Multicore Thermal Management with Model Predictive Control

Francesco Zanini†, David Atienza‡, Luca Benini‡, Giovanni De Micheli§
† Laboratory of Integrated Systems, EPFL, Switzerland;
‡ Embedded Systems Laboratory, EPFL, Switzerland;
§ Micrel Laboratory, DEIS, University of Bologna, Italy
email: {name.surname}@epfl.ch, lbenini@deis.unibo.it

ABSTRACT
The goal of thermal management is to meet maximum operating temperature constraints, while at the same time tracking time-varying performance requirements. Current approaches avoid thermal violations by forcing abrupt operating points changes (e.g., processor shutdown), which cause sharp performance degradation. In this paper we aim at achieving a smooth thermal control action, that minimizes the variance of performance tracking error. We formulate this problem as a discrete-time optimal control problem, which can be solved using the theory and computational tools developed in the field of model-predictive control. Our optimization process considers the thermal profile of the system, its evolution over time, and time-varying workload requirements. Experimental results show that the proposed approach offers significant thermal balancing improvements over previous methods.

1. INTRODUCTION
With the advance of technology, the number of cores integrated on a chip is increasing. Today, several multicore architectures are already commercially available, such as Sun’s Niagara [1] and Tilera’s 64-core architecture [2]. Power and thermal management are critical challenges for high-end multicore systems [4]. Temperature gradients and hot-spots affect system performance and lead to reduced chip lifetimes [3].

In the last years, thermal management techniques received a lot of attention. Many state-of-the-art thermal control policies manage power consumption via dynamic frequency and voltage scaling (DVFS) [5]-[8]. DVFS can be targeted to power density reduction, which has the effect of reducing overall temperature [5]. Then, thermal control policies avoid violations of temperature bounds by transitioning processors in low-power modes, taking a performance hit to cool down.

Unfortunately, not only high temperature, but also thermal cycles raise the failure rate of the system [11]. In addition, abrupt power-mode transitions due to DVFS waste power [13]. Hence, smooth thermal control, which eliminates abrupt power-mode transitions and large thermal cycles is highly desirable.

In this work, we propose a novel closed-loop thermal management policy yielding a smooth optimum control on working frequencies and voltages of multicore systems, while satisfying maximum temperature and performance constraints, and minimizing power (Figure 1). The problem is modelled using a control-theoretic approach based on model predictive control (MPC) [14]. This method provides optimum solutions for linear dynamic systems subject to constraints. It has several advantages with respect to state-of-the-art convex-based solutions for thermal control, such as the one presented in [8]. First, the MPC-based approach achieves a smoother control; thus, a reduction in performance fluctuations and losses is observed. Second, the system can manage different workload requirements for different cores using two approaches to implement the controller, defining computation vs. storage tradeoffs. The first one (implicit MPC) solves on-line the optimization problem thanks to an embedded numerical solver. The second one (explicit MPC) computes the solution on-line by multiplying the vector containing current thermal profile information and workload requirements by precomputed coefficients.

Our results show that the proposed MPC-based method guarantees that scenarios with dangerous thermal profiles are avoided while satisfying the application performance requirements. Moreover, thanks to the improved workload handling capabilities and the smooth transitions on both voltages and frequencies, the policy significantly reduces temperature profile variations over time. Thus, our proposed method achieves $2.5 \times$ to $5 \times$ improvements (for several control smoothness indexes) over state-of-the-art convex-based thermal management policies [8].

The remainder of this paper is organized as follows. Section 2 revises related work on thermal control techniques. Section 3 presents our control model and the novel thermal management policy. Section 4 describes our experimental setup. Section 5 presents the experimental results and compares our approach with state-of-the-art thermal management approaches. Finally, Section 6 summarizes the main conclusions of this work.

