
Optimal Multi-Processor SoC Thermal Simulation via
Adaptive Differential Equation Solvers

Francesco Zanini†, David Atienza?, Ayse K. Coskun‡, Giovanni De Micheli†
† Integrated Systems Laboratory (LSI), EPFL, Switzerland

?Embedded Systems Laboratory (ESL), EPFL, