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ABSTRACT 
Many Networks-on-Chip (NoC) applications exhibit one or 
more critical traffic flows that require hard Quality of Service 
(QoS). Guaranteeing bandwidth and latency for such real time 
flows is crucial. In this paper, we present novel methods to 
efficiently calculate worst-case bandwidth and latency bounds 
and thereby provide hard QoS guarantees. Importantly, the 
proposed methods apply even to best-effort NoC architectures, 
with no extra hardware dedicated to QoS support. By applying 
our methods to several realistic NoC designs, we show 
substantial improvements (on average, more than 30% in 
bandwidth and 50% in latency) in bound tightness with respect 
to existing approaches.1 

Categories and Subject Descriptors 
B.4.3 [Hardware]: Interconnections (Subsystems) 
C.1.2 [Processor Architectures]: Multiple Data Streaming Architecture 
(MultiProcessor) – Interconnection Architectures 

General Terms 
Algorithms, Performance and Design. 

Keywords 
SoC, NoC, QoS, Wormhole switching, Real-time guarantees, Performance 
analytical model.  

1. INTRODUCTION 
The Networks-on-Chip [1, 2] paradigm has emerged in recent 
years to overcome the scalability limitations of point-to-point 
signal wires, shared buses or segmented buses [1, 3], which do 
not scale well in power, performance and design complexity [4, 
5, 6].  While the scalability and efficiency advantages of NoCs 
have been demonstrated in many occasions, their timing 
predictability and suitability to transport real-time (RT) 
communication are still a source of technical concern. 
Many applications have strict requirements on latency and 
bandwidth of on-chip communication, which are often 
expressed as real-time constraints on inter-core traffic flows.  

On a NoC fabric this translates to guaranteed QoS requirements 
for packet delivery.  Different approaches have been used to 
support guaranteed QoS for NoCs:  priority-based switching 
schemes [7], time-triggered communication [8], time-division 
multiple-access [9] and many variations of these ideas. All 
these approaches imply hardware overhead and often come with 
strict service disciplines that limit NoC flexibility and penalize 
average performance to provide worst-case guarantees.  In fact, 
NoCs prototypes are often classified as being either best-effort 
or QoS, depending on the availability of hardware support for 
RT traffic.  
Our work takes a new viewpoint. We consider best-effort NoC 
architectures without special HW support for QoS traffic. We 
only assume that the traffic injected by network end-nodes is 
known and characterized in terms of its worst-case behavior. 
We then formulate algorithms to find conservative latency and 
bandwidth bounds on end-to-end traffic flows transported by a 
best-effort wormhole NoC fabric with no special hardware 
support for RT traffic. Our approach is inspired by the work by 
Lee et al. [10] for traditional multiprocessor networks, which 
we extend in several directions.  
We propose two different methods for characterizing worst-case 
packet injection. The first method, RTB-HB (Real-Time Bound 
for High-Bandwidth traffic), is used for NoCs supporting 
application workloads where the injected flows have high 
demands of average bandwidth and require a guaranteed worst-
traffic minimum bandwidth (mBW) and maximum upper bound 
latency (UB). In this case we do not assume any restriction on 
traffic injection rate: a flow can send packets whenever the 
network has buffer capacity to accept them. The second method 
considers applications with latency-critical flows which require 
low and guaranteed UB values, but have moderate bandwidth 
requirements and do not send packets at intervals shorter than a 
minimum permitted interval - which obviously implies a 
maximum bandwidth (MBW) limitation. This method, called 
RTB-LL (Real-Time Bound for Low-Latency traffic) requires a 
very simple traffic regulation at network injection points. RTB-
LL is a significant improvement to the WCFC bound proposed 
in [10], while RBT-HB is completely new. Table 1 summarizes 
a cross-comparison of  RTB-HB, RTB-LL and WCFC methods.  
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Table 1: Upper bound delay and bandwidth comparison in 
different methods 

Methods WCFC (W) RTB-LL (LL) 
RTB-HB 

(HB) 
UBHB ≤ UBW 

mBWHB ≥ MBWW 
UBHB ≥ UBLL 

mBWHB ≤ MBWLL 
RTB-LL 

(LL) 
UBLL ≤ UBW 

MBWLL ≥ MBWW 
 

The remainder of the paper is organized as follows. Section 2 
summarizes related work. Section 3 gives definitions and basic 
concepts. Section 4 describes methods RTB-HB and RTB-LL. 
Section 5 focuses on experimental results and quantitative 
comparisons. Section 6 describes the time complexity of the 
methods. Finally, section 7 concludes the paper.   

2. RELATED WORK 
The body of knowledge on macro-scale RT networks is 
extensive and an overview of the state-of-the-art is beyond the 
scope of this work.  The interested reader is referred to [11 - 
20]. Here we focus on RT-NoCs, which have often been called 
QoS-NoCs.  
QoS is an important issue for many application domains, such 
as multimedia, aerospace and military applications. Many of 
these applications have one or more traffic flows that have real 
time requirements and need hard QoS guarantees. Some NoC 
architectures provide hard QoS support by using special 
hardware mechanisms. In [9], Goossens et. al present the 
Æthereal NoC, which  combines guaranteed services with best 
effort services to guarantee QoS in NoCs. The MARS [21] 
architecture uses TDMA (Time division multiplexing) 
mechanism to provide real-time guarantees on packet switched 
networks. In Shi et. al [7], a priority-based wormhole switching 
method for scheduling of RT flows  is presented. In [8], 
Paukovits et. al propose the concept of a predictable Time-
Triggered Network-on-Chip (TTNoC) that realizes QoS based 
communication services. Many other works have been 
published with variations and improvements over these basic 
ideas [22-33]. However, most NoC architectures are best-effort 
[34] and do not have special hardware mechanisms to guarantee 
QoS. Today, there is no available method that can calculate 
worst-case bandwidth and delay values of a general best-effort 
NoC design. Our work addresses this open issue. 

3. NETWORK MODEL 
A router model is essential to characterize network latency and 
bandwidth. We consider the very general reference architecture 
shown in Fig. 1 where a crossbar handles the connections 
among input and output channels. For maximum generality, we 
consider buffering at input and (optionally) output ports. We 
assume round-robin arbitration in the switches, a commonly 
used arbitration scheme in many NoCs. Virtual channels can be 
supported by the proposed methods. Links, which can be 
pipelined to maximize the operating frequency, connect the 
output ports to the input ports of adjacent switches. Table 2 
summarizes the parameters that we will use in the following to 
describe the network. For the sake of simplicity, we use a 
single parameter Freq for the operating frequency of all cores 
and a single FlitWidth as the data width of the NoC links. 

Table 2: Network model parameters and symbols 

Parameter Description 
Freq Clock frequency of the system 

a Number of pipeline stages (registers) used to segment NoC links 
b1 Depth of switch input buffers  
b2 Number of pipeline stages of the switch crossbar (0 if combinational) 
b3 Depth of switch output buffers (0 if none)  
b := b1+b2+b3 
Bd Buffer depth parameter, := a+b1+b2+b3 = a+b 
ts1 Latency overhead for injecting a packet into the network  
ts2 Latency overhead for ejecting a packet at the destination 

FlitWidth Width of NoC links, in bytes 
SWj j-th switch of the network 

The buffer depth (Bd) parameter will be used frequently in the 
paper. As can be seen in Fig. 1, Bd is the summation of the 
number of registers or buffers from the arbitration point (at the 
entry of the crossbar) of switch j to the arbitration point of 
switch j+1. b1 is the depth of the input buffer (we assume at 
least one register), b2 is the number of registers in crossbar 
switch (if any), b3 is the depth of the output buffer (if any), and 
a is the number of registers (if any) along a link to compensate 
the propagation delay of the wires. It is important to note that 
b2 and a represent latencies that packets will face even in the 
absence of congestion, while b1 and b3 become most relevant in 
case of blocking, when buffers fill up; in the absence of 
congestion, input and output buffers can be traversed in a single 
cycle instead. Blocking always happens because of arbitration 
conflicts, either directly, when in front of a switch crossbar, or 
indirectly, due to full buffers ahead. For simplicity, throughout 
the paper, we consider the buffering between two adjacent 
switches to be lumped, so we mention ‘output buffer of switch 
j’ and ‘input buffer of switch j+1’ equivalently, referring to the 
same number of intermediate registers between the arbitration 
points of switches j and j+1, i.e. to Bd. Please also note that the 
switches along a path are indexed j=1...m, but j=0 can 
conveniently be seen as a virtual switch inside the source node 
to model source conflicts (i.e. sending more than one flow from 
a source node). 
The parameters ts1 and ts2 model the setup time at NoC sources 
and destinations to inject and eject packets. Of course, to be 
able to use finite parameters, we assume that the receiving 
nodes are able to accept incoming data at the required rates. 

 
Figure 1: Switch model and parameters 

4. NOC TRAVERSAL DELAY ANALYSIS 
Table 3 lists the parameters we define to describe traffic flows 
across the network, while Table 4 summarizes the parameters 
that we identify to model the performance of such flows. Most 



 

 

