
A Method for Calculating Hard QoS Guarantees for
Networks-on-Chip

Dara Rahmati*, Srinivasan Murali¥§, Luca Benini‡, Federico Angiolini¥§,
Giovanni De Micheli§, Hamid Sarbazi-Azad*

*HPCAN, Sharif University of Technology, Tehran, Iran, {d_rahmati@ce.sharif.edu, azad@sharif.edu}
¥iNoCs Sarl, {murali, angiolini}@inocs.com

§LSI, EPFL, Lausanne, Switzerland, giovanni.demicheli@epfl.ch
‡DEIS, University of Bologna, Bologna, Italy, luca.benini@unibo.it

ABSTRACT
Many Networks-on-Chip (NoC) applications exhibit one or
more critical traffic flows that require hard Quality of Service
(QoS). Guaranteeing bandwidth and latency for such real time
flows is crucial. In this paper, we present novel methods to
efficiently calculate worst-case bandwidth and latency bounds
and thereby provide hard QoS guarantees. Importantly, the
proposed methods apply even to best-effort NoC architectures,
with no extra hardware dedicated to QoS support. By applying
our methods to several realistic NoC designs, we show
substantial improvements (on average, more than 30% in
bandwidth and 50% in latency) in bound tightness with respect
to existing approaches.1

Categories and Subject Descriptors
B.4.3 [Hardware]: Interconnections (Subsystems)
C.1.2 [Processor Architectures]: Multiple Data Streaming Architecture
(MultiProcessor) – Interconnection Architectures

General Terms
Algorithms, Performance and Design.

Keywords
SoC, NoC, QoS, Wormhole switching, Real-time guarantees, Performance
analytical model.

1. INTRODUCTION
The Networks-on-Chip [1, 2] paradigm has emerged in recent
years to overcome the scalability limitations of point-to-point
signal wires, shared buses or segmented buses [1, 3], which do
not scale well in power, performance and design complexity [4,
5, 6]. While the scalability and efficiency advantages of NoCs
have been demonstrated in many occasions, their timing
predictability and suitability to transport real-time (RT)
communication are still a source of technical concern.
Many applications have strict requirements on latency and
bandwidth of on-chip communication, which are often
expressed as real-time constraints on inter-core traffic flows.

On a NoC fabric this translates to guaranteed QoS requirements
for packet delivery. Different approaches have been used to
support guaranteed QoS for NoCs: priority-based switching
schemes [7], time-triggered communication [8], time-division
multiple-access [9] and many variations of these ideas. All
these approaches imply hardware overhead and often come with
strict service disciplines that limit NoC flexibility and penalize
average performance to provide worst-case guarantees. In fact,
NoCs prototypes are often classified as being either best-effort
or QoS, depending on the availability of hardware support for
RT traffic.
Our work takes a new viewpoint. We consider best-effort NoC
architectures without special HW support for QoS traffic. We
only assume that the traffic injected by network end-nodes is
known and characterized in terms of its worst-case behavior.
We then formulate algorithms to find conservative latency and
bandwidth bounds on end-to-end traffic flows transported by a
best-effort wormhole NoC fabric with no special hardware
support for RT traffic. Our approach is inspired by the work by
Lee et al. [10] for traditional multiprocessor networks, which
we extend in several directions.
We propose two different methods for characterizing worst-case
packet injection. The first method, RTB-HB (Real-Time Bound
for High-Bandwidth traffic), is used for NoCs supporting
application workloads where the injected flows have high
demands of average bandwidth and require a guaranteed worst-
traffic minimum bandwidth (mBW) and maximum upper bound
latency (UB). In this case we do not assume any restriction on
traffic injection rate: a flow can send packets whenever the
network has buffer capacity to accept them. The second method
considers applications with latency-critical flows which require
low and guaranteed UB values, but have moderate bandwidth
requirements and do not send packets at intervals shorter than a
minimum permitted interval - which obviously implies a
maximum bandwidth (MBW) limitation. This method, called
RTB-LL (Real-Time Bound for Low-Latency traffic) requires a
very simple traffic regulation at network injection points. RTB-
LL is a significant improvement to the WCFC bound proposed
in [10], while RBT-HB is completely new. Table 1 summarizes
a cross-comparison of RTB-HB, RTB-LL and WCFC methods.

1This work has been financially supported partly by EU ARTIST-DESIGN
and Predator projects and also partly by Iran Telecommunication Research
Center (ITRC), an affiliation of the Ministry of Communications and
Information Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’09, November 2–5, 2009, San Jose, CA, USA.
Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00

Table 1: Upper bound delay and bandwidth comparison in
different methods

Methods WCFC (W) RTB-LL (LL)
RTB-HB

(HB)
UBHB ≤ UBW

mBWHB ≥ MBWW
UBHB ≥ UBLL

mBWHB ≤ MBWLL
RTB-LL

(LL)
UBLL ≤ UBW

MBWLL ≥ MBWW

The remainder of the paper is organized as follows. Section 2
summarizes related work. Section 3 gives definitions and basic
concepts. Section 4 describes methods RTB-HB and RTB-LL.
Section 5 focuses on experimental results and quantitative
comparisons. Section 6 describes the time complexity of the
methods. Finally, section 7 concludes the paper.