2. PREVIOUS WORK
Many researchers have recently focused on power management and thermal control for multicore systems and Multi-processor Systems-on-Chip (MPSoCs) [6]. Processor power optimization using DVFS have been proposed in several works [7], [6]. Then, [13] tries to minimize abrupt changes in power mode transitions by solving the frequency assignment problem from a frequency prediction perspective [5]. These techniques reduce power density and overall temperature, but not necessarily thermal gradients and hot-spots. In [8], convex optimization is used to solve the DVFS assignment problem considering power and hotspot minimization. The convex optimizer computes processor frequencies which minimize the gap between required and provided performance, subject to the operat-
ing temperature constraint. The main drawback is that it does not adapt smoothly to changes in performance requirements, leading to abrupt changes in processor DVFS assignments.

In contrast, the optimal MP controller considers the future thermal trajectory of the system, based on current workload and thermal state, hence it adjusts core frequencies in a smooth way to avoid reaching the maximum temperature constraint and taking abrupt corrective actions.

3. THERMAL MPC

In MPC, a state-space model of a linear dynamic system is needed as input to the calculation of the optimal controller. In our case, the model links frequency (and voltage) assignment to spatial temperature profile of the die over time, as described next.

3.1 Heat propagation model

Our thermal model is based on finite-element analysis [5]. Two layers have been used on the vertical direction, i.e., the silicon and the heat spreading copper layer. Then, the chip floorplan has been divided into several thermal cells of cubic shape, and every single functional unit in the floorplan can be represented by one or more thermal cells of the silicon layer. Thermal modelling is computed considering the heat conduction properties of the cells, as computed in [5]. Thus, the differential equations modelling the heat flow are obtained in terms of the equivalent RC network. The solution of the system has the form:

\[t_{k+1,i} = t_{k,i} + \sum_{j \in Adj_i} a_{i,j} (t_{k,j} - t_{k,i}) + b_j p_{i,k} \] (1)

where \(t_{k,i} \) is the temperature value of the cell \(i \) at time \(k \). Constants \(a_{i,j} \) and \(b_j \) are characteristic of the thermal behavior of the chip, and can be calculated as in [5]. Then, \(Adj \) is the adjacency matrix of the blocks inside the floorplan, and \(p_{i,k} \) is the power consumption of block \(i \) at time \(k \). Overall, the system described by Eq. 1 is linear, discrete-time and can be approximated as time invariant by making a worst case hypothesis on the thermal conductivity coefficient dependence over temperature.

Given the link between temperature distribution and power consumption, established by Eq. 1, we can easily tie processor operating frequencies to die temperature distribution:

\[t_{k+1,i,2n} = A(t_{k,2n} + B f_{k,1,n}) + W \] (2)

where \(n \) is the number of blocks composing the floorplan for the two layers and \(p \) is the number of cores. Then, at time \(k \), the temperature of the next simulation step of cell \(i \) \(t_{k+1,i} \) can be computed using Eq 2. The working frequency of core \(j \) is \(f_{k,j} \). The coefficient \(\alpha \) expresses the dependence between the frequency and the core’s power dissipation. If \(\alpha = 1 \), we have a linear dependence (i.e., frequency scaling) while if \(1 < \alpha \leq 2 \) we obtain a quadratic or sub-quadratic dependence (i.e., voltage and frequency scaling) [8]. Matrices \(A \) and \(B \) describe the heat propagation properties of the MPSoC. Finally, \(W \) is an offset vector considering the room temperature effect in the heat spreading process.

3.2 MPC-based policy model

MPC [14] is an optimal control approach aimed at maximizing a performance metric for a linear dynamic system under input/output constraints. The solution of the optimization problem provides the feedback control actions, and can be either computed by embedding a numerical solver in the real-time control code (implicit solver), or pre-computed off-line and evaluated through a look-up table of linear feedback gains (explicit solver). Figure 1 shows the block diagram of our MPC-based policy.

The regulator monitors the MPSoC state at each time instant \(k \). Thus, the state is defined as a vector composed by temperature values \(t_{k,1:2n} \) and working frequencies \(f_{k,1:p} \). Temperatures are monitored by on-die sensors [16], while working frequencies are known and controlled by the regulator.

