantly impact the outcome of the topology synthesis
process. Intuitively, we can see that when more TSVs are permitted, more vertical
links (or larger data widths) can be deployed. The resulting topologies could have
lower latencies, while using more area for the TSVs. On the other hand, a tight TSV
constraint would force fewer inter-layer links, thereby increasing congestion on such
links and affecting performance. In Figs. 9.5 and 9.6, we show the best topologies
synthesized by our flow for the same benchmark for two different TSV constraints.
In the first case 13 interlayer links are used and in the second only eight inter-layer
links are used.

Building power-efficient NoCs for 3D systems that satisfy the performance re-
quirements of applications, while satisfying the technology constraints, is an im-
portant problem. To address this issue, new architectures and design methods are
needed. In this chapter, we present synthesis methods for designing NoCs for 3D
ICs. The objective of the synthesis process is to obtain the most power efficient
topology for the NoC for the 3D design. The process has to meet the 3D design con-
straints and the application performance requirements. We also take the floorplan
of each layer of the 3D design, without the interconnect, as an optional input to the
design process. In our design process, we also compute the position of the switches
in the floorplan and place them, while minimally perturbing the position of the other
cores. We apply our methods to several SoC benchmarks which show large power
and latency improvements when compared to the use of standard topologies.

Fig. 9.4 Yield vs. TSV count

1 10 100 1000 10000 100000 1E+06
Number of TSV [piece/chip]

120%

100%

80%

60%

40%

20%

0%

Y
ie

ld
 [%

]

(HRI-JP)

(IMEC)

(IBM)

(HRI-JP) DBI=9.75E-6

(IBM) DBI=13.9E-6

(IMEC) DBI=40.0E-6

HRI-JP
IMEC (IEDM2006)
IBM/SOI (IEDM2005)

C. Seiculescu et al.

199

While many works have addressed the architectural issues in the design of NoCs
for 3D ICs, relatively fewer works have focused on the design aspects. In [17], the
authors have presented methods for mapping cores on to 3D NoCs with thermal
constraints. We have presented our methods to design NoCs for 3D ICs in [40, 41].

We also make a comparative study of NoC designs for the corresponding 2D im-
plementation of the benchmarks. The objective is to evaluate the actual power and
latency advantages when moving to a 3D implementation. For this study, we apply
a flow developed by us earlier for NoC design for 2D systems [39]. Our results
show that a 3D design can significantly reduce the interconnect power consumption
(38% on average) when compared to the 2D designs. However, the latency savings
is lower (13% on average), as the number of additional links that require pipelining
in 2D were few.

We use TSVs to establish the vertical interconnections. In Fig. 9.7, an example of
how a vertical link is established across two layers is presented. In our architecture,
the TSV needs to be drilled only on the top layer, and the interconnect uses hori-
zontal metal at the bottom layer. In our synthesis flow, we allocate area for a TSV
macro at the top layer for the link during the floorplanning phase. The TSV macro is
actually placed directly at the output port of the corresponding switch. For links that
go across multiple silicon layers, we also place TSV macros in each intermediate
layer. In Fig. 9.8, we show an example link that spans multiple layers.

Fig. 9.5 Topology using 13 inter-layer links

Smm 31

Switch 16

Switch 7

Switch 12

Switch 3
Switch 6Switch 5Switch 1

Switch 2 Switch 4 Switch 0

Switch 9

Switch 10Switch 8

Switch 11

Switch 13

Switch 15

Switch 14

Int 32

ShM 30

PrM 21 PrM 25

PrM 26

PrM 20

PrM 19

PrM 28

PrM 27

PrM 18

PrM 17

PrM 22

PrM 15

PrM 16
PrM 29

PrM 23

PrM 24

Core 0

Core 1

Core 10

Core 5

Core 7

Core 2

Core 3

Core 12Core 13

Core 9

Core 8

Core 6

Core 4

Core 11

Core 14

9 3D Network on Chip Topology Synthesis

200

9.2 3D Architecture and Design Flow

If there is a core that is connected to a switch that is in another layer below the core
layer, then the network interface that translates the core communication protocol to
the network protocol will be the one that will contain the necessary TSV macros. If
there are intermediate layers among the core’s network interface and the switch it is
connected to then TSV macros will be added in the intermediate layers just as in the

Fig. 9.6 Topology using eight inter-layer links

Smm 31

Switch 16 Switch 14

Switch 3

Switch 12

Switch 13

Switch 11

Switch 10

Switch 9

Switch 7

Switch 8

Switch 4

Switch 6Switch 5

Switch 2

Switch 1

Switch 0

Switch 15 Int 32

ShM 30

PrM 24

PrM 15 PrM 17
PrM 19

PrM 28

PrM 27

PrM 26

PrM 25

PrM 20PrM 18

PrM 16

PrM 29

PrM 23

PrM 22

PrM 21

Core 9

Core 8

Core 3

Core 2

Core 5

Core 4

Core 14 Core 1

Core 0 Core 11 Core 6 Core 7 Core 13 Core 12Core 10

C. Seiculescu et al.

201

case of the switch to switch link from Fig. 9.8. Active silicon area is lost every time
a TSV macro is placed as the area reserved by the macro will be used to construct
the TSV.

9.3 Design Flow Assumptions

In the design approach we use several realistic assumptions.

• The computation architecture is designed separately from the communication ar-
chitecture. Several works (such as [42]) have shown the need to separate compu-

Fig. 9.7 Example vertical link

Core

Core

Switch

Switch

TSV macro

Layer 1

Layer 0

vertical link
horizontal links

Fig. 9.8 Example vertical link

switch

switch
Core

Core

TSV macro

TSV macro

vertical link

horizontal link

Layer 0

Layer 1

Layer 2

9 3D Network on Chip Topology Synthesis

202

tation from communication design to tame the complexity. We assume hardware/
software partitioning of the design has been performed and tasks are statically
assigned to the cores. For the communication architecture design, we assume
that the hardware/software partition of application tasks onto the processor/hard-
ware cores has been performed.