2. RELATED WORK
The body of knowledge on macro-scale RT networks is
extensive and an overview of the state-of-the-art is beyond the
scope of this work. The interested reader is referred to [11 -
20]. Here we focus on RT-NoCs, which have often been called
QoS-NoCs.
QoS is an important issue for many application domains, such
as multimedia, aerospace and military applications. Many of
these applications have one or more traffic flows that have real
time requirements and need hard QoS guarantees. Some NoC
architectures provide hard QoS support by using special
hardware mechanisms. In [9], Goossens et. al present the
Æthereal NoC, which combines guaranteed services with best
effort services to guarantee QoS in NoCs. The MARS [21]
architecture uses TDMA (Time division multiplexing)
mechanism to provide real-time guarantees on packet switched
networks. In Shi et. al [7], a priority-based wormhole switching
method for scheduling of RT flows is presented. In [8],
Paukovits et. al propose the concept of a predictable Time-
Triggered Network-on-Chip (TTNoC) that realizes QoS based
communication services. Many other works have been
published with variations and improvements over these basic
ideas [22-33]. However, most NoC architectures are best-effort
[34] and do not have special hardware mechanisms to guarantee
QoS. Today, there is no available method that can calculate
worst-case bandwidth and delay values of a general best-effort
NoC design. Our work addresses this open issue.

3. NETWORK MODEL
A router model is essential to characterize network latency and
bandwidth. We consider the very general reference architecture
shown in Fig. 1 where a crossbar handles the connections
among input and output channels. For maximum generality, we
consider buffering at input and (optionally) output ports. We
assume round-robin arbitration in the switches, a commonly
used arbitration scheme in many NoCs. Virtual channels can be
supported by the proposed methods. Links, which can be
pipelined to maximize the operating frequency, connect the
output ports to the input ports of adjacent switches. Table 2
summarizes the parameters that we will use in the following to
describe the network. For the sake of simplicity, we use a
single parameter Freq for the operating frequency of all cores
and a single FlitWidth as the data width of the NoC links.

Table 2: Network model parameters and symbols

Parameter Description
Freq Clock frequency of the system

a Number of pipeline stages (registers) used to segment NoC links
b1 Depth of switch input buffers
b2 Number of pipeline stages of the switch crossbar (0 if combinational)
b3 Depth of switch output buffers (0 if none)
b := b1+b2+b3
Bd Buffer depth parameter, := a+b1+b2+b3 = a+b
ts1 Latency overhead for injecting a packet into the network
ts2 Latency overhead for ejecting a packet at the destination

FlitWidth Width of NoC links, in bytes
SWj j-th switch of the network

The buffer depth (Bd) parameter will be used frequently in the
paper. As can be seen in Fig. 1, Bd is the summation of the
number of registers or buffers from the arbitration point (at the
entry of the crossbar) of switch j to the arbitration point of
switch j+1. b1 is the depth of the input buffer (we assume at
least one register), b2 is the number of registers in crossbar
switch (if any), b3 is the depth of the output buffer (if any), and
a is the number of registers (if any) along a link to compensate
the propagation delay of the wires. It is important to note that
b2 and a represent latencies that packets will face even in the
absence of congestion, while b1 and b3 become most relevant in
case of blocking, when buffers fill up; in the absence of
congestion, input and output buffers can be traversed in a single
cycle instead. Blocking always happens because of arbitration
conflicts, either directly, when in front of a switch crossbar, or
indirectly, due to full buffers ahead. For simplicity, throughout
the paper, we consider the buffering between two adjacent
switches to be lumped, so we mention ‘output buffer of switch
j’ and ‘input buffer of switch j+1’ equivalently, referring to the
same number of intermediate registers between the arbitration
points of switches j and j+1, i.e. to Bd. Please also note that the
switches along a path are indexed j=1...m, but j=0 can
conveniently be seen as a virtual switch inside the source node
to model source conflicts (i.e. sending more than one flow from
a source node).
The parameters ts1 and ts2 model the setup time at NoC sources
and destinations to inject and eject packets. Of course, to be
able to use finite parameters, we assume that the receiving
nodes are able to accept incoming data at the required rates.

Figure 1: Switch model and parameters

4. NOC TRAVERSAL DELAY ANALYSIS
Table 3 lists the parameters we define to describe traffic flows
across the network, while Table 4 summarizes the parameters
that we identify to model the performance of such flows. Most

notably, UBi represents the upper-bound delay for network
traversal by a packet of flow Fi, and is a key figure for the
interconnect designer. We try to use a notation as close as
possible to that used in [10] for ease of comparison.
We first present a method called RTB-HB (Real Time Bound
for High-Bandwidth traffic), which calculates UBi in a
completely worst-case traffic situation. Crucially, this includes
the possibility for other system cores to inject unregulated
bandwidth, i.e. any amount of traffic at irregular intervals.
This is a key property for real-world interconnect analysis
methods, as most available IP cores operate on an unregulated-
injection basis. In order to calculate UBi in such a case, we
consider all the intermediate buffers along the route full, and
we assume arbitration losses at all switches against all other
contending flows. Since switches are assumed to feature round-
robin arbitration, even though we assume the current flow to be
serviced last, the maximum delay is bounded, i.e. starvation
cannot occur. Therefore, the packets sent by the flow source Si
are eventually delivered. RTB-HB calculates the interval MIi,
i.e. the number of cycles after which the output buffer of Si is
guaranteed to be free again for further injection. From this
value, the worst-traffic minimum injectable bandwidth (mBWi)
can also be easily derived. Please note that this analysis can be
applied to most NoC architectures, without any specific QoS
hardware or software provisioning. We then move on to the
description of another method, called RTB-LL (Real Time
Bound for Low-Latency traffic). In this scenario, we assume
that traffic injection can be regulated, as possible in some
application scenarios. Therefore, we also calculate a minimum
permitted interval (mIi) between two consecutive packets from
the same source, which can be translated into a maximum
permitted bandwidth (MBWi). This approach is similar to
previously published method [10] (Real-time wormhole channel
feasibility checking or WCFC, which will be briefly described
later), but delivers substantially better results in terms of bound
tightness. For proper operation, the system must then respect
MBWi bounds at runtime. Compared to method RTB-HB, in the
calculations for method RTB-LL, it is possible to consider
parameters b1 and b3 to represent the buffers delay (b1=1 and
b3=1 or 0, when there is no output buffer), instead of the exact
buffer size.