 

notably, UBi represents the upper-bound delay for network 
traversal by a packet of flow Fi, and is a key figure for the 
interconnect designer. We try to use a notation as close as 
possible to that used in [10] for ease of comparison.  
We first present a method called RTB-HB (Real Time Bound 
for High-Bandwidth traffic), which calculates UBi in a 
completely worst-case traffic situation. Crucially, this includes 
the possibility for other system cores to inject unregulated 
bandwidth, i.e. any amount of traffic at irregular intervals. 
This is a key property for real-world interconnect analysis 
methods, as most available IP cores operate on an unregulated-
injection basis. In order to calculate UBi in such a case, we 
consider all the intermediate buffers along the route full, and 
we assume arbitration losses at all switches against all other 
contending flows. Since switches are assumed to feature round-
robin arbitration, even though we assume the current flow to be 
serviced last, the maximum delay is bounded, i.e. starvation 
cannot occur. Therefore, the packets sent by the flow source Si 
are eventually delivered. RTB-HB calculates the interval MIi, 
i.e. the number of cycles after which the output buffer of Si is 
guaranteed to be free again for further injection. From this 
value, the worst-traffic minimum injectable bandwidth (mBWi) 
can also be easily derived. Please note that this analysis can be 
applied to most NoC architectures, without any specific QoS 
hardware or software provisioning. We then move on to the 
description of another method, called RTB-LL (Real Time 
Bound for Low-Latency traffic). In this scenario, we assume 
that traffic injection can be regulated, as possible in some 
application scenarios. Therefore, we also calculate a minimum 
permitted interval (mIi) between two consecutive packets from 
the same source, which can be translated into a maximum 
permitted bandwidth (MBWi). This approach is similar to 
previously published method [10] (Real-time wormhole channel 
feasibility checking or WCFC, which will be briefly described 
later), but delivers substantially better results in terms of bound 
tightness. For proper operation, the system must then respect 
MBWi bounds at runtime. Compared to method RTB-HB, in the 
calculations for method RTB-LL, it is possible to consider 
parameters b1 and b3 to represent the buffers delay (b1=1 and 
b3=1 or 0, when there is no output buffer), instead of the exact 
buffer size. 

4.1 The Proposed Delay Model RTB-HB 
The goal here is the calculation of the parameters UBi (worst-
case latency to traverse the network) and MIi (maximum worst-
case interval). In this paper, due to lack of space, we only show 
the case where Bd <= L. For a Bd > L, we can introduce dummy 
switches for each port, each with Bd <= L and use the same 
analysis below. Let us first consider the case Bd = L. To grasp 
intuitively the analysis, please observe that Bd = L means, in 
concrete terms, that a packet fills exactly the buffering 
resources between the arbitration points of two adjacent 
switches. Considering as an example a network completely full 
of traffic (an unrealistic scenario just for visualization 
purposes), and Bd = L globally, the network operates by 
shuffling packets around in lockstep: all switches re-arbitrate 
simultaneously every L cycles, and packets trail each other, 
filling up buffers as soon as they free up. 

Table 3: Traffic model parameters 
Parameter Description 
Fi i-th traffic flow in the network 
Li Length of the packets of Fi, in flits 
Si Source node of Fi 
Di Destination node of Fi 
Pi Packet of Fi 
hi Number of switches (hops) along the path of Fi 

Table 4: Performance model parameters 
Parameter Description 
UBi Upper bound delay for a packet Pi of Fi to traverse the NoC 
MIi Maximum interval until the ability to inject a new packet of Fi, 

used in method RTB-HB 
mIi Minimum permitted interval between two consecutive packets of 

Fi, used in methods WCFC and RTB-LL  
mBWi Worst-traffic minimum injectable bandwidth for Fi, used in 

method RTB-HB and is equal to: mBWi 
:=L*FlitWidth/MIi*Freq 

MBWi Maximum permitted bandwidth for Fi , used in methods WCFC 
and RTB-LL and is equal to: MBWi :=L*FlitWidth/mIi*Freq 

ui
j The time needed for Pi  to go from the input buffer of SWj (j>0) 

or from generating process in Si (j=0) to the input buffer of SWj+1 
( 0≤j≤hi-1) or Dj (j=hi) 

Ui
j The time needed for Pi to go from the output buffer of SWj (j>0) 

or from the output buffer of Si (j=0) to the output buffer of 
SWj+1this parameter is used for convenience and, mathematically 
it can be written based on ui

j, as  Ui
j = ui

j+1, j≥0 

z0(i,0) Number of flows contending with Fi at Si 
zc(i,j) Number of flows contending with Fi at SWj at output channel c 
I(x) Index of the x-th flow contending with Fi at Si (or SWj) 

More formally, when Pi is generated in Si, we consider all 
intermediate buffers along its route as full of packets from 
different flows. In the worst case, for Pi to reach its destination, 
all these packets must leave their buffers. Focusing e.g. on hop 
j, Pi may have arbitration conflicts with a number zc(i,j) of other 
flows contending for the output channel c, for example flows Fq 
and Fr. Since round robin arbitration is assumed, it is enough to 
consider all contending flows to send a packet before Pi to 
guarantee that the analysis is worst-case. The order in which 
contending flows obtain the arbitration is not important for the 
calculation of the delay of Pi. So Pq should make a one-hop 
forward progress. While Pq frees the buffers at hop j flit by flit, 
the flits from Pr will smoothly replace the free buffer spaces. 
Eventually Pi also goes through. Section 4.3 presents a simple 
example to visualize this. The parameter ui

0 represents the time 
needed for Pi to be ejected from Si and be placed in the output 
buffer of Si (or input buffer of the first switch of Fi). ui

j then 
represents the time needed for Pi  to go from the input buffer of 
SWj to the input buffer of SWj+1, except for the last switch. At 
the last switch Pi is ejected, so it is instead the time needed to 
get into the input buffer of destination Di. To calculate UBi, as 
shown in Eq. 1, all these contributions must be added up, plus 
the fixed overhead for packet creation and ejection. 