• The assignment of the cores to the different layers of the 3D are performed using
existing methods/tools. There have been several works that address this issue
and our work is complementary to them.

• The floorplan of the cores in each layer (without the NoC) has been performed
by existing methods. We use the floorplan estimates as inputs to our design flow
to better estimate wire delay and power consumption.

• Though the synthesis methods presented in this chapter are general and appli-
cable to wide range of NoCs, we use a particular architecture ([43]) to validate
the approach.

9.4 Design Approach

Our design flow for topology synthesis is presented in Fig. 9.9. The topology syn-
thesis procedure produces a set of valid design points that meet the application
performance and 3D technology constraints, with different power, delay and area
values. From the Pareto curves, the designer can then choose the best design point.

Fig. 9.9 Design flow

Communication
characteristics 3D Specs

Technology
constraints

Application bandwith
requirements
Latency constraints
Message type of traffic flows

Communication specification file

NoC area,
power and timing

models

Vertical link
power, latency

models

3D NoC
Topology
Synthesis

Application-specific
3D NoCs

Core specification file

Core assignment to layer
in 3D
Optionally, floorplan of
cores in each layer

Max. # TSVs across
adjacent layers
Constraint on links only
across adjacent layers

C. Seiculescu et al.

203

The placement and floorplan of the switches and TSVs on each layer is also pro-
duced as an output.

The different steps in the topology synthesis process are outlined as follows.
In the outer most loop, the architectural parameters, such as the NoC frequency
of operation, data width are varied and for each architectural point the topology
synthesis process is repeated. Then, the number of switches in the design are var-
ied. When fewer switches are used to connect the cores, the size of each switch is
large and the inter-switch links are longer. However, the packets traverse a shorter
path. On the other hand, when more switches are used, the size of each switch is
smaller, but packets travel more hops. Depending on the application character-
istics, the optimal power point in terms on the number of switches used varies.
Hence, our synthesis tool sweeps a large design space, building topologies with
different switch counts.

For a chosen architectural point and switch count, we establish connectivity
across the cores and switches. Then, we also determine the layer assignment for
each of the switches. If there is a tight constraint on the TSVs or when the design
objective is to minimize the number of vertical connections, a core in a layer can
be constrained to be connected to a switch in the same layer. In this way, core to
switch links will not require vertical connections. On the other hand, this will re-
quire inter-layer traffic flows to traverse at least two switches, thereby increasing
latency and power consumption. This choice is application-specific and should be
chosen carefully.

To address this issue, we present a two-phase method for establishing core to
switch connectivity. In the first phase, a core can be connected to a switch in any
layer, while in the second phase, cores can be connected to only those switches in
the same layer. The second phase is invoked when TSV constraints are not met in
Phase 1 or when the objective is to minimize the number of vertical interconnec-
tions used. These phases are explained in detail in the next sections.

Several inputs are obtained for the topology synthesis process. The name, size
and position of the different cores, assignment of cores to the 3D layers, the band-
width and latency constraints of the different flows are obtained. A constraint on the
number of TSVs that can be established is also taken as an input. In some 3D tech-
nologies, vertical interconnects can established only across adjacent layers. This is
also taken as an input. We model the maximum TSV constraint by constraining the
number of NoC links that can be established across adjacent layers. We denote this
by max_ill. For a chosen link width, the value of max_ill can be computed easily
from the TSV constraint. For the synthesis procedure, the power, area and timing
models of the NoC switches and links are also taken as inputs. For the experimental
validation, we use the library of network components from [43] and the models are
obtained from layout level implementations of the library components. The design
process is general and models for other NoC architectures can also be easily inte-
grated with the design flow. The delay and power consumption values of the vertical
interconnects are also taken as inputs. We use the models from [11] for the vertical
interconnects.

9 3D Network on Chip Topology Synthesis

204

9.5 Algorithm

We will now go on to describe the algorithm for synthesizing applications specific
Noc topologies for 3D ICs. We will start by formally defining the inputs to the algo-
rithm. The first input is the core specification which describes the number of cores,
their position and the layer assignment. The core specification is defined as follows:

Definition 1 For a design with n cores. The x and y co-ordinate positions of a core
i are represented by xci and yci respectively, ∀i ∈ 1 · · · n.The assignment of core i to
the 3D layer represented by layeri.

The second input is the communication specification which describes the com-
munication characteristics of the application and it is represented by a graph [28, 30,
31]. The graph is defined as follows:

Definition 2 The communication graph is a directed graph, G(V, E) with each ver-
tex vi∈V representing a core and the directed edge (vi, vj) representing the commu-
nication between the cores vi and vj . The bandwidth of traffic flow from cores vi to vj
is represented by bwi, j and the latency constraint for the flow is represented by lati, j .

Setting of several NoC architectural parameters can be explored, like the fre-
quency at which the topology has to run and the data width of the links. The ranges
in which the design parameters are varied are taken as inputs. The algorithm sweeps
the parameters in steps, and designs the best topology points for each setting. For
each architectural point, the algorithm performs the steps shown in Algorithm 1.
The algorithm will create a list of all the switch counts for which topologies will
be generated (steps 2–5). By default, the switches are varied from one to the maxi-
mum number of cores in the design or in each layer. However, the designer can also
manually set the range of switch counts to be explored.

The objective function of topology synthesis is initially set to minimize power
consumption. However, for each topology point, if the 3D technology constraints
are not met, the objective function is slowly driven to minimize the number of ver-
tical interconnections. For this purpose, we use the scaling parameter θ. To obtain
designs with lower inter-layer links, θ is varied from θmin to θmax in steps of θscale,
until the maximum number of inter-layer links constraints is met. After several ex-
perimental runs, we determined that varying θ from 1 to 15 in steps of 3 gives good
results. In step 7, the algorithm tests if inter-layer links can cross multiple layers,
and if not, then phase one is skipped and phase 2 is used directly. In step 8, the
parameter θ used for setting the importance of the 3D constraints is set to the mini-
mum value to try to optimize for power. The function to build topologies is called in
step 10 on the initial list of switch counts to be explored. A detailed description of
the BuildTopologyGeneral is given in the Sect. 9.5.1. If the Unmet set is not empty,
then some topology points may not have met the technology constraints. Thus, θ is
increased and the function is called again.