4.1 The Proposed Delay Model RTB-HB
The goal here is the calculation of the parameters UBi (worst-
case latency to traverse the network) and MIi (maximum worst-
case interval). In this paper, due to lack of space, we only show
the case where Bd <= L. For a Bd > L, we can introduce dummy
switches for each port, each with Bd <= L and use the same
analysis below. Let us first consider the case Bd = L. To grasp
intuitively the analysis, please observe that Bd = L means, in
concrete terms, that a packet fills exactly the buffering
resources between the arbitration points of two adjacent
switches. Considering as an example a network completely full
of traffic (an unrealistic scenario just for visualization
purposes), and Bd = L globally, the network operates by
shuffling packets around in lockstep: all switches re-arbitrate
simultaneously every L cycles, and packets trail each other,
filling up buffers as soon as they free up.

Table 3: Traffic model parameters
Parameter Description
Fi i-th traffic flow in the network
Li Length of the packets of Fi, in flits
Si Source node of Fi
Di Destination node of Fi
Pi Packet of Fi
hi Number of switches (hops) along the path of Fi

Table 4: Performance model parameters
Parameter Description
UBi Upper bound delay for a packet Pi of Fi to traverse the NoC
MIi Maximum interval until the ability to inject a new packet of Fi,

used in method RTB-HB
mIi Minimum permitted interval between two consecutive packets of

Fi, used in methods WCFC and RTB-LL
mBWi Worst-traffic minimum injectable bandwidth for Fi, used in

method RTB-HB and is equal to: mBWi
:=L*FlitWidth/MIi*Freq

MBWi Maximum permitted bandwidth for Fi , used in methods WCFC
and RTB-LL and is equal to: MBWi :=L*FlitWidth/mIi*Freq

ui
j The time needed for Pi to go from the input buffer of SWj (j>0)

or from generating process in Si (j=0) to the input buffer of SWj+1
(0≤j≤hi-1) or Dj (j=hi)

Ui
j The time needed for Pi to go from the output buffer of SWj (j>0)

or from the output buffer of Si (j=0) to the output buffer of
SWj+1this parameter is used for convenience and, mathematically
it can be written based on ui

j, as Ui
j = ui

j+1, j≥0

z0(i,0) Number of flows contending with Fi at Si
zc(i,j) Number of flows contending with Fi at SWj at output channel c
I(x) Index of the x-th flow contending with Fi at Si (or SWj)

More formally, when Pi is generated in Si, we consider all
intermediate buffers along its route as full of packets from
different flows. In the worst case, for Pi to reach its destination,
all these packets must leave their buffers. Focusing e.g. on hop
j, Pi may have arbitration conflicts with a number zc(i,j) of other
flows contending for the output channel c, for example flows Fq
and Fr. Since round robin arbitration is assumed, it is enough to
consider all contending flows to send a packet before Pi to
guarantee that the analysis is worst-case. The order in which
contending flows obtain the arbitration is not important for the
calculation of the delay of Pi. So Pq should make a one-hop
forward progress. While Pq frees the buffers at hop j flit by flit,
the flits from Pr will smoothly replace the free buffer spaces.
Eventually Pi also goes through. Section 4.3 presents a simple
example to visualize this. The parameter ui

0 represents the time
needed for Pi to be ejected from Si and be placed in the output
buffer of Si (or input buffer of the first switch of Fi). ui

j then
represents the time needed for Pi to go from the input buffer of
SWj to the input buffer of SWj+1, except for the last switch. At
the last switch Pi is ejected, so it is instead the time needed to
get into the input buffer of destination Di. To calculate UBi, as
shown in Eq. 1, all these contributions must be added up, plus
the fixed overhead for packet creation and ejection.

UBi = ts1 + ts2 + ∑j ui
j
 with j = 0 … hi (1)

The time needed for Si to inject the next packet is the time to
create such a packet, plus the time needed for this packet to
move on to the input buffer of the first switch:

MIi = ts1 + ui
0

 (2)
To be consistent with the notations from [10] and for
convenience, we introduce the uppercase Ui

j symbol, which
models the hop delay from output buffer to output buffer,
instead of from input buffer to input buffer.

Let us consider a packet of flow Fi initiated at the source Si. For
this packet to reach the input buffer of the first switch, any
already existing packet at that buffer has to leave, freeing the
buffer. This existing packet could be a previous packet from the
same flow Fi or any of the contending flows at the output
channel of the source. Thus, the worst-case time taken for any
existing packet to leave the buffer is given by MAXx(Ui

0
,U0

I(x)), where I(x) is the index of contending flows at the
output channel, with x = 1 ... z0(i, 0). Also, all the other
contending flows of Fi may have to send a packet before this
flow. Thus, the total delay for a packet from Fi to reach the
input buffer of the first switch is given by:
ui

0
 = MAX (Ui

0 ,U0
I(x)) + ∑x U0

I(x), with x = 1 ... z0(i, 0) (3)

For the subsequent hops, ui
j can be calculated similarly:

ui
j
 = MAX (Ui

j , Uj
 I(x)) + ∑x Uj

I(x) with
x = 1 ... zc(i,j), 1 ≤ j ≤ hi (4)

Please note that, if there is no contention for the flow, then the
above equation reduces to ui

j = Ui
j. This is again akin to a

packet moving in a pipeline fashion in the network.
In order to calculate the Ui

j values, let us consider the packet
from flow Fi moving from output buffer of the source to the
output buffer of the first switch. For the packet to move, any
existing packet from the output buffer of the first switch should
move to the output buffer of the second switch. Similar to the
above calculations, the maximum delay for this is given by
MAXx (Ui

j+1 , Uj+1
 I (x)). Please note the small difference from

the ui
j calculations that, in this case, the values of Ui

j at a
switch (j) depends on the values at the next switch (j+1) on the
path. The Ui

j values can be obtained using the following
equations:

Ui
j
 = MAXx (Ui

j+1 , Uj+1
I(x)) + ∑x Uj+1

I(x)

with x= 1 .. zc(i,j+1), 0≤ j ≤ hi-1 (5)
For the case of the last switch, from the output port, the packet
can be ejected in Li cycles, with one flit of the packet ejected
each cycle. Thus,

Uhi
i = Li , UhI(X)I(x)=LI(x)

Based on Eq. 3 and 4, now the problem of finding UBi and MIi
(Eq. 1 and 2) is mapped onto a summation of Ui

j values, which
can be solved by Eq. 5. Please note that we assume the
destination have enough buffers to eject the packets at the rate
at which the network delivers them. By applying the above
formulae recursively, we can obtain the worst-case delay (UB)
and injection rate (MI) for the different flows. The same set of
formulae also apply to the case where Bd < L. It is intuitive that
the queuing effects are similar for this case as that of Bd = L.
The methods can be easily extended to support virtual channels
and different message lengths, so in the examples throughout
the paper, we have used Li instead of L. But due to lack of
space, we omit these extensions in this paper.

4.2 The Proposed Delay Model RTB-LL
We present a substantial improvement to the previously
published method WCFC [10]. WCFC also calculates upper
bound propagation delays and permitted injection intervals for
flows in wormhole networks. It considers the arbitration

contention that packets will face and, recursively, the delay
incurred by other packets sharing some part of their route due
to these blockings. With the same notation as above, WCFC
proposes [10] the following formulae for calculating UBi and
mIi:

UBi = ts1 + ts2 + Li + (hi + 1)a + ∑j ui
j with j = 0 ... hi

mIi = ts1 + Li + ∑j ui
j - hi b with j = 0 ... hi

where
ui

j
 = b + ∑x Uj

Ii(x) with x = 1 ... zc(i, j)
In the WCFC method, the calculations are based on the
assumption that each flow injects packets spaced by at least a
minimum permitted interval. For applications that can support
such an assumption, we present a method that gives significant
improvement over the WCFC method, which we call RTB-LL.
To improve upon WCFC, a new concept of overlapping flows is
introduced. If two or more different flows contend for the same
output port at a switch, and they also share the same input port,
we call such flows overlapping at the switch. This notion
allows us to significantly optimize the bound tightness.
When Fi contends with multiple overlapping flows at a switch,
it is possible to locally coalesce all such overlapping flows into
a single one. This is because the arbitration cannot be lost to
multiple of those flows, as they cannot physically produce a
contending packet simultaneously given that they enter the
switch through the same input port. If there exist e.g. two
overlapping contending flows at hop j having delay parameters
Uj

i1 and Uj
i2, then it is possible to consider MAX(Uj

i1 ,Uj
i2) as

their representative delay, instead of Uj
i1 + Uj

i2, for calculating
the parameters for Fi, and so the main contending flows (i1 and
i2) are ignored in the calculations. When Fi overlaps with other
flows, in the calculations for Fi the other contending flows
should be ignored. By applying these optimizations, we have
noticed a significant improvement in bound tightness in RTB-
LL, as will be seen in next section and as Table 1 summarizes.

4.3 Delay Calculation Examples
To describe in detail different aspects of the analytical methods
RTB-HB, RTB-LL and WCFC for upper bound delay and
interval calculation, we apply them step-by-step to an example
NoC (shown in Fig. 3) and then compare them. There are 4
message flows from S1 to D1, S2,3 to D3, S2,3 to D2,4 and S4 to
D2,4. The NoC contains four switches. For the sake of
simplicity, we consider Bd = L in this example.

4.3.1 Method RTB-HB
As an example, we study the time needed for a packet P0 of flow
F1 to get through the network. In general, from Eq. 1:

UB1 = ts1 + ts2 + ∑j u1
j
 with j = 0 … 3

To start, let us model the time u0
1 needed to move from S1 to

input buffer of switch SW1. We start from the most congested
network possible, so there exists another packet P1 of the same
flow ahead, and this packet needs U0

1 to go from the output buffer
of the source (remember that source nodes are tagged with
superscript 0) to the output buffer of SW1, so u0

1= U0
1. U0

1 has to
be calculated recursively based on the delays of the contending
packets and of the packets ahead along the same route.

Figure 3. A simple example network

(a)

(d)

(b)

(e)

(c)

(f)
Figure 4: (a,b,c) packet P0 goes from a process that generates it (F1
in S1) to the input buffer of SW1. (d, e, f) packet P0 goes from input
buffer of SW1 to input buffer of SW2

We observe that two factors contribute to its calculation: first, the
possibility of losing arbitrations at SW1; second, the fact that
there may be no available buffer space at the output of SW1 (due
to arbitration losses ahead), which also effectively stalls packets
at the input of SW1. For what concerns the arbitration loss, it can
be seen that flow F1 contends with flow F2 at the output of SW1.
Thus, a packet P2 of F2 currently in the input buffer of SW1 could
be arbitrated before P1. For what concerns the output buffer full
condition, in the worst case, there will be a packet P3 in the
output buffer of SW1. P3 could belong to either F1 or F2, in which
cases, respectively, either U1

1 or U1
2 models the time for such

packet to move ahead, from the output buffer of SW1 to the output
buffer of SW2. MAX(U1

2, U1
1) models the worst-case delay

affecting our flow under study. During the time MAX(U1
2, U1

1),
the packet P3 moves on to the output buffer of SW2, leaving the
output buffer at SW1 empty. However, in the worst case, an
arbitration loss occurs to P1, so it is packet P2 which will
smoothly replace P3 (Fig. 4(a)). Before P1 can move on by one
hop, we must also consider the time for packet P2 to go from the
output buffer of SW1 to the output buffer of SW2 (Fig. 4(b)),
which is U1

2. In summary: u0
1 = U0

1 = MAX(U1
2, U1

1) + U1
2

Which traces back to Eq. 3. As mentioned above, this is the delay
for P1 to move one hop on, but equivalently is also the delay for
P0 to replace it in the previous location (Fig. 4(c)). Now,
similarly, P0 needs to move another hop on, from the input buffer
of SW1 to the input buffer of SW2, with a delay which is defined
as u1

1.