UBi = ts1 + ts2 + ∑j ui
j
  with j = 0 … hi (1) 

The time needed for Si to inject the next packet is the time to 
create such a packet, plus the time needed for this packet to 
move on to the input buffer of the first switch: 

MIi = ts1 + ui
0

     (2)  
To be consistent with the notations from [10] and for 
convenience, we introduce the uppercase Ui

j symbol, which 
models the hop delay from output buffer to output buffer, 
instead of from input buffer to input buffer.  



 

 

 

Let us consider a packet of flow Fi initiated at the source Si. For 
this packet to reach the input buffer of the first switch, any 
already existing packet at that buffer has to leave, freeing the 
buffer. This existing packet could be a previous packet from the 
same flow Fi or any of the contending flows at the output 
channel of the source. Thus, the worst-case time taken for any 
existing packet to leave the buffer is given by MAXx(Ui

0 
,U0

I(x)), where I(x) is the index of contending flows at the 
output channel, with x = 1 ... z0(i, 0). Also, all the other 
contending flows of Fi may have to send a packet before this 
flow. Thus, the total delay for a packet from Fi to reach the 
input buffer of the first switch is given by: 
ui

0
 = MAX (Ui

0 ,U0
I(x)) + ∑x  U0

I(x),  with  x = 1 ... z0(i, 0)  (3) 

For the subsequent hops, ui
j can be calculated similarly: 

ui
j
 = MAX (Ui

j , Uj
 I(x)) + ∑x  Uj

I(x)    with 
x = 1 ... zc(i,j), 1 ≤  j ≤ hi                (4) 

Please note that, if there is no contention for the flow, then the 
above equation reduces to ui

j = Ui
j. This is again akin to a 

packet moving in a pipeline fashion in the network. 
In order to calculate the Ui

j values, let us consider the packet 
from flow Fi moving from output buffer of the source to the 
output buffer of the first switch. For the packet to move, any 
existing packet from the output buffer of the first switch should 
move to the output buffer of the second switch. Similar to the 
above calculations, the maximum delay for this is given by  
MAXx (Ui

j+1 , Uj+1
 I (x)). Please note the small difference from 

the ui
j calculations that, in this case, the values of Ui

j at a 
switch (j) depends on the values at the next switch (j+1) on the 
path. The Ui

j values can be obtained using the following 
equations: 

Ui
j
 = MAXx (Ui

j+1 , Uj+1
I(x)) + ∑x  Uj+1

I(x) 

with   x= 1 .. zc(i,j+1), 0≤ j ≤ hi-1   (5) 
For the case of the last switch, from the output port, the packet 
can be ejected in Li cycles, with one flit of the packet ejected 
each cycle. Thus,  

Uhi
i = Li , UhI(X)I(x)=LI(x) 

Based on Eq. 3 and 4, now the problem of finding UBi and MIi 
(Eq. 1 and 2) is mapped onto a summation of Ui

j values, which 
can be solved by Eq. 5. Please note that we assume the 
destination have enough buffers to eject the packets at the rate 
at which the network delivers them. By applying the above 
formulae recursively, we can obtain the worst-case delay (UB) 
and injection rate (MI) for the different flows. The same set of 
formulae also apply to the case where Bd < L. It is intuitive that 
the queuing effects are similar for this case as that of Bd = L. 
The methods can be easily extended to support virtual channels 
and different message lengths, so in the examples throughout 
the paper, we have used Li instead of L. But due to lack of 
space, we omit these extensions in this paper.  

4.2 The Proposed Delay Model RTB-LL 
We present a substantial improvement to the previously 
published method WCFC [10]. WCFC also calculates upper 
bound propagation delays and permitted injection intervals for 
flows in wormhole networks. It considers the arbitration 

contention that packets will face and, recursively, the delay 
incurred by other packets sharing some part of their route due 
to these blockings. With the same notation as above, WCFC 
proposes [10] the following formulae for calculating UBi and 
mIi: 