Phase 2 of the algorithm detailed in Sect. 9.5.2 is more restricted, as cores can
only be connected to switches in the same layer of the 3D stack. Topologies built

C. Seiculescu et al.

205

using this restriction are usually consume more power, as more switches are re-
quired. Also the average hop count increases, as inter-layer flows traversing differ-
ent layers have to go through at least two hops. The advantage of the method from
phase 2 is that it can build topologies with a very tight constraint on the number of
inter-layer links. In step 15, the algorithm tests if there are entries in the Unmet set
for which topologies were not built in phase 1. This could be either because the con-
straints on the maximum number of inter-layer links were too tight or because the
technology did not allow for inter-layer links to cross more than one layer and phase
one was skipped completely. If Unmet is not empty then in step 16, the algorithm
calls BuildTopologyLayerByLayer function which tries to build topologies using the
restrictive approach.

9.5.1   Phase 1

Since different switch counts are explored and the number of switches rarely equals
the number of cores, the first problem that arises is to decide how to connect the
cores to switches. The assignment of cores to switches can have a big impact on
the power consumption, but also on the number of inter-layers links required as
switches from different layers can be assigned to the same switch. As multiple cores
have to be assigned to the same switch, we partition the cores in as many blocks as
there are switches. For this, we define the Partitioning Graph as follows:

Definition 3 The partitioning graph is a directed graph, PG(U, H, α), that has same
set of vertices and edges as the communication graph. The weight of the edge (ui, uj),
defined by hi, j, is set to a combination of the bandwidth and the latency constraints of the
traffic flow from core ui to uj: hi,j = α × bwi,j/max_bw + (1 − α) × min_lat/lati,j ,

9 3D Network on Chip Topology Synthesis

206

where max_bw is the maximum bandwidth value over all flows, min_lat is the tight-
est latency constraint over all flows and α is a weight parameter.

The weights on the edges in the partitioning graph are calculated as a linear combi-
nation of the bandwidth required by the communication flow and the latency con-
straint. The parameter α can be used to make trade-offs between power and latency.
The intuition is that when α is large, cores that have high bandwidth communication
flows will be assigned to the same switch. This will minimize the switching activity
in the NoC and therefore reduce the power consumption. On the other hand, when α
is small, cores that have tight latency constraints will be assigned to the same switch
minimizing the hop count. The parameter α is given as input or can be varied in a
range as well to explore the trade-offs between power consumption and latency.
However, the partitioning graph has no information on the layer assignment of the
cores and cannot be used if the number of inter-layer links has to be reduced. For
this purpose, we define the it Scaled partitioning Graph:

Definition 4 A scaled partitioning graph with a scaling parameter θ, SPG(W, L, θ),
is a directed graph that has the same set of vertices as PG. A directed edge li, j exists
between vertices i and j, if ∃(ui, uj) ∈ P or layeri = layerj .

In the scaled partitioning graph, the edges that connect vertices that correspond
to cores that are in different layers are scaled down. This way cores that are on dif-

C. Seiculescu et al.

207

ferent layers will be assigned to different switches. This can lead to a reduction in
the inter-layer links, because the links that connect switches can be reused by many
flows while links that connect cores to switches can only be used by the communi-
cation flows of that core.

As the parameter θ scales, to drive the partitioner to cluster cores that are on the
same layer, edges between the vertices that correspond to cores in the same layer are
added. It is important that these edges have lower weight than the real edges. If too
much weight is given to the new edges, then the clustering is no more communica-
tion based and it will lead to an increase in the power consumption. Equation 9.1
shows how the weights are calculated in the SPG. The weight from the new edges
is calculated based on the maximum weight of the edge in the PG and it is denoted
by max_wt.

 (9.1)

From the definition, we can see that the newly added edges have at most one-tenth
the maximum edge weight of any edge in PG, which was obtained experimentally
after trying several values.

The steps of the BuildTopologyGeneral function are presented in Algorithm 2.
In the first step, the partitioning graph is build. If θ is larger than the initial value
(step 2), it means that feasible topologies could not be built for all switch counts
using the core to switch assignment based on power and latency only. Therefore
in step 3, the scaled partitioning graph is built from the partitioning graph using
the current value of θ and replaces the partition graph in step 4. The design points
from the Unmet set are explored in step 7. For each switch count that is explored,
the cores are partitioned in as many blocks as the value of the switch count for
the current point (step 8). Once the cores are connected to switches, the switch
layer assignment can be computed. Switches are assigned to layers in the 3D
stack based on the layer assignment of the core it connects to. A switch is placed
at the average distance in the third dimension among all the cores it connects
(steps 11–13). For the current core to switch assignment, the inter-switch flows
have to be routed (steps 14, 15). The function CheckConstraints(cost) enforces
the constraints imposed by the upper bound on inter-layer links. A more detailed
description on how the constraints are enforced and how the routes are found is
provided in Sect. 9.5.3. If paths for all the inter switch flows were found with the
given constraints, then the topology for the design point is saved and the entry
corresponding to the current switch count is removed from the Unmet set (steps
18 and 19).

li,j =






hi,j if (ui, uj) ∈ PG & layeri = layerj
hi,j

θ × |layeri − layerj|
if (ui, uj) ∈ PG & layeri �= layerj

θ × max_wt

10 × θmax
if (ui, uj) /∈ PG & layeri = layerj

0 otherwise

9 3D Network on Chip Topology Synthesis

208

9.5.2   Phase 2

As previously stated, phase 2 is more conservative in the sense that cores can only
be connected to switches in the same layer. To ensure that the blocks that result from
the partitioning do not contain cores that are assigned to different layers on the 3D
stack, the partitioning is done layer by layer. To do a layer by layer partitioning, we
define the Local Partitioning Graph as follows:

Definition 5 A local partitioning graph, LPG(Z, M, ly), is a directed graph, with
the set of vertices represented by Z and edges by M. Each vertex represents a core
in the layer ly. An edge connecting two vertices is similar to the edge connecting the
corresponding cores in the communication graph. The weight of the edge (mi, mj),
defined by hij, is set to a combination of the bandwidth and the latency constraints of the
traffic flow from core mi to mj : hi,j = α × bwi,j/max_bw + (1 − α) × min_lat/lati,j ,
where max_bw is the maximum bandwidth value over all flows, min_lat is the tight-
est latency constraint over all flows and α is a weight parameter. For cores that
do not communicate with any other core in the same layer, edges with low weight
(close to 0) are added between the corresponding vertices to all other vertices in
the layer. This will allow the partitioning process to still consider such isolated
vertices.