It is possible to use the equation u1
1= U0

1 based on the equality
described in previous section, but for clarity we always describe
uj

i based on Uj
i. As shown in Fig. 4(d, e, f), in the worst case,

packet P0 should wait for a packet P4 of F2. A packet P1, again
either from F1 or F2, should be considered at the output buffer of
SW1. So again, during the time MAX(U1

2, U1
1), while P1 moves

on to the output buffer of SW2, P4 will replace it. P4 itself then
takes U1

2 to move on, allowing P0 to eventually get to the input
buffer of SW2. Thus: u1

1 = MAX(U1
2, U1

1) +U1
2

In a similar manner u2
1 can be calculated. Once P0 is in the input

buffer of SW3, it is only one hop away from its destination and as
there is no contending flow at the destination, the time that is
needed to be ejected is equal to L1. For uniformity of presentation
we can write: u3

1 = U3
1 = L1

Now, the target metric UB1 can be calculated recursively, as a
function of a set of Uj

i variables for the whole network starting
from the last hop of each flow, where they assume a known value.
The calculation of all intermediate values, e.g. U1

1, U1
2, U2

1, U2
2,

U3
1, and of the relevant metrics UBi and MIi, is shown in Fig. 5.

Please note that intermediate values can be calculated once only
and then stored, to speed up the recursion.

u0
1= U0

1
u1

1= MAX(U1
2, U1

1) + U1
2

u2
1= MAX(U2

2, U2
1)

u3
1= U3

1
U2

1=U3
1= L1

U2
2 = U3

2 =U4
4+U4

2=L4+L2
U1

1 = MAX(U2
1, U2

2)=L2+L4
U1

2 = MAX(U2
1, U2

2)= L2+L4
U0

1= MAX(U1
2, U1

1) + U1
2= 2L2+2L4

UB1=L1+5L2+5L4 ,MI1 = 2L2+2L4

u0
2= MAX(U0

2, U0
3) + U0

3
u1

2= MAX(U1
2, U1

1) + U1
1

u2
2= MAX(U2

2, U2
1)

u3
2= U3

2
u4

2= U4
4+ U4

2
U0

2=MAX(U1
2, U1

1) + U1
1 =

2L2+2L4
U0

3= U1
3=L3

UB2=6L2+L3+6L4
MI2 = 2L2+L3+2L4

u0
3= MAX(U0

2, U0
3)+U0

2
u1

3= U1
3=L3

UB3=4L2+L3+4L4
MI3= 4L2+4L4

u0
4= U0

4
u4

4= U4
2+ U4

4

U0
4= U4

2+ U4
4= u4

4
UB4= 2L2+2L4 , MI4= L2+L4

Figure 5: The complete calculation of UBi and MIi for the example
NoC of Fig. 3 in method RTB-HB

When considering the source S2,3, it can be noticed that two flows
F2 and F3 can originate from it, therefore source conflicts may
happen. As Fig. 5 shows, analyzing e.g. the flow F2, in this case
u0

2 (the time to transfer of a packet of F2 into the input buffer of
the first switch) should include a delay MAX(U0

2, U0
3), which

accounts for a packet of either F2 or F3 to move away from the
input of SW1 towards the input of SW2 (during which time we
must assume, in the worst case, that it is a packet of F3 which
replaces it), and then again the time U0

3 for this latter packet to
also move on, and finally letting a packet from F2 in. The
calculation for u0

3 is the same.

4.3.2 Methods RTB-LL and WCFC
Fig. 6 and Fig. 7 show the calculated UBi and mIi values for both
WCFC and RTB-LL methods for the same example of Fig. 3.
Since flows F1 and F2 are overlapping at SW2, our proposed RTB-
LL improves the bound tightness compared to WCFC.
Considering for the sake of exemplification a NoC variant as in
Fig. 8, with another contending flow at SW2, then in RTB-LL the
delay u2

3 of F3 at SW2 can be modeled as b + MAX(U2
1, U2

2)
instead of the overly pessimistic value b + U2

1 + U2
2 calculated

by WCFC.

Table 5: Network parameters for the study

Parameter L
(flits)

a
(regs.)

b1
(regs.)

b2
(regs.)

b3
(regs.)

ts1
(cycles)

ts2
(cycles)

FlitWidth
(bytes)

Freq
(MHz)

Value 4 1 1 2 0 0 0 4 400

u0
1= 0

u1
1= b + U1

2
u2

1= b + U2
2

u3
1= b

U1
2 = U2

2 + U2
1

U2
2 = U3

2 = U4
2 + U4

4= L2 + L3
U2

1 = U3
1 = L1

UB1 = 4a+3b + L1+2L2+2L4
mI1 = 2L1+2L2+2L4

u0
2= U0

3
u1

2= b + U1
1

u2
2= b + U2

1
u3

2= b
u4

2= b + U4
4

U0
3 = U1

3= L3
U1

1 = U2
1 + U2

2

UB2=5a+4b+2L1+2L2+L3+2L4
mI2=2L1+2L2+ L3+2L4

u0
3= U0

2, u1
3= b

U0
2 = U1

2 + U1
1

UB3=2a+b+2L1+2L2+L3+2L4
mI3= 2L1+2L2+L3+2L4

u0
4= 0

u4
4= b + U4

2

UB4=2a+b+L2+L4
mI4= L2+L4

Figure 6: The complete calculation of UBi and mIi for the example
NoC of Fig. 3 in method WCFC