UBi = ts1 + ts2 + Li + (hi + 1)a + ∑j  ui
j    with  j = 0 ... hi  

mIi = ts1 + Li + ∑j ui
j  -  hi b with  j = 0 ... hi 

where 
ui

j
 = b + ∑x  Uj

Ii(x)               with x = 1 ... zc(i, j) 
In the WCFC method, the calculations are based on the 
assumption that each flow injects packets spaced by at least a 
minimum permitted interval. For applications that can support 
such an assumption, we present a method that gives significant 
improvement over the WCFC method, which we call RTB-LL. 
To improve upon WCFC, a new concept of overlapping flows is 
introduced. If two or more different flows contend for the same 
output port at a switch, and they also share the same input port, 
we call such flows overlapping at the switch. This notion 
allows us to significantly optimize the bound tightness. 
When Fi contends with multiple overlapping flows at a switch, 
it is possible to locally coalesce all such overlapping flows into 
a single one. This is because the arbitration cannot be lost to 
multiple of those flows, as they cannot physically produce a 
contending packet simultaneously given that they enter the 
switch through the same input port. If there exist e.g. two 
overlapping contending flows at hop j having delay parameters 
Uj

i1 and Uj
i2, then it is possible to consider MAX(Uj

i1 ,Uj
i2) as 

their representative delay, instead of  Uj
i1 + Uj

i2, for calculating 
the parameters for Fi, and so the main contending flows (i1 and 
i2) are ignored in the calculations. When Fi overlaps with other 
flows, in the calculations for Fi the other contending flows 
should be ignored. By applying these optimizations, we have 
noticed a significant improvement in bound tightness in RTB-
LL, as will be seen in next section and as Table 1 summarizes. 

4.3 Delay Calculation Examples 
To describe in detail different aspects of the analytical methods 
RTB-HB, RTB-LL and WCFC for upper bound delay and 
interval calculation, we apply them step-by-step to an example 
NoC (shown in Fig. 3) and then compare them. There are 4 
message flows from S1 to D1, S2,3 to D3, S2,3 to D2,4 and S4 to 
D2,4. The NoC contains four switches. For the sake of 
simplicity, we consider Bd = L in this example. 

4.3.1 Method RTB-HB 
As an example, we study the time needed for a packet P0 of flow 
F1 to get through the network. In general, from Eq. 1: 

UB1 = ts1 + ts2 + ∑j u1
j
  with j = 0 … 3 

To start, let us model the time u0
1 needed to move from S1 to 

input buffer of switch SW1. We start from the most congested 
network possible, so there exists another packet P1 of the same 
flow ahead, and this packet needs U0

1 to go from the output buffer 
of the source (remember that source nodes are tagged with 
superscript 0) to the output buffer of SW1, so  u0

1= U0
1. U0

1 has to 
be calculated recursively based on the delays of the contending 
packets and of the packets ahead along the same route. 



 

 

 

 
Figure 3. A simple example network 
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(d) 

 
(b) 

 
(e) 

(c) 
 

(f) 
Figure 4: (a,b,c) packet P0 goes from a process that generates it  (F1 
in S1) to the input buffer of SW1. (d, e, f) packet P0 goes from input 
buffer of SW1 to input buffer of SW2 

We observe that two factors contribute to its calculation: first, the 
possibility of losing arbitrations at SW1; second, the fact that 
there may be no available buffer space at the output of SW1 (due 
to arbitration losses ahead), which also effectively stalls packets 
at the input of SW1. For what concerns the arbitration loss, it can 
be seen that flow F1 contends with flow F2 at the output of SW1. 
Thus, a packet P2 of F2 currently in the input buffer of SW1 could 
be arbitrated before P1. For what concerns the output buffer full 
condition, in the worst case, there will be a packet P3 in the 
output buffer of SW1. P3 could belong to either F1 or F2, in which 
cases, respectively, either U1

1 or U1
2 models the time for such 

packet to move ahead, from the output buffer of SW1 to the output 
buffer of SW2. MAX(U1

2, U1
1) models the worst-case delay 

affecting our flow under study. During the time MAX(U1
2, U1

1), 
the packet P3 moves on to the output buffer of SW2, leaving the 
output buffer at SW1 empty. However, in the worst case, an 
arbitration loss occurs to P1, so it is packet P2 which will 
smoothly replace P3 (Fig. 4(a)). Before P1 can move on by one 
hop, we must also consider the time for packet P2 to go from the 
output buffer of SW1 to the output buffer of SW2 (Fig. 4(b)), 
which is U1

2. In summary:       u0
1 = U0

1 = MAX(U1
2, U1

1) + U1
2  

Which traces back to Eq. 3. As mentioned above, this is the delay 
for P1 to move one hop on, but equivalently is also the delay for 
P0 to replace it in the previous location (Fig. 4(c)). Now, 
similarly, P0 needs to move another hop on, from the input buffer 
of SW1 to the input buffer of SW2, with a delay which is defined 
as u1

1.  