A local partitioning graph is built for each layer and the partitioning and there-
fore the core to switch assignment is done layer by layer. Another restriction is
imposed on the switches, as they can be connected to other switches in the same
layer, but only to switches that are in adjacent layers when it comes to connections
in the third dimension.

Since there can be different number of cores on the different layers, it is important
to be able to distribute the switches to the layers of the 3D stack unevenly. Therefore,
the algorithm in phase 2 starts by determining the minimum number of switches in
each layer necessary to connect the cores. The operating frequency determines the
maximum size of a switch, as the critical path in a switch depends on the number of
input/output ports. The maximum switch size is determined in step 1 based on switch
frequency models given as inputs. In steps 2–5, the minimum number of switches
in each layer is determined from the number of cores in the layer and the maximum
supported size for the switches at the desired operating frequency. In step 5, the local
partitioning graphs are built, one per layer. Then for each design point remaining in
the Unmet set, the algorithm distributes the switches on the different layers (step 8).
Then we calculate the actual number of switches to be used in each layer, starting
from the minimum number of switches in each layer previously calculated (steps
12–16). We also makes sure that the number of switches in each layer does not grow
beyond the number of cores. For the calculated switch count on each layer, the lo-
cal partitioning graphs are partitioned in as many blocks as the switch count (step
17). Once the cores are assigned to switches, the CheckConstraints(cost) is called to
enforce the routing constraints and paths are found for the inter switch flows (steps
19, 20). If paths are found for all flows, the topology for the design point is saved.

C. Seiculescu et al.

209

9.5.3   Find Paths

When routing the inter switch flows, new physical links have to be opened between
switches as in the beginning the switches are not connected among themselves. To
establish the paths and to generate the physical connectivity for the inter switch
flows, a similar procedure is used as in the 2D case [39]. The procedure finds mini-
mum cost paths and the cost is based on the power increase generated by routing
the new flow on that path. By using marginal power as the cost metric, the algo-
rithm minimizes the overall power consumption. The full description of finding
paths is beyond the scope of this work and we refer the reader’s attention to [39].
The work also shows how to find deadlock free routes in the design, which can
also be used in 3D. However, in 3D we must take care of the maximum number of
inter-layer links constraint (max_ill) together with the constraint on the maximum
switch size imposed by the operating frequency. Therefore, in this section we will
focus on how these constraints can be enforced by modifying the cost on which the
paths are calculated. The routine to check and enforce the constraints is presented
in Algorithm 4. Before describing the algorithm we have to make the following
definitions:

9 3D Network on Chip Topology Synthesis

210

Definition 6 Let nsw be the total number of switches used across all the layers
and let layeri be the layer in which switch i is present. Let ill(i, j) be the number
of vertical links established between layers i and j. Let the switch_size_inpi and
switch_size_outi be the number of input and output ports of switch i. Let costi, j be
the cost of establishing a physical link between switches i and j.

In the algorithm, we use two types of threshold. One type refers to hard thresholds
that are given by the constraints and the other type is the soft thresholds which are
set to be just a bit less than the hard constraints. While violating a hard threshold
means that it is impossible to build a topology, soft thresholds can be violated. These
allow the algorithm to reserve the possibility to open new links for special flows that
otherwise cannot be routed due to other constraints (e.g. to enforce deadlock free-
dom). The algorithm tests if a link can be opened between every pair (i, j) of switch-
es (steps 3, 4). First, the constraint on the number of vertical links are checked. In the
case of phase 2, when inter-layer links cannot cross multiple layers and the distance
in the third dimension between switch i and switch j is larger than 1, then the cost
for that pair is set to INF. Also if the number of inter-layer links between the layer
containing switch i and switch j reached the max_ill value, then the cost is also set to
INF (steps 7, 8). By setting the cost to INF, we make sure that when finding paths,
we will not open a new link between switch i and j. If only the hard threshold is used,
then the algorithm would be able open links until reaching the limit and abruptly hit

C. Seiculescu et al.

211

an infeasible point. In a similar manner to the hard constraints, the soft constraints
are enforced by setting the cost to SOFT_INF when the number of inter-layer links
is already close to the hard constraint (steps 9, 10). The SOFT_INF value is chosen
to be several orders of magnitude larger than the normal cost based on power. The
constraints to limit the size of the switches are very similar to the constraints on the
maximum number of inter-layer links and are enforced in steps 11–15.

When paths are computed, if it is not feasible to meet the max_switch_size con-
straints, we introduce new switches in the topology that are used to connect the
other switches together. These indirect switches help in reducing the number of
ports needed in the direct switches. Due to space limitations, in this chapter, we do
not explain the details of how the indirect switches are established.

If we look at Algorithm 1, we can see that many design points are explored,
especially when the constraint on the maximum number of inter-layer links is tight.
Several methods can be employed to stop the exploration of design points when it
becomes clear that a feasible topology cannot be built. To prune the search space,
we propose three strategies. First, as the number of input/output ports of a switch
increases, the maximum frequency of operation that can be supported by it reduces,
as the combinational path inside the crossbar and arbiter increases with size. For
a required operating frequency of the NoC, we first determine the maximum size
of the switch (denoted by max_sw_size) that can support that frequency and deter-
mine the minimum number of switches needed. Therefore, design points where the
switch count is less than that can be skipped. Second, for phase 2 we initialize the
number of switches layer by layer as above. Thus, the starting design point can have
different number of switches in each layer. The third strategy is applied after parti-
tioning. The number of inter-layer links used to connect the cores to the switches is
evaluated, before finding the paths. If the topology requires more inter-layer links
than the threshold, we directly ignore the design point.