u0
1= 0

u1
1= b + U1

2
u2

1= b
u3

1= b
U1

2 = U2
2 =U3

2 = U4
2+U4

4 = L2+ L4
U2

1 = U3
1 = L1

UB1 = 4a+3b + L1 + L2 + L4
mI1 = L1+L2+L4

u0
2= U0

3
u1

2= b + U1
1

u2
2= b

u3
2= b

u4
2= b + U4

4
U0

3 = U1
3= L3

U1
1 = U2

1

UB2=5a+4b+L1+L2+L3+L4
mI2=L1+L2+L3+L4

u0
3= U0

2, u1
3= b

U0
2 = U1

2 + U1
1

UB3=2a+b+L1+L2+L3+L4
mI3= L1+L2+L3+L4

u0
4= 0

u4
4= b + U4

2

UB4=2a+b+L2+L4
mI4= L2+L4

Figure 7: The complete calculation of UBi and mIi for the example
NoC of Fig. 3 in method RTB-LL

Figure 8: NoC variant where flow F3 contends with two
overlapping flows F1 and F2 at SW2

5. STUDIES ON APPLICATIONS
The proposed methods RTB-HB and RTB-LL can be used to
analyze the scheduling of traffic flows in real-world
applications. In this section we present studies on five
multimedia and RT applications, comparing RTB-HB and
RTB-LL to the WCFC baseline, under the parameters of Table
5. In these applications, we assume that NoC topologies are
predefined based on application communication needs, but
without any feedback from the proposed algorithms to
customize the network structure for better upper bound delay
and interval time results. This is a possible extension for future
work. In particular, for many applications it is possible to
identify a small subset of few flows as critical, and then to
optimize the NoC based on feedback loops from RTB-HB and
RTB-LL to improve the performance of such critical flows. It is
possible to do this without dedicated hardware support or any
priority scheme.

5.1 Case Study: A Multimedia Application
In this section, we compare the results of applying RTB-HB,
RTB-LL and WCFC to D26-media, a real-time multimedia

application with 67 communications flows, some of which
critical, shown in Fig. 9. The application is mapped onto two
NoC topologies, one with 5 "fat" (high-radix) switches (shown
in Fig. 10) and the other one with 20 "thin" (low-radix)
switches. Fig. 11 presents the results of the study in terms of
latency, interval and bandwidth for the whole set of flows. Fig.
11(a, b) compare the worst-case NoC traversal latency UBi. The
RTB-LL model always provides the tightest bounds. Compared
to WCFC, the largely improved tightness (more than 50% on
average) is due to the analysis of overlapping flows, a novelty
of this paper, but without any impact on the accuracy of the
bounds, which are still under worst-case assumptions. RTB-HB
naturally returns higher worst-case latency, due to the
assumption that no hardware traffic injection regulation
facilities are available. In fact, due to the different calculation
approach, the bounds are on average still 30% lower than in
WCFC, despite the less restrictive assumptions. There are,
however, a few flows for which WCFC predicts lower delays
than RTB-HB, due to the regulated injection assumption. In a
zero-load scenario (no contention at all), the minimum
theoretical latency to traverse the 5-switch NoC for flows
spanning a single hop is 8 cycles (a + b1 + b2 + b3 + L), while
RTB-LL gives a minimum upper-bound of 17 cycles in worst-
case contention. In general, for all methods, the delays
calculated for the 20-switch topology are higher, as a result of
longer paths (more hops) per flow, higher probability of
contention, and especially for RTB-HB more in-flight packets.
This suggests, as intuitively expected, that NoCs with fewer
hops guarantee lower delay bounds.

Figure 9: Communication graph for D26-media

Fig. 11(c, d) shows maximum and minimum injection intervals
(MIi and mIi). Intuitively, if traversal delays are lower, new
packets can be injected sooner, so MIi (mIi) plots resemble UBi
trends: flows with lower traversal latencies can be injected
more frequently. Thus, the mIi intervals are always shorter in
RTB-LL and the MIi intervals often shorter in RTB-HB when
compared to mIi in WCFC. These intervals can be directly
translated into minimum and maximum injectable bandwidths
(mBWi, MBWi) using the formulae in Table 3; results are shown
in Fig. 11(e, f). Maximum injectable bandwidths (MBWi) are
on average 35% higher according to RTB-LL compared to
WCFC, and 25% higher according to the minimum bandwidth
(mBWi) in RTB-HB. The maximum theoretical injectable
bandwidth is 1600 MB/s (Freq* FlitWidth); according to RTB-
LL, even under worst-case assumptions, some flows on the 5-
switch NoC are guaranteed injection rates of as much as 533
MB/s. In the 20-switch network, the higher contention
likelihood affects injectable bandwidth negatively, but the use
of more resources has a positive effect on many-hop flows,
resulting overall in comparable injectable bandwidths. In

SW2
2

1
3

summary, NoCs with few hops exhibit clearly better upper-
bound traversal delays, but in terms of injectable bandwidths,
the mapping of the flows (i.e. the contention patterns) and the
amount of used resources play a decisive role in NoC
performance.

5.2 Suitability to Critical Flows
Fig. 12 shows the average UBi traversal delay and the average
mBWi injectable bandwidth for flows traversing x hops of the 5-
switch NoC, considering the D26-media application and using
RTB-HB. It can be seen that 1-hop flows exhibit reasonably
low latencies and high bandwidths, suitable for critical traffic.
Therefore, the proposed methodology has a clear applicability
to industrial RT applications.