It is possible to use the equation u1
1= U0

1 based on the equality 
described in previous section, but for clarity we always describe 
uj

i based on Uj
i. As shown in Fig. 4(d, e, f), in the worst case, 

packet P0 should wait for a packet P4 of F2. A packet P1, again 
either from F1 or F2, should be considered at the output buffer of 
SW1. So again, during the time MAX(U1

2, U1
1), while P1 moves 

on to the output buffer of SW2, P4 will replace it. P4 itself then 
takes U1

2 to move on, allowing P0 to eventually get to the input 
buffer of SW2. Thus:  u1

1 = MAX(U1
2, U1

1) +U1
2  

In a similar manner u2
1 can be calculated. Once P0 is in the input 

buffer of SW3, it is only one hop away from its destination and as 
there is no contending flow at the destination, the time that is 
needed to be ejected is equal to L1. For uniformity of presentation 
we can write:  u3

1 = U3
1 = L1 

Now, the target metric UB1 can be calculated recursively, as a 
function of a set of Uj

i variables for the whole network starting 
from the last hop of each flow, where they assume a known value. 
The calculation of all intermediate values, e.g. U1

1, U1
2, U2

1, U2
2, 

U3
1, and of the relevant metrics UBi and MIi, is shown in Fig. 5. 

Please note that intermediate values can be calculated once only 
and then stored, to speed up the recursion. 

u0
1= U0

1 
u1

1= MAX(U1
2, U1

1) + U1
2 

u2
1= MAX(U2

2, U2
1) 

u3
1= U3

1 
U2

1=U3
1= L1 

U2
2 = U3

2 =U4
4+U4

2=L4+L2 
U1

1 = MAX(U2
1, U2

2)=L2+L4 
U1

2 = MAX(U2
1, U2

2)= L2+L4 
U0

1= MAX(U1
2, U1

1) + U1
2= 2L2+2L4 

UB1=L1+5L2+5L4 ,MI1 = 2L2+2L4 

u0
2= MAX(U0

2, U0
3) + U0

3 
u1

2= MAX(U1
2, U1

1) + U1
1 

u2
2= MAX(U2

2, U2
1) 

u3
2= U3

2 
u4

2= U4
4+ U4

2 
U0

2=MAX(U1
2, U1
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Figure 5: The complete calculation of UBi and MIi for the example 
NoC of Fig. 3 in method RTB-HB 

When considering the source S2,3, it can be noticed that two flows 
F2 and F3 can originate from it, therefore source conflicts may 
happen. As Fig. 5 shows, analyzing e.g. the flow F2, in this case 
u0

2 (the time to transfer of a packet of F2 into the input buffer of 
the first switch) should include a delay MAX(U0

2, U0
3), which 

accounts for a packet of either F2 or F3 to move away from the 
input of SW1 towards the input of SW2 (during which time we 
must assume, in the worst case, that it is a packet of F3 which 
replaces it), and then again the time U0

3 for this latter packet to 
also move on, and finally letting a packet from F2 in. The 
calculation for u0

3 is the same. 

4.3.2 Methods RTB-LL and WCFC 
Fig. 6 and Fig. 7 show the calculated UBi and mIi values for both 
WCFC and RTB-LL methods for the same example of Fig. 3. 
Since flows F1 and F2 are overlapping at SW2, our proposed RTB-
LL improves the bound tightness compared to WCFC. 
Considering for the sake of exemplification a NoC variant as in 
Fig. 8, with another contending flow at SW2, then in RTB-LL the 
delay u2

3 of F3 at SW2 can be modeled as  b + MAX(U2
1, U2

2) 
instead of the overly pessimistic value b + U2

1 + U2
2 calculated 

by WCFC. 



 

 

 

Table 5: Network parameters for the study 

Parameter L 
(flits) 

a 
(regs.) 

b1 
(regs.) 

b2 
(regs.) 

b3 
(regs.) 

ts1 
(cycles) 

ts2 
(cycles) 

FlitWidth 
(bytes) 

Freq 
(MHz) 

Value 4 1 1 2 0 0 0 4 400 
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Figure 6: The complete calculation of UBi and mIi for the example 
NoC of Fig. 3 in method WCFC 

u0
1= 0 

u1
1= b + U1

2 
u2

1= b  
u3

1= b  
U1

2 = U2
2 =U3

2 = U4
2+U4

4 = L2+ L4 
U2

1 = U3
1 = L1  

UB1 = 4a+3b + L1 + L2 + L4 
mI1 = L1+L2+L4 

u0
2= U0

3 
u1

2= b + U1
1 

u2
2= b  

u3
2= b  

u4
2= b + U4

4 
U0

3 = U1
3= L3 

U1
1 = U2

1  

UB2=5a+4b+L1+L2+L3+L4 
mI2=L1+L2+L3+L4 

u0
3= U0

2, u1
3= b  

U0
2 = U1

2 + U1
1 

UB3=2a+b+L1+L2+L3+L4 
mI3= L1+L2+L3+L4 

u0
4= 0 

u4
4= b + U4

2 

UB4=2a+b+L2+L4 
mI4= L2+L4 

Figure 7: The complete calculation of UBi and mIi for the example 
NoC of Fig. 3 in method RTB-LL 
 

Figure 8: NoC variant where flow F3 contends with two 
overlapping flows F1 and F2 at SW2 

