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Abstract— Modern high-performance processors employ ther-
mal management systems, which rely on accurate readings
of on-die thermal sensors. Systematic tools for analysis and
determination of best allocation and placement of thermal sensors
is therefore a highly relevant problem. This paper proposes a
novel technique for determining the placement of temperature
sensors on complex Multi-Processor Systems-on-Chips (MPSoCs)
floorplans. The proposed method first analyzes the observability
of the system for all the possible sensor placement configurations.
Minimum sensors placements ensuring the observability of the
portion of the MPSoC system that is relevant to the designer
are then compared with simulation-based data coming from
a wide set of benchmarks. Pareto points identifying the best
configurations are than stored. According to user designer needs
the best configuration is selected and a specific location is assigned
to each sensor. We compared the proposed method with state-of-
the-art approaches [5], [6]. Results show a reduction up to 4.5x
in the number of required sensors.

I. INTRODUCTION

The number of functional units and cores integrated on
a chip is increasing. Examples include the Sun’s Niagara
[2] and the Tilera’s 64-core architecture [3]. This increase
in capability of MPSoCs is leading to an increase in chip
power dissipation, which in turn leads to significant increase
in chip temperature. Temperature gradients and hot-spots not
only affect the performance of the system, but also lead to
unreliable circuit operation and affect the life-time of the chip
[4]. Meeting temperature constraints and reducing hot-spots is
indeed an important and difficult challenge facing the MPSoC
designers. Thus thermal management approaches have been
proposed [7]- [12], but all these techniques require on-line
thermal profile information from the chip to perform frequency
assignment optimization.

In this work we focus on the thermal sensors placement
problem. Our goal is to minimize the number of sensors while
maximizing the thermal profile estimation accuracy.

We propose a novel approach for choosing a sensor con-
figuration based on observability analysis. This is a general
approach that can be potentially applied to any MPSoC
architecture. In this work, we validated the system using a
commercial MPSoC from SUN. We compare the resulting sen-
sor placement with state-of-the-art algorithms. Results show a
reduction up to 4.5x in the number of required sensors.
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II. RELATED WORK

Temperature management at system-level has been pre-
sented in [7]- [12]. Several groups have addressed the problem
of thermal modelling and simulation at different levels of
abstraction. Finite-difference time domain [14], [15] based
algorithms have been proposed. In [16] a thermal/power model
for super-scalar architectures is presented. One problem related
to all these techniques is that they require on-line thermal
profile information from the chip in order to perform the
frequency and voltage assignment optimization.

A study of the thermal profile estimation problem has
been analyzed in [5] and [6]. The proposed solutions are
based on techniques trying to reduce temperature differences
between thermal sensors and hot-spots by using the minimum
number possible of sensors for a certain accuracy. The problem
with these approaches is that since hot-spots are application
dependent, there is no guarantee that all hot-spots are detected
during the lifetime of the device.

In [17] the authors select the location of the sensing element
according to a gramian-based sensor strategy. In [18] the prob-
lem of making a system observable is solved by employing of
graph theory. The problem of choosing a set of measurements
from a much larger set that also minimizes the estimation error
is solved by [19] using a convex optimization based approach.
This last method approximately solves the problem and has no
guarantee that the performance gap is always small.

I1II. PROPOSED METHOD
A. Thermal model

To model the thermal properties of the MPSoC, we use the
finite element model presented in [16] and [15]. The model
is composed by two types of layers: the silicon layer and the
heat-spreading copper layer. The chip floorplan is divided into
several thermal cells of cubic shape. Every single functional
unit in the floorplan can be represented by one or more thermal
cells of the silicon layer. Thermal modelling is computed
considering the heat conductances and capacitances of the cells
as computed and validated in [16] and [15]. The differential
equations modelling the heat flow are given by solving this
network. Many methods and ODE solvers can be used. A
survey on these methods is reported in [13].

The thermal model that we want to represent is slightly
nonlinear since coefficients are temperature-dependent (rela-
tive error in the order of 0.16%) [15]. To represent the thermal
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model using a linear, time invariant discrete-time system, the
solution of the differential equations modelling the heat flow
inside the MPSoC has been linearized. The rationale behind
it is described in [13], [16] and [15]. In the sequel we assume
that the k*" temperature measurement is done at time t;. The
system can be represented with the equations:

z(k+1) = Az(k) + Bu(k) + w (1)
y(k) = Ca(k) )