The regulator receives from higher-level software layers (e.g., operating system or OS) a workload requirement, expressed as a vector of required operating frequencies \(v_{k,1:p} \) for all the \(p \) cores of the MPSoC. The regulator provides a frequency assignment that minimizes the quadratic tracking error \(e_{k,1:p} \). This error, defined by Eq. 4, is proportional to the difference between the offered and required workload. Note that the tracking error is a direct measure of performance penalty, as it is greater than zero when the controller sets processor working frequencies not exactly matching the requests coming from the OS.

Constraints on the maximum temperature of the MPSoC are also enforced in the optimization process. Then, the optimal control problem is formulated over an interval of \(h \) time steps, which starts at current time \(k \). For this reason, the approach is said predictive. The result of the optimization is an optimal sequence of future control moves (i.e., frequency settings for the cores).

Only the first sample of such a sequence is actually applied to the process; the remaining moves are discarded. At the next time step, a new optimal control problem based on new temperature measurements and required frequencies is solved over a shifted prediction horizon. Such a "receding-horizon" [14] mechanism represents a way of transforming an open-loop design methodology (i.e., the convex based policy proposed in [8]) into a feedback one, as at every time step the input applied to the process depends on the most recent measurements. Formally, the optimization is defined as:

\[\min h-1 \sum_{j=0}^{h-1} (e_{k+j,1:p} - v_{k,j,1:p}) \cdot S \cdot (e_{k+j,1:p}) \] (3)

where \(h \) defines the prediction horizon, \(S \) is the identity matrix and

\[e_{k+j,1:p} = f_{k+j,1:p} - v_{k,j,1:p} \] (4)

The minimization process has to satisfy the following constraints:

\[0 \leq t_{k+1,1:2n} \leq t_{\text{max}}, k = 0...h - 1 \] (5)

\[0 \leq f_{k+1,1:p} \leq f_{\text{max}}, k = 0...h - 1 \] (6)

where \(f_{\text{max}} \) and \(t_{\text{max}} \) are the maximum working frequency and allowed temperature in the system.

3.3 Implicit vs. Explicit Regulator

The proposed control strategy can be implemented in two different ways. The first one is called implicit and requires to solve on-line the minimization problem of Eqs. 3-6 every time the policy is applied. Thus, a large amount of hardware resources are needed, since the result must be computed in a time frame shorter than the thermal time constants of the MPSoC.

However, an alternative approach has been proposed in [14]. In this case, the quadratic programming (QP) problem is solved offline in a way that makes explicit the dependence of the solution of the frequency assignment problem \(f_{k+1,1:p} \) on input parameters
To our example, the average number of affine inequalities for each region is given by the equation:

\[f_{k,1}^{\alpha} = F_i \left(\frac{t_{k+1,2n}^{\alpha}}{t_{k,1}^{\alpha} + p} \right) + g_i \cdot H_i \left(\frac{t_{k+1,2n}^{\alpha}}{t_{k,1}^{\alpha} + p} \right) \leq K_i \]

where the matrix \(F_i \) and vector \(g_i \) are the gain and offset coefficients of the \(i^{th} \) region. Each region is identified by affine inequalities defined by the matrix \(H_i \) and vector \(K_i \) in Eq. 7.

If the partitions are properly stored, the number of operations depends logarithmically on the partitions [18]. Nonetheless, while the computer code for evaluating MPC in the explicit form is certainly simpler than the code embedding the QP solver, from the point of view of memory requirements, the explicit form may be more demanding, as M and the matrices to be stored in look-up tables are large. Thus, performance vs. area trade-offs exist between the implicit and the explicit form of the MPC controller.