9.5.4   Switch Position Computation

In modern technology nodes, a considerable amount of power is used to drive the
wires. To be able to evaluate more accurately the power consumption of a topology
point, we have to estimate the power used to drive the links. In order to evaluate the
lengths of the links, we have to find positions for the switches and to place them
in the floorplan. While the positions of the cores is given as input, the switches are
added by the algorithm and their positions has to be calculated. Since a switch is
connected to several cores, one way to calculate the switch position is to minimize
the distance between the switch and the cores it is connected to. This can easily be
done by averaging the coordinates of the cores the switches is connected to. This
is a simple strategy and can provide good results and can be further improved by
weighing the distance between the switch and cores with the bandwidth that the
core generates, so that links that carry more bandwidth would be shorter. However,
this strategy does not take into consideration that the switch can be connected to

9 3D Network on Chip Topology Synthesis

212

other switches as well and minimizing the distance between switches is desirable.
To achieve this, a strategy that uses a linear program formulation that minimizes
the distance between the cores and switches at the same time is presented in [40].
If an inter-layer link crosses more than one layer then macros have to be placed on
the floorplan to reserve space to create the TSVs. However, finding the position
for TSV macros is much easier because the TSV macro is connected between only
two components (core to switch or switch to switch). Therefore the TSV macro can
be placed anywhere in the rectangle defined by the two component as it would not
increase the wire length (Manhattan distance is considered).

Placing the switches and TSV macros at the computed position may result in
overlap with the existing cores. For most real designs, moving the cores from
their relative positions is not desirable as there are many constraint to be satisfied.

C. Seiculescu et al.

Fig. 9.10 D26_media com-
munication graph

CONT1 CONT2 IMPRO2

IMPRO1

FLASH
100

100

ARM L2CC
SD

RAM1
100

100

100

100 100

100

100

100

20

20

2020

20

20

20

20

20

20

40
40

40

40

40

40

20

20

200

200

200

400

200

200

PE3 PE2

MEMPE1

P3

MEM1 MEM2

MEM4

MEM3DSP
L2C

SD
RAM2

DMA DEBUGDSP
DSP
L2CC

L2CP2MEM5P1

213

A standard floorplanner can be used, but it can produce poor results if it is not
allowed to swap the cores. A custom routine designed to insert the NoC compo-
nent in the existing floorplan can give better results removing the overlap. The
routine considers one switch or TSV macro at a time. It tries to find a free space
near its ideal location to place it. If no space is available, we displace the already

9 3D Network on Chip Topology Synthesis

Fig. 9.11 D38_tvopd communication graph

vld 0

70

run le
dec 0

iquam 0 idct 0 ARM 0
16357

362
362

362

27
353

vld 1
70

run le
dec 1

iquam 1 idct 1 ARM 1
16357

362362

362

27 353

inv scan
0

acdc
pred 0

49

srtipe
mem 0

samp
up 0

inv scan
1

inv scan
2

acdc
pred 1

srtipe
mem 1

samp
up 1

300313

313

vop
rec 0

vop
mem 0 pad 0

vop
rec 1

vop
mem1 pad 1

94

500

49

300
313

31394

500

vld 2
70

run le
dec 2

iquam 2 idct 2 ARM 2
16357

362362

362

27
353

acdc
pred 2

srtipe
mem 2

samp
up 2

vop
rec 2

vop
mem 2 pad 2

49

300
313

31394

500

540
540

12
6

12
6

54
0

126
mem in mem

out

214 C. Seiculescu et al.

Fi
g.

 9
.1

2
D

36
_4

 c
om

m
un

ic
at

io
n

gr
ap

h

A
R

M
5

A
R

M
4

A
R

M
3

A
R

M
17

A
R

M
16

A
R

M
15

A
R

M
29

A
R

M
28

A
R

M
27

A
R

M
0

A
R

M
1

A
R

M
2

A
R

M
12

A
R

M
13

A
R

M
14

A
R

M
24

A
R

M
25

A
R

M
26

M
6

M
7

M
8

M
18

M
19

M
20

M
30

M
31

M
32

M
35

M
34

M
33

M
23

M
22

M
21

M
11

M
10

M
9

La
ye

r
0

La
ye

r
1

La
ye

r
2

40
0

M
B

/s
30

0
M

B
/s

10
0

M
B

/s

2159 3D Network on Chip Topology Synthesis

Fig. 9.13 Power consumption in 2D

70

60

50

40

30

20

10

0

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

4 6 8 10 12 14 16 18 20 22 24 26
Switch count

Switch power

Total power

Core-to-switch link power

Switch-to-switch link power

Fig. 9.14 Power consumption in 3D

70

60

50

40

30

20

10

0

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

4 6 8 10 12 14 16 18 20 22 24 26
Switch count

Switch power

Total power

Core-to-switch link power

Switch-to-switch link power

216

placed blocks from their positions in the x or y direction by the size of the compo-
nent, creating space. Moving a block to create space for the new component can
cause overlap with other already placed blocks. We iteratively move the necessary
blocks in the same direction as the first block, until we remove all overlaps. As
more components are placed, they can re-use the gap created by the earlier com-
ponents (See Figs. 9.10 to 9.18).