where at time k, xz(k) is the plant’s state, u(k) is its input
and y(k) is its output. The temperature value of each cell is
the state x € R2™ of our system. The first n entries represent
the cells composing the silicon floorplan and the remaining n
entries model the copper layer. The input of the system u e P
is related to the frequencies of the cores according to [16].
The output y € R° of our system is the temperature observed
by the s on-chip thermal sensors placed in the silicon layer.
Matrices A, B, C and vector w describe the system and model
all geometric constraints among each entry of the state vector
and its placement on the chip floorplan. Matrix A e R27*2n
expresses the part of the temperature spreading process inside
the chip that depends only on the current temperature profile of
the cells. Matrix B € 2" %P expresses the temperature increase
due to the input. The part of the system dynamic that is not
controllable by the input vector such as the heat dissipation
of the copper layer due to room temperature is expressed by
vector w e R, Matrix C' € B**?", B = {0, 1}, represents
a selection matrix that models the placement of a sensor on
the silicon die. Namely ¢; ; is equal to 1 if thermal sensor ¢
is located inside the cell j. Since we are assuming to have
distinct measurements coming from distinct sensors, C' has
only 1 nonzero element per row. For technological reasons
thermal sensors can be placed only on the silicon layer, so
sensors can be located only for ¢, <= n.

In the model described by Equations 1 and 2, the sampling
frequency f = (tp1—tz) ! is the frequency at which we are
assuming to sample the original continuous time system. The
higher this frequency is, the higher the information thermal
sensors are providing about the MPSoC thermal spreading
process. The contribution of this paper is a methodology to
find sensor placements leading to Pareto points in the area
versus frequency plane.

B. Observability and Sensor Placement

Observability refers to the property of a system that enables
the reconstruction of the state variables given the inputs [1].
For the system identified by Equations 1 and 2, it means that
we are able to reconstruct completely the thermal profile of
the chip given the inputs only by looking at the measurements
coming from the sensors, placed in locations specified by the
matrix C. This means that we are assuming to have in the
output vector s distinct temperature measurements coming
from s distinct cells. The rank of the observability matrix
@ expresses the number of states that can be reconstructed
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from the measurement vector y. The observability matrix @
is expressed by the following equation (see [1]):

Q=[C;CA;...;CA" ] (3)

If the rank of () equals 2n, the state vector = can be
reconstructed completely from the measurement vector y and
the input vector wu.

The problem of selecting the right placement of thermal
sensors to both minimize the number of sensors and maximize
observability is the problem of choosing the matrix C' with
the minimum number of rows that maximize the rank of the
observability matrix (). Given a determined MPSoC model,
this problem depends on the location and the number of
sensors inside floorplan (matrix C). The sensor sampling
frequency (f) has as well an influence on the observability
because matrices of Equations 1, 2 depend on f.

C. Algorithm

The block diagram of the proposed algorithm is presented
in Figure 1. The method is consists of four steps.

In the first step, experimental data of hot spots locations are
recorded during the runtime execution of the system. Data can
be obtained from real chip temperature measurements or from
simulations using tools such as Hotspot. These data will point
out in which locations an accurate monitoring is needed in
order to identify the rising of potential Hotspots. It’s important
to notice that these data are not used to define the placement
for the sensors. They are used in step 3 of the algorithm as
a criterion to rank among different sensor placements having
the same observability properties.

In the second step the design space exploration is done on all
the possible sensor placement configurations. First the model
of the system of Equations 1,2 is sampled using a frequency
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f that ranges from Fj;, to F,4,. After that, the number of
sensors employed in the placement is varied from 1 to n. A
value of 1 means having only 1 sensor in the whole floorplan,
while a value of n means having a sensor per cell in the silicon
layer. At this stage for every value of s and f, a total of (*")
sensor placement configurations are generated. The possible
configurations have only one sensor per cell. This leads to
have a matrix C' having one nonzero element per row and
a total of s rows. The rank of the observability matrix @ is
computed for each configuration.

The third step performs an optimization based on data
collected on both previous steps plus some additional data.
This step performs a selection of the number of all analyzed
sensor placement configurations. First, configurations that do
not allow the estimation of area of the chip that are relevant
to the designer are discarded. If a full profile estimation is
needed by the designer, then, placements leading to observ-
ability matrixes with rank less than 2n are discarded. As
a second criterion, configurations where sensors are placed
on experimental hot-spots locations (see step 1 of the algo-
rithm) are preferred to other ones. Remaining placements are
ranked according to metrics to measure the observability of
a system (i.e.the observability Gramian [17]- [19]). Finally
according to aforementioned metrics, Pareto point placements
are computed. A specific sensor placement is corresponding to
every Pareto point in the plane sensor number s versus sensor
sampling frequency f.

The last step selects the best placement according to the
designer defined criteria based on area occupation(related to
s), power consumption(related to s and f) and sensor sampling
frequency (related to f).