To illustrate the memory requirements of an explicit MPC in a real case study, we consider the MPSOC shown in Figure 3, composed by 4 processing cores and modelled by 12 cells. According to Eq. 7, the resulting explicit controller will span over a 20-dimensional space. 12 dimensions are used by temperature cells to model the thermal behavior of the MPSOC, 4 dimensions are used by current cores frequencies and 4 dimensions model the workload requirements requested from the system by the scheduler. The prediction horizon has been set to 2 (i.e., 8 ms). Moreover the time required to execute all the operations should be small compared with both the profile time and the time required by the chip to change significantly its thermal profile. The value of \(T_{prof} \) depends on chip floorplan technological parameters and can be estimated using cycle-accurate thermal simulators, like [5]. According to previous considerations, the minimum clock frequency of the multiplier required to implement the proposed method in our example is 40 MHz. Then, the area occupation to implement the proposed MPC-based method is dominated by the look-up table that stores the coefficients of Eq. 8. Figure 2 shows the run-time behavior of the explicit controller.

The temperature threshold has been set to 370 \(^\circ\)C. Each core consumes a maximum power of 4W. The chip has an area of 6mm². Working frequencies are in the range 0-1.2 GHz. The other elements of the MPSOC consume 30% of the power consumption of the processing cores [1]. Thermal resistance, silicon thickness and copper layer thickness have been derived from [9, 10, 1]. The OS provides a different time-varying load for each core executing tasks ranging from web-accessing to playing multimedia [17].

Looking at Figure 2, at 0.05s and at 0.2s, a high workload is made. Hence, both the implicit and explicit implementations of the controller provide the same output and performance. In the second case, since the maximum chip temperature is below the threshold, the system is able to fulfills its performance requirements. In the first case, the maximum chip temperature is above the threshold, and the system is able to fulfill its performance requirements. The controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the second case, the proposed controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C. Furthermore, the controller clocks the cores with a frequency that respects the maximum on-chip temperature for this example, fixed to 370 \(^\circ\)C.
been modelled using cubical blocks of 3mm. As software benchmarks, we have used mixes of tasks ranging from web-accessing to playing multimedia [17]. In our experiments, our MPC-based thermal management policy is applied every 4 ms, while the simulation step for the discrete time integration of the thermal model is 200μs. The MPC policy tracks workload requirements, minimizing power consumption while respecting a maximum temperature limit of 370°K. We have used as MPC design tool the Matlab-based development platform provided by [15].

4.1 Handling different workload scenarios

In Figure 4 we report the time domain plot of the normalized workload and temperature of each core. The normalized workload is proportional to the frequency setting of the MPSoC, and variations in its value produce cores voltages and frequencies changes.

In Figure 4, the OS requires different workloads for each core in a very unbalanced way. Cores 1 to 4 are assigned a workload higher than 4 to 8 and core 2 is required the highest workload (see for example at 0.5s). In the top graph of Figure 4, the first 4 curves are required workload by the scheduler for Cores 1, 2, 3 and 7. Then, the last 4 curves show the workload offered by the MPSoC under the MPC policy control. As Figure 4 depicts, the controller produces a smooth control on the temperature; thus, performance losses and thermal fluctuations are minimized in the target MPSoC. The solution of the MPC optimization problem provides the feedback control action, and can be computed on-line (implicit solver) or off-line (explicit solver). Our experiments show that this new MPC-based thermal management approach improves on several tracking error metrics ranging from 2.5x to 5x.

5. CONCLUSIONS

We have presented a novel MPC-based thermal control policy. This policy respects temperature constraints while ensuring a smooth control on the temperature; thus, performance losses and thermal fluctuations are minimized in the MPSoCs. We have finally quantified (from a statistical point of view) the improvements of the MPC policy with respect to convex-based thermal management, by analyzing the tracking error and smoothness in temperature and frequency variations. First, we have quantified the tracking error using the mean value of its Euclidean norm. Then, we have estimated the smoothness of both MPC-based and convex-based policies as the mean of the frequency/temperature absolute value of change rate. Figure 6 shows results normalized to the convex-based policy, which indicate that the MPC-based policy outperforms the convex-based approach between 2.5x and 5x.

6. REFERENCES