Table 6: Studied applications

 Cores NoC
switches

Clock frequency
(MHz)

Traffic
flows

D26-media 26 5 400 67
Pipeline 65 6 300 378

Bottleneck 35 6 300 128
36core-4 36 6 400 144
36core-6 36 7 400 216

5.3 Comparison for Different Applications
Fig. 13 shows the implementation results of the 3 different
methods to the five applications listed in Table 6. 36core-4 and
36core-6 are different mainly because in the former application
each core handles 4 communication flows to as many other
cores, while in the latter each core handles 6 such flows. Fig.
13 proves that, for all the applications, RTB-HB and RTB-LL
provide tighter average bounds than the reference WCFC
method. RTB-LL is strictly tighter than WCFC, while RTB-
HB, although it provides much tighter bounds on average, can
return higher bounds for specific flows since it does not rely on
regulated traffic assumptions of any kind.

6. COMPLEXITY OF THE METHODS
To estimate the time complexity of the proposed algorithms,
implemented for the proposed methods, we calculate the
maximum number of operations that are required. As Eq. 1, Eq.
3 and Eq. 5 show, the only operations are additions and
comparisons (for the MAX operator); so we may consider one
cycle to execute each of these operations.

RTB-LL:min,avg,max:17,91,193
RTB-HB:min,avg,max:24,174,392
WCFC :min,avg,max:17,237,545
(a)

RTB-LL:min,avg,max:17,143,357
RTB-HB:min,avg,max:24,329,868
WCFC :min,avg,max:17,1728,5233
(b)

RTB-LL:min,avg,max:12,84,180
RTB-HB:min,avg,max:12,139,308
WCFC :min,avg,max:12,229,532
(c)

RTB-LL:min,avg,max:12,132,340
RTB-HB:min,avg,max:12,245,708
WCFC:min,avg,max:12,1717,5216
(d)

RTB-LL:min,avg,max:36,124,533
RTB-HB:min,avg,max:21,101,533
WCFC :min,avg,max:12,81,533
(e)

RTB-LL:min,avg,max:19,121,533
RTB-HB:min,avg,max:9,103,533
WCFC :min,avg,max:1,79,533
(f)

Figure 11: (a, c, e) UBi, MIi and mBWi characterized with WCFC, RTB-
LL and RTB-HB for D26-media mapped onto a 5-switch NoC. (b, d, f)
The same metrics mapping on 20-switch NoC. Horizontal axes enumerate
the communication flows.

We call h the maximum number of switches in a flow, and k the
number of flows. We also pessimistically assume the maximum
number of contending flows at a switch output to be k. For
calculating one Uj

i parameter, we need (Eq. 5) at most k comparisons
and k additions, thus 2k operations. The number of Uj

i parameters to
be calculated is hk, so the maximum number of operations is 2hk2. uj

i
parameters (except for j=0) can be derived from the equality Uj

i
 =

uj+1
i, so we only need to calculate the case of u0

i for all flows. In this
case, one u0

i (Eq. 3) needs 2k operations; for all u0
i parameters we

need 2k2 operations.
In RTB-HB the outcome are k UBi and k MIi values. For calculating
one UBi value (Eq. 1) we need h+1 additions, so for all k UBi values
we need (h+1)k, while in the case of MIi, k operations are needed.
The total number of operations is the summation of all the above, or
2hk2+2k2+(h+1)k+k. So the complexity of the algorithm is O(hk2).

SW2
Mem4

Mem5

Mem1 Mem2

Mem3

P3

CTRL2
PE3

PE2

PE1

P1

DMA

SDRAM2

Debug

Imgproc1

DSP

DSPL2C

DSPL2Cc

L2C

L2CC

P2

ARM

SDRAM1

Imgproc2

CTRL1
Flash

SW1

SW3

SW4

SW5

Figure 10 : D26-media application mapped on a 5-switch NoC

Figure 12. Average Upper Bound Delay (left) and Average Minimum
Bandwidth (right) for x-hop flows in D26-media for RTB-HB

Figure 13. Comparisons: (left) average UBi (WCFC as reference),
(right) average MBWi or mBWi (RTB-LL as reference)

For RTB-LL, using the same approach, we can show that the
complexity of the algorithm for calculating UBi and mIi is again
O(hk2). Thus, both algorithms have quadratic time complexity.
In practice, the execution time for all our test applications is
very small (few seconds on a standard PC) and the modeling of
delay and bandwidth parameters does not pose significant
runtime issues.

7. CONCLUSION AND FUTURE WORKS
We have proposed two different methods to characterize
bandwidth and latency for NoC-based real-time SoCs, aiming at
guaranteed QoS provisions. The choice of the most suitable
method depends on the performance demands of the system and
on whether dedicated hardware facilities can be supplied in the
NoC. One method is aimed at applications demanding
minimum latencies and requires injection regulation, while the
other is suitable for applications where packet injection must be
flexible to accommodate for higher average injected
bandwidths and no hardware regulation is available. We proved
that the proposed methods return the worst-case metrics in a
much tighter way than existing approaches, rendering them
quite applicable for real-world SoC applications. The major
next step is to use the results of this work as an input to an
iterative procedure to synthesize optimized NoCs whereby the
QoS demands of critical traffic flows are met.