IV. RESULTS
A. Experimental Setup

In our setup, we consider an architecture resembling the
8-core Niagara-1 (UltraSparc T1) architecture from Sun Mi-
crosystems [2]. The power consumption of all other elements
has been chosen according to [2]. The floorplan of the Niagara-
1 multicore architecture, is presented in Figure 2. Values
regarding thermal resistance, silicon thickness and copper
layer thickness have been derived from [2]. To simulate the
system we use the execution characteristics of tasks from a
mix of different benchmarks, ranging from web-accessing to
playing multimedia [20]. The simulation step for the discrete
time integration of the RC thermal model is 200us.

B. Placement Results

We applied the proposed algorithm to the case study de-
scribed in the experimental setup. The overall computation
of the proposed algorithm on a INTEL Core”2 duo lap-
top having a frequency of 2GHz (T7200) in the case of a
modelling performed using 24 states took 3.44 minutes. After
the first step, we obtain the design space exploration results
of all possible sensor placement configurations. By plotting
the percentage of the observable states over the overall states
of the MPSoC versus the number of sensors used and their
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Fig. 3. Design space exploration of the case study (step 2)
sampling frequency, we obtain the plot of Figure 3. As it
can be noted from the graph, for a fixed percentage of the
observable states, there are many options. The graph shows
that the number of sensors can be reduced by increasing the
sensors sampling frequency and vice-versa. It is important to
notice also that, there are many possible sensor placement
configurations associated with any point in previous graph.
At this stage, among all possible placement configurations
we identify Pareto points inside the design space. Trade-
offs are between the number of sensors and their sampling
frequency. The reason is because for a given observability
target, the lower bound of thermal sensors employed depends
on the thermal sensor sampling frequency (see Figure 3).
Pareto points are computed by connecting previous results
with experimental data derived from simulations. Additional
data are the following. According to simulations and results
from [20] and [2], in our case study, critical areas for hotspots
are the cores and the crossbar located in the central part of
the chip. Moreover, we are interested in monitoring 100%
of the states of our MPSoC. In this case study, the overall
Pareto points computation step takes few seconds. The graph
identifying the resulting Pareto points in the plane sensors
number Vs sensors sampling frequency is shown in Figure 4.
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Fig. 4. Pareto points (steps 3+4) and comparison with [5],[6].

In the last step of the algorithm, we assume as possible
design constraint to allow a maximum of 3 thermal sensors
on the MPSoC. Moreover we want to have a sensor sampling
frequency as low as possible. According to Figure 4, the
corresponding Pareto point is a 3 sensor configuration with
a sampling frequency of 250H z. This means that if we want
to make the system observable with only 3 sensors, we need
to sample them every 4ms and we need to place them in
a specific configuration. This specific placement is shown
in Figure 4. This sensor configuration supports a complete
estimation of the system and so a complete reconstruction
of the thermal profile of the MPSoC. This operation can be
implemented by using conventional estimation techniques (i.e.
Kalman filter [1]). This will also correct for potential noise
sources present in thermal sensors.

We compare the method with approaches [5] and [6].
Algorithm [5] finds the sensor placements that provides the
best estimation accuracy for a certain number of sensors,
according to experimental hot-spots locations. The algorithm
is based on an interpolation technique based on experimental
data derived from simulations. Algorithm [6] minimizes the
temperature differences among the hot-spot temperature and
the one detected by the thermal sensor. Both these algorithms
are based on techniques trying to catch hot spots by using the
minimum number possible of sensors for a certain accuracy.

Our method is not targeting hot spots but the observability
of the system. Once the system is observable, hot spots are
automatically detected. The reason is because the portion of
the thermal profile of the chip that is relevant to the designer
can be completely reconstructed from sensors measurements.
The advantage is a strong reduction in the number of required
sensors. In our case study, the cores may run with independent
frequencies. This imply that hot spots are uncorrelated from
core to core. Consequently, according to [5] and [6] at least
one sensor per independent unit is required to monitor those
elements and detect potential hot spots. Thus, a minimum of 9
sensors (8 sensors for the cores plus 1 sensor for the crossbar)
are needed by both techniques to detect all possible hot spots.
Conversely our method needs only 3 sensors, i.e. a reduction of

3x. Moreover Figure 4 shows that the gain can reach 4.5 ata
sampling frequency of 500Hz. The proposed method enables
the full thermal profile estimation of the MPSoC by using
a number of sensors that is smaller than the number of the
location of potential hot-spots formation regions.

V. CONCLUSION

We propose a methodology for determining the placement
of temperature sensors on complex MPSoC floorplans. The
proposed algorithm identifies the best configurations of sen-
sors leading to Pareto points in the design space in terms
of sensors sampling frequency versus number of required
sensors. We compared the sensor placement with state-of-the-
art algorithms such as [5] or [6] in the case of a commercial
MPSoC device. Results show that the proposed method offers
a reduction up to 4.5x in the number of required sensors.
Moreover the method constructs a maximally observable sys-
tem for a given number of sensors.
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