C. Seiculescu et al.

Fig. 9.15 Wire length distributions

25

20

N
um

be
r

of
 w

ire
s

15

10

5

0
0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

Wire length

2D
3D

Layer-by-layer

Fig. 9.16 Comparison with layer-by-layer

R
el

at
iv

e
po

w
er

 c
on

su
m

pt
io

n

2.5

2

1.5

1

0.5

0
D_36_4 D_36_6 D_36_8 D_35_bot D_65_pipe D_38_tvopd

3D Application specific
3D Layer-by-layer

217

9.6 Experiments and Case Studies

To show how the algorithm performs, we will show different results on a realistic
multimedia and wireless communication benchmark. We will also make a com-
parison on topologies built with the two phases of the described algorithm to show
the advantages and disadvantages of each phase. We will also make a comparison
between NoCs designed for different applications for 2D-ICs and 3D-ICs. Experi-
ments showing the advantage of custom topologies over regular ones are also pre-
sented. In order to better estimate power, the NoC component library from [43]
is used. The power and latency values of the switches and links of the library are

9 3D Network on Chip Topology Synthesis

Fig. 9.17 Most power-efficient topology

DSP DMADSP
L2C

DSP
L2CC

L2C L2CC L2CCIMPRO2 IMPRO1 CONT1 CONT2

MEM1

MEM2

MEM4

MEM3

MEM5

Layer 0

Layer 1

Layer 2

Switch 2
Switch 1

Switch 0

PE1PE2PE3 P2P1P3DEBUG
SD

RAM1
SD

RAM2
FLASH

Fig. 9.18 Resulting 3D floorplan with switches

DMA DSPL2CC

DSPL2C

IMPROC2

IMPROC1

DSP

ARM L2CC
L2C

CONT1

CONT2

Layer 0 Layer 1 Layer 3

Core NI Switch Flip-Flop

MEM4
MEM2

MEM3MEM1 SW2

SW1 SW0 PE2 PE1

PE3

P2

FLASH

DEBUG SDRAM1 SDRAM2

P3

MEM5

P1

218

determined from post-layout simulations, based on 65 nm low power libraries. The
vertical links are shown to have an order of magnitude lower resistance and capaci-
tance than a horizontal link of the same dimension [11]. This translates to a traversal
delay of less than 10% of clock cycle for 1 GHz operation and negligible power
consumption on the vertical links.

9.6.1   Multimedia SoC Case Study

For the case study, a realistic multimedia and wireless communication SoC was
chosen as benchmark. The communication graph for the benchmark (denoted as
D_26_media) is shown in Fig. 5.4. From the figure, it can be observed that there
are 26 cores in the SoC. A part of the SoC which is constructed around an ARM
processor is used for multimedia applications and it is aided by hardware video ac-
celerators and controllers to access external memory. The other part of the SoC built
around a DSP is used for wireless communication. The communication between
the two parts is facilitated by several large on-chip memories and a DMA core. A
multitude of peripherals are also present for off-chip communication.

To compare between NoC designed for 2D-ICs and 3D-ICs, we performed 2D
floorplans of the cores as well as 3D floorplan of the cores distributed to three layers
using existing tools [44]. The assignment of cores to the layers of the 3D stack was
performed manually, but there are solutions presented for 3D floorplanning that can
give also the assignment of cores to layers. The tool from [39] was used to generate
the application specific topologies for the 2D case. To data width of the links was
set to 32 bits to correspond to the data width of the cores and the frequency was set
to 400 MHz (this being the lowest frequency at which topologies can be designed to
support the required bandwidth for the chosen data width). The max_ill constraint
was set at 25. The impact of the constraint on power is analyzed later on. The power
consumption on the different components of the NoCs, as well as the total power con-
sumption is presented in Fig. 9.9 for the 2D-IC and in Fig. 9.10 for 3D. The plots rep-
resent the power consumption for topologies generated for different switch counts.

Both plots start with topologies containing three switches. Because there are 26
cores in the design, topologies with less than three switches could not be built, as
they would require the use of switches too large to support the operating frequency.
These design points are pruned from exploration to reduce the run time, as ex-
plained in Sect. 9.5. The power consumption on individual components: switches,
switch to switch links and core to switch links are presented in the figures. Several
trends can be observed. The switch power grows as the number of switches grow.
The core to switch link power goes down with more switches as the switches are
placed closer to cores and the wire length decreases. The switch to switch link
power consumption grows with the number of switches as the number of such links
increases. However, the switch to switch link power does not increase as fast as
the switch power with the switch count. The trends are similar for both 2D and 3D
cases, but the absolute values for the link power in the 3D case is less than the ones

C. Seiculescu et al.

219

for 2D, as long and power hungry links from the 2D layout are replaced by short
and efficient vertical links. For this particular benchmark, a power saving of 24%
is achieved in 3D over 2D due to shorter wires. To give a better understanding,
we show the wire-length distribution of the links in 2D and 3D cases in Fig. 9.11.
From the figure, as expected, the 2D design has many long wires. In Fig. 9.12 the
topology designed using phase 1 for the best power point is shown and in Fig. 9.13
the floorplan of the cores and network components in 3D for the corresponding
topology is presented.

For a more complete comparison between topologies for 2D-ICs and 3D-ICs, we
designed topologies using different SoC benchmarks. We consider three distributed
benchmarks with 36 cores (18 processors and 18 memories): D_36_4 (communica-
tion graph in Fig. 9.14), D_36_6 and D_36_8, where each processor has 4, 6 and
8 traffic flows going to the memories. The total bandwidth is the same in the three
benchmarks. We consider a benchmark, D_35_bot that models bottleneck commu-
nication, with 16 processors, 16 private memories (one processor is connected to
one private memory) and 3 shared memories to which all the processors communi-
cate. We also consider two benchmarks where all the cores communicate in a pipe-
line fashion: 65 core (D_65_pipe) and 38 core designs (D_tvopd) (communication
graph in Fig. 5.4). In the last two benchmarks, each core communicates only to one
or few other cores.

We selected the best power points for both the 2D case and the 3D case and we
report the power and zero load latency in Table 9.1. As most of the power differ-
ence comes from the reduced wire length in 3D, the power savings differs from
benchmark to benchmark. For the benchmarks with spread traffic and many com-
munication flows the power savings are considerable, as they benefit from the re-
duction of the long wires of the 2D design. In the bottleneck benchmark, there are
many long wires that go to the shared memory in the 2D case. Even though the traf-
fic to shared memories is small, we can still see a reasonable power saving when
moving to 3D. For the pipeline benchmarks, most of the links are between neigh-
boring cores, so links are short even in 2D. So, going for a 3D design dose not lead
to large savings. The average power reduction is 38% and the average zero load
latency reduction is 13% for the different benchmarks when comparing 3D to a
2D implementation.