8. REFERENCES
[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection
networks, “ Proceedings of the 38th Design Automation Conference, 2001.
[2] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC Paradigm, “
Computer, 35(1):70–78, 2002.
[3] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched
interconnections,” in Proceedings of Design, Automation and Test in Europe
Conference ands Exhibition(DATE ’00), pp. 250–256, Paris, France, March 2000.
[4] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Network
Delays and Link Capacities in application-Specific Wormhole NoCs, “ VLSI Design,
Volume 2007, Article ID 90941

[5] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: a scalable,
communication-centric embedded system design paradigm,” in Proceedings of the
17th International Conference on VLSI Design (VLSID ’04), vol. 17, pp. 845–851,
Mumbai, India, January 2004.
[6] S. Furber and J. Bainbridge. “Future trends in SoC interconnect, “ In VLSI Design,
Automation and Test, pages 183– 186, 2005.
[7] Z. Shi and A. Burns , “Real-Time Communication Analysis for On-Chip Networks
with Wormhole Switching, “ Second ACM/IEEE International Symposium on
Networks-on-Chip, 2008
[8] C. Paukovits, H. Kopetz, "Concepts of Switching in the Time-Triggered Network-
on-Chip," Proceedings of the 2008 14th IEEE International Conference on Embedded
and Real-Time Computing Systems, pp.120-12.
[9] K. Goossens, J. Dielissen, and A. Radulescu, “The Æthereal network on chip:
Concepts, architectures, and implementations,“ IEEE Design and Test of Computers,
22(5):414–421,2005.
[10] S. Lee, “Real-time wormhole channels,“ J. Parallel Distrib. Comput. 63 (2003)
299–311
[11] D. Kandlur, K. Shin, D. Ferrari , “Real-Time Communication in Multihop
Networks,“ IEEE Trans. on Para. and Distributed Systems, vol. 5, no. 10, Oct. 1994.
[12] M. Zhang, J. Shi, T. Zhang, Y. Hu, “Hard Real-time Communication over Multi-
hop Switched Ethernet, “ Int. Conf. on Networking, Architecture, and Storage, 2008
[13] S. Gopalakrishnan, S. Lui, and M. Caccamo, "Hard Real-Time Communication in
Bus-Based Networks, " In Proc. 25th IEEE Int. Real-Time Systems Symp., 2004.
[14] A. Yiming, and T. Eisaka, “A Switched Ethernet Protocol for Hard Real-Time
Embedded System Applications,” In 19th Conf. on Advanced Information
Networking & Applications, March 2005, pp. 41-44.
[15] K. Watson and J. Jasperneite, "Determining end-to-end delays using network
calculus," In Proc. 5th IFAC Int. Conf. on Fieldbus Systems and Their Applications
(IFAC-FET2003), July 7-8, 2003, pp. 255-260.
[16] J. Chen, Z. Wang, and Y. Sun, “Real-time capability analysis for switch industrial
Ethernet traffic priority-based,” In Proc. of Int. Conf. on Control Applications,
Glasgow, UK, Sep. 2002, pp. 525-529.
[17] J. Jaspernite, P. Neumann, M. Theis, and K. Watson, “Deterministic Real-Time
Communication with Switched Ethernet,” In Proc. of WFCS’02, Vasteras, Sweden.
[18] S. Lee; K. C. Lee, and H. H. Kim, “Maximum communication delay of a real-
time industrial switched Ethernet with multiple switching hubs,” In 30th Conf. of
IEEE Industrial Electronics Society, 2004.
[19] J. Loeser and H. Haertig, “Low-latency hard real-time communication over
switched Ethernet,” In Proc. of ECRTS 2004.
[20] J. Kiszka, B. Wagner, Y. Zhang, J. Broenink,” RTnet – A Flexible Hard Real-
Time Networking Framework,” In: 10th IEEE International Conference on Emerging
Technologies and Factory Automation, 2005.
[21] H. Kopetz, A. Damm, C. Koza, et al., “Distributed fault-tolerant real-time
systems: the Mars approach,” IEEE Micro, 1989, 9(1): 25-40.
[22] E. Bolotin et al., “QNoC: QoS architecture and design process for network on
chip,” Journal of Systems Architecture, vol. 50, no. 2–3, pp. 105–128, Feb. 2004.
[23] T. Bjerregaardand, J. Sparsoe, “Arouter architecturefor connection-oriented
service guarantees in the MANGO clockless network-on-chip,” in DATE, vol. 2, Mar.
2005, pp. 1226–1231.
[24] A. Bouhraoua and M. E. Elrabaa, “A high-throughput network-on-chip
architecture for systems-on-chip interconnect,” in Intl. Symposium on Soc, Nov. 2006.
[25] F. Felicijan and S. Furber, “An asynchronous on-chip network router with quality-
of-service (QoS) support,” in SOCC, Sep. 2004, pp. 274–277.
[26] N. Kavaldjiev et al., “A virtual channel network-on-chip for GT and BE traffic,”
in ISVLSI, vol. 00, Mar. 2006.
[27] A. Leroy et al., “Spatial division multiplexing: a novel approach for guaranteed
throughput on NoCs,” in CODES+ISSS, 2005, pp. 81–86.
[28] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Evaluation of current QoS
mechanisms in network on chip,” in Intl. Symposium on Soc, 2006, pp. 115–118.
[29] M. Millberg, R. T. E. Nilsson, and A. Jantsch, “Guaranteed bandwidth using
looped containers in temporally disjoint networks within the Nostrum network on
chip,” in DATE, 2004, pp. 890–895.
[30] F. Mondinelli, M. Borgatti, and Z. Vajna, “A 0.13 um 1Gb/s/channel store-and-
forward network on-chip,” in SOCC, Sep. 2004, pp. 141–142.
[31] R. Mullins, A. West, and S. Moore, “The design and implementation of a low-
latency on-chip network,” in ASP-DAC, 2006.
[32] A. Radulescu et al., “An efficient on-chip NI offering guaranteed services, shared-
memory abstraction, and flexible network configuration,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 1, pp. 4–17, Jan. 2005.
[33] E. Rijpkema et al., “Trade offs in the design of a router with both guaranteed and
best-effort services for network on chip,” IEE Proc. Computers and Digital
Techniques, vol. 150, no. 5, pp. 294–302, 2003.
[34] E. Salminen, A. Kulmala, T. Hamalainen, “Survey of Network-on-Chip
Proposals,” www.ocpip.org, March 2008.