5. STUDIES ON APPLICATIONS 
The proposed methods RTB-HB and RTB-LL can be used to 
analyze the scheduling of traffic flows in real-world 
applications. In this section we present studies on five 
multimedia and RT applications, comparing RTB-HB and 
RTB-LL to the WCFC baseline, under the parameters of Table 
5. In these applications, we assume that NoC topologies are 
predefined based on application communication needs, but 
without any feedback from the proposed algorithms to 
customize the network structure for better upper bound delay 
and interval time results. This is a possible extension for future 
work. In particular, for many applications it is possible to 
identify a small subset of few flows as critical, and then to 
optimize the NoC based on feedback loops from RTB-HB and 
RTB-LL to improve the performance of such critical flows. It is 
possible to do this without dedicated hardware support or any 
priority scheme.  

5.1 Case Study: A Multimedia Application 
In this section, we compare the results of applying RTB-HB, 
RTB-LL and WCFC to D26-media, a real-time multimedia 

application with 67 communications flows, some of which 
critical, shown in Fig. 9. The application is mapped onto two 
NoC topologies, one with 5 "fat" (high-radix) switches (shown 
in Fig. 10) and the other one with 20 "thin" (low-radix) 
switches. Fig. 11 presents the results of the study in terms of 
latency, interval and bandwidth for the whole set of flows. Fig. 
11(a, b) compare the worst-case NoC traversal latency UBi. The 
RTB-LL model always provides the tightest bounds. Compared 
to WCFC, the largely improved tightness (more than 50% on 
average) is due to the analysis of overlapping flows, a novelty 
of this paper, but without any impact on the accuracy of the 
bounds, which are still under worst-case assumptions. RTB-HB 
naturally returns higher worst-case latency, due to the 
assumption that no hardware traffic injection regulation 
facilities are available. In fact, due to the different calculation 
approach, the bounds are on average still 30% lower than in 
WCFC, despite the less restrictive assumptions. There are, 
however, a few flows for which WCFC predicts lower delays 
than RTB-HB, due to the regulated injection assumption. In a 
zero-load scenario (no contention at all), the minimum 
theoretical latency to traverse the 5-switch NoC for flows 
spanning a single hop is 8 cycles (a + b1 + b2 + b3 + L), while 
RTB-LL gives a minimum upper-bound of 17 cycles in worst-
case contention. In general, for all methods, the delays 
calculated for the 20-switch topology are higher, as a result of 
longer paths (more hops) per flow, higher probability of 
contention, and especially for RTB-HB more in-flight packets. 
This suggests, as intuitively expected, that NoCs with fewer 
hops guarantee lower delay bounds. 

 
Figure 9: Communication graph for D26-media 

Fig. 11(c, d) shows maximum and minimum injection intervals 
(MIi and mIi). Intuitively, if traversal delays are lower, new 
packets can be injected sooner, so MIi (mIi) plots resemble UBi 
trends: flows with lower traversal latencies can be injected 
more frequently. Thus, the mIi intervals are always shorter in 
RTB-LL and the MIi intervals often shorter in RTB-HB when 
compared to mIi in WCFC. These intervals can be directly 
translated into minimum and maximum injectable bandwidths 
(mBWi, MBWi) using the formulae in Table 3; results are shown 
in Fig. 11(e, f). Maximum injectable bandwidths (MBWi) are 
on average 35% higher according to RTB-LL compared to 
WCFC, and 25% higher according to the minimum bandwidth 
(mBWi) in RTB-HB. The maximum theoretical injectable 
bandwidth is 1600 MB/s (Freq* FlitWidth); according to RTB-
LL, even under worst-case assumptions, some flows on the 5-
switch NoC are guaranteed injection rates of as much as 533 
MB/s. In the 20-switch network, the higher contention 
likelihood affects injectable bandwidth negatively, but the use 
of more resources has a positive effect on many-hop flows, 
resulting overall in comparable injectable bandwidths. In 
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summary, NoCs with few hops exhibit clearly better upper-
bound traversal delays, but in terms of injectable bandwidths, 
the mapping of the flows (i.e. the contention patterns) and the 
amount of used resources play a decisive role in NoC 
performance.  

5.2 Suitability to Critical Flows 
Fig. 12 shows the average UBi traversal delay and the average 
mBWi injectable bandwidth for flows traversing x hops of the 5-
switch NoC, considering the D26-media application and using 
RTB-HB. It can be seen that 1-hop flows exhibit reasonably 
low latencies and high bandwidths, suitable for critical traffic. 
Therefore, the proposed methodology has a clear applicability 
to industrial RT applications. 