9 3D Network on Chip Topology Synthesis

Table 9.1 2D vs 3D NoC comparison
Benchmark Power (mW) Latency (cyc)

Link power Switch power Total power
2D 3D 2D 3D 2D 3D 2D 3D

D_36_4 150 41.5 65 70.5 215 112 3.28 3.14
D_36_6 154.5 43.5 76.5 82 230 125.5 3.57 3.5
D_36_8 215 55.5 105 104.5 320 160 4.37 3.65
D_35_bot 68 36.2 48 43.3 116 79.5 6.04 4.2
D_65_pipe 106 104 63 58 169 162 2.53 2.57
D_38_tvopd 52.5 22.67 37 38.11 89.5 60.78 4 3.6

220

In Fig. 9.13, we show the power consumption of the topologies synthesized us-
ing Phase 2 of the algorithm, with respect to topologies synthesized using Phase
1 for the different benchmarks. Since in Phase 2 cores in a layer are connected to
switches in the same layer, the inter-layer traffic needs to traverse more switches to
reach the destination. This leads to an increase in power consumption and latency.
As seen from Fig. 9.13, Phase 1 can generate topologies that lead to a 40% reduc-
tion in NoC power consumption, when compared to the Phase 2. However Phase 2
can generate topologies with a much tighter inter-layer link constraint.

9.6.2   Impact of Inter-layer Link Constraint and Comparisons 
with Mesh

Limiting the number of inter-layer links has a great impact on power consumption
and average latency. Reducing the number of TSVs is desirable for improving the
yield of a 3D design. However, a very tight constraint on the number of inter-layer
links can lead to a significant increase in power consumption. To see the impact
of the constraint, we varied the value of max_ill constraint and performed topol-
ogy synthesis for each value, for the D_36_4 benchmark. The power and latency
values for the different max_ill design points are shown in Figs. 9.19 and 9.20.
When there is a tight constraint on the inter-layer links, the cores are connected to
switches in the same layer, so that only switch-to-switch links need to go across
layers. This results in the use of more switches in each layer, increasing switch
power consumption and average latency. Please note that our synthesis algorithm
also allows the designers to perform such power, latency trade-offs for yield, early
in the design cycle.

Custom topologies that match the application characteristics can result in
large power-performance improvement when compared to the standard topolo-
gies, such as mesh and torus [39]. A detailed comparison between a custom topol-

Fig. 9.19 Impact of max_ill
on power

190

180

170

160

150

140

130

120

110M
in

im
um

 p
ow

er
 c

on
su

m
pt

io
n

(m
W

)

Maximum number of inter-layer links (max_ill)
0 5 10 15 20 25

C. Seiculescu et al.

221

ogy and several standard topologies for different benchmarks for the 2D case has
been presented in [39]. For completeness, we compared the application specific
topologies generated by our algorithm with an optimized 3D mesh topology (3D
Opt-mesh), where core placement is optimized such that cores that communicate
are connected to nearby switches. The power consumption value for the topolo-
gies for different benchmarks is presented in Fig. 9.21. The custom topologies
result in large power reduction (average of 51%) when compared to the 3D mesh
topology.

Fig. 9.20 Impact of max_ill
on latency

4

3.5

3

2.5

2

1.5

1

0.5

0

M
in

im
um

la
te

nc
y

(c
yc

le
s)

Maximum number of inter-layer links (max_ill)
0 5 10 15 20 25

Fig. 9.21 Comparisons with mesh

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

D_36_4 D_36_6 D_36_8 D_35_bot D_65_pipe D_38_tvopd

3D Application specific
3D Opt-mesh

450

400

350

300

250

200

150

100

50

0

9 3D Network on Chip Topology Synthesis

222

9.7 Conclusions

Networks On Chips (NoCs) are a necessity for achieving 3D integration. One of
the major design issues when using NoCs for 3D is the synthesis of the NoC topol-
ogy and architecture. In this chapter, we presented synthesis methods for designing
power-efficient NoC topologies. The presented methods not only address classic 2D
issues, such as meeting application performance requirements, minimizing power
consumption, but also the 3D technology constraints. We showed two flavors of the
general algorithm, one for achieving low power solution and the other to achieve
tight control on the number of vertical connections established. We also presented
comparisons with 2D designs to validate the benefits of 3D integration for intercon-
nect delay and power consumption.

Acknowledgment We would like to acknowledge the financial contribution of CTI under project
10046.2 PFNM-NM and the ARTIST-DESIGN Network of Excellence.

References

 1. K. Banerjee et al., “3-D ICs: A Novel Chip Design for Deep-Submicrometer Interconnect Per-
formance and Systems-on-Chip Integration”, Proc. of the IEEE, vol. 89, no. 5, p. 602, 2001.

 2. L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE Computers,
vol. 35, no. 1, pp. 70–78, Jan. 2002.

 3. E. Beyne, “The Rise of the 3rd Dimension for System Integration”, International Interconnect
Technology Conference, pp. 1–5, 2006.

 4. B. Goplen and S. Sapatnekar, “Thermal Via Placement in 3D ICs”, Proc. Intl. Symposium on
Physical Design, p. 167, 2005.

 5. J. Cong et al., “A Thermal-Driven Floorplanning Algorithm for 3D ICs”, ICCAD, Nov. 2004.
 6. W.-L. Hung et al., “Interconnect and Thermal-Aware Floorplanning for 3D Microprocessors”,

Proc. ISQED, March 2006.
 7. S. K. Lim, “Physical Design for 3D System on Package”, IEEE Design & Test of Computers,

vol. 22, no. 6, pp. 532–539, 2005.
 8. P. Zhou et al., “3D-STAF: Scalable Temperature and Leakage Aware Floorplanning for Three-

Dimensional Integrated Circuits”, ICCAD, Nov. 2007.
 9. R. Weerasekara et al., “Extending Systems-on-Chip to the Third Dimension: Performance,

Cost and Technological Tradeoffs”, ICCAD, 2007.
10. G. H. Loh, Y. Xie, and B. Black. “Processor Design in 3D Die-Stacking Technologies”, IEEE

Micro Magazine, vol. 27, no. 3, pp. 31–48, May--June 2007.
11. I. Loi, F. Angiolini, and L. Benini, “Supporting Vertical Links for 3D Networks on Chip:

Toward an Automated Design and Analysis Flow”, Proc. Nanonets, 2007.
12. C. Guedj et al., “Evidence for 3D/2D Transition in Advanced Interconnects”, Proc. IRPS,

2006.
13. http://www.zurich.ibm.com/st/cooling/interfaces.html
14. IMEC, http://www2.imec.be/imec_com/3d-integration.php
15. http://www.tezzaron.com
16. N. Miyakawa, “A 3D Prototyping Chip Based on a Wafer-level Stacking Technology”, ASP-

DAC, 2009.
17. C. Addo-Quaye, “Thermal-Aware Mapping and Placement for 3-D NoC Designs”, Proc.

SOCC, 2005.

C. Seiculescu et al.

223

18. P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet Switched Intercon-
nections”, Proc. DATE, 2000.

19. G. De Micheli and L. Benini, “Networks on Chips: Technology and Tools”, Morgan
Kaufmann, San Francisco, CA, First Edition, July 2006.

20. J. Kim et al., “A Novel Dimensionally-Decomposed Router for On-Chip Communication in
3d Architectures”, ISCA, 2007.

21. D. Park et al., “MIRA: A Multi-Layered On-Chip Interconnect Router Architecture”, ISCA,
2008.

22. F. Li et al., “Design and Management of 3D Chip Multiprocessors Using Network-in-Memo-
ry”, ISCA, 2006.

23. V. F. Pavlidis and E. G. Friedman, “3-D Topologies for Networks-on-Chip”, IEEE TVLSI,
2007.

24. B. Feero and P. P. Pande, “Performance Evaluation for Three-Dimensional Networks-on-
Chip”, Proc. ISVLSI, 2007.

25. J. Hu et al., “System-Level Point-to-Point Communication Synthesis Using Floorplanning
Information”, Proc. ASPDAC, 2002.

26. S. Pasricha et al., “Floorplan-Aware Automated Synthesis of Bus-Based Communication Ar-
chitectures”, Proc. DAC, 2005.

27. S. Murali and G. De Micheli, “An Application-Specific Design Methodology for STbus
Crossbar Generation”, Proc. DATE, 2005.

28. S. Murali and G. De Micheli, “SUNMAP: A Tool for Automatic Topology Selection and
Generation for NoCs”, Proc. DAC, 2004.

29. S. Murali and G. De Micheli, “Bandwidth Constrained Mapping of Cores on to NoC Archi-
tectures”, Proc. DATE, 2004.

30. J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for Energy/Performance Aware
Mapping of Regular NoC Architectures”, Proc. DATE, 2003.

31. S. Murali et al., “Mapping and Physical Planning of Networks on Chip Architectures with
Quality-of-Service Guarantees”, Proc. ASPDAC, 2005.

32. A. Pinto et al., “Efficient Synthesis of Networks on Chip”, ICCD 2003, Oct. 2003.
33. W. H. Ho and T. M. Pinkston, “A Methodology for Designing Efficient On-Chip Intercon-

nects on Well-Behaved Communication Patterns”, HPCA, 2003.
34. T. Ahonen et al., “Topology Optimization for Application Specific Networks on Chip”, Proc.

SLIP, 2004.
35. K. Srinivasan et al., “An Automated Technique for Topology and Route Generation of Ap-

plication Specific On-Chip Interconnection Networks”, ICCAD, 2005.
36. J. Xu et al., “A Design Methodology for Application-Specific Networks-on-Chip”, ACM

TECS, 2006.
37. A. Hansson et al., “A Unified Approach to Mapping and Routing on a Combined Guaranteed

Service and Best-Effort Network-on-Chip Architectures”, Technical Report No: 2005/00340,
Philips Research, Apr. 2005.

38. X. Zhu and S. Malik, “A Hierarchical Modeling Framework for On-Chip Communication
Architectures”, ICCD, 2002.

39. S. Murali et al., “Designing Application-Specific Networks on Chips with Floorplan Informa-
tion”, ICCAD, 2006.

40. S. Murali et al., “Synthesis of Networks on Chips for 3D Systems on Chips”, ASPDAC, 2009.
41. C. Seiculescu, S. Murali, L. Benini, and G. De Micheli, “SunFloor 3D: A Tool for Networks

on Chip Topology Synthesis for 3D Systems on Chip”, Proc. DATE, 2009.
42. K. Keutzer et al., “System-Level Design: Orthogonalization of Concerns and Platform-Based

Design”, IEEE TCAD, 2000.
43. S. Stergiou et al., “×pipesLite: a Synthesis Oriented Design Library for Networks on Chips”,

Proc. DATE, 2005.
44. S. N. Adya and I. L. Markov, “Fixed-outline Floorplanning: Enabling Hierarchical Design”,

IEEE TVLSI, 2003.

9 3D Network on Chip Topology Synthesis

	9
	3D Network on Chip Topology Synthesis: Designing Custom Topologies for Chip Stacks
	9.1 Introduction
	9.1.1 3D-Stacking
	9.1.2 Networks on Chips for 3D ICs
	9.1.3 Designing NoCs for 3D ICs

	9.2 3D Architecture and Design Flow
	9.3 Design Flow Assumptions
	9.4 Design Approach
	9.5 Algorithm
	9.5.1 Phase 1
	9.5.2 Phase 2
	9.5.3 Find Paths
	9.5.4 Switch Position Computation

	9.6 Experiments and Case Studies
	9.6.1 Multimedia SoC Case Study
	9.6.2 Impact of Inter-layer Link Constraint and Comparisons with Mesh

	9.7 Conclusions