Table 6: Studied applications 

 Cores NoC 
switches 

Clock frequency 
(MHz) 

Traffic 
flows 

D26-media 26 5 400 67 
Pipeline 65 6 300 378 

Bottleneck 35 6 300 128 
36core-4 36 6 400 144 
36core-6 36 7 400 216 

5.3 Comparison for Different Applications 
Fig. 13 shows the implementation results of the 3 different 
methods to the five applications listed in Table 6. 36core-4 and 
36core-6 are different mainly because in the former application 
each core handles 4 communication flows to as many other 
cores, while in the latter each core handles 6 such flows. Fig. 
13 proves that, for all the applications, RTB-HB and RTB-LL 
provide tighter average bounds than the reference WCFC 
method. RTB-LL is strictly tighter than WCFC, while RTB-
HB, although it provides much tighter bounds on average, can 
return higher bounds for specific flows since it does not rely on 
regulated traffic assumptions of any kind.  

6. COMPLEXITY OF THE METHODS 
To estimate the time complexity of the proposed algorithms, 
implemented for the proposed methods, we calculate the 
maximum number of operations that are required. As Eq. 1, Eq. 
3 and Eq. 5 show, the only operations are additions and 
comparisons (for the MAX operator); so we may consider one 
cycle to execute each of these operations.  

RTB-LL:min,avg,max:17,91,193 
RTB-HB:min,avg,max:24,174,392 
WCFC  :min,avg,max:17,237,545  
(a) 

RTB-LL:min,avg,max:17,143,357 
RTB-HB:min,avg,max:24,329,868 
WCFC  :min,avg,max:17,1728,5233 
(b) 

RTB-LL:min,avg,max:12,84,180 
RTB-HB:min,avg,max:12,139,308 
WCFC  :min,avg,max:12,229,532  
(c) 

RTB-LL:min,avg,max:12,132,340 
RTB-HB:min,avg,max:12,245,708 
WCFC:min,avg,max:12,1717,5216 
(d) 

RTB-LL:min,avg,max:36,124,533 
RTB-HB:min,avg,max:21,101,533 
WCFC  :min,avg,max:12,81,533  
(e) 

RTB-LL:min,avg,max:19,121,533 
RTB-HB:min,avg,max:9,103,533 
WCFC  :min,avg,max:1,79,533  
(f) 

Figure 11: (a, c, e) UBi, MIi and mBWi characterized with WCFC, RTB-
LL and RTB-HB for D26-media mapped onto a 5-switch NoC. (b, d, f) 
The same metrics mapping on 20-switch NoC. Horizontal axes enumerate 
the communication flows. 

We call h the maximum number of switches in a flow, and k the 
number of flows. We also pessimistically assume the maximum 
number of contending flows at a switch output to be k. For 
calculating one Uj

i parameter, we need (Eq. 5) at most k comparisons 
and k additions, thus 2k operations. The number of Uj

i parameters to 
be calculated is hk, so the maximum number of operations is 2hk2. uj

i 
parameters (except for j=0) can be derived from the equality Uj

i
 = 

uj+1
i, so we only need to calculate the case of u0

i  for all flows. In this 
case, one u0

i (Eq. 3) needs 2k operations; for all u0
i parameters we 

need 2k2 operations.  
In RTB-HB the outcome are k UBi and k MIi values. For calculating 
one UBi value (Eq. 1) we need h+1 additions, so for all k UBi values 
we need (h+1)k, while in the case of MIi, k operations are needed. 
The total number of operations is the summation of all the above, or 
2hk2+2k2+(h+1)k+k. So the complexity of the algorithm is O(hk2 ).  
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Figure 10 : D26-media application mapped on a 5-switch NoC 



 

 

 

Figure 12. Average Upper Bound Delay (left) and Average Minimum 
Bandwidth (right) for x-hop flows in D26-media for RTB-HB 

Figure 13. Comparisons: (left) average UBi (WCFC as reference), 
(right) average MBWi or mBWi (RTB-LL as reference) 

For RTB-LL, using the same approach, we can show that the 
complexity of the algorithm for calculating UBi and mIi is again 
O(hk2 ). Thus, both algorithms have quadratic time complexity. 
In practice, the execution time for all our test applications is 
very small (few seconds on a standard PC) and the modeling of 
delay and bandwidth parameters does not pose significant 
runtime issues. 

7. CONCLUSION AND FUTURE WORKS 
We have proposed two different methods to characterize 
bandwidth and latency for NoC-based real-time SoCs, aiming at 
guaranteed QoS provisions. The choice of the most suitable 
method depends on the performance demands of the system and 
on whether dedicated hardware facilities can be supplied in the 
NoC. One method is aimed at applications demanding 
minimum latencies and requires injection regulation, while the 
other is suitable for applications where packet injection must be 
flexible to accommodate for higher average injected 
bandwidths and no hardware regulation is available. We proved 
that the proposed methods return the worst-case metrics in a 
much tighter way than existing approaches, rendering them 
quite applicable for real-world SoC applications. The major 
next step is to use the results of this work as an input to an 
iterative procedure to synthesize optimized NoCs whereby the 
QoS demands of critical traffic flows are met. 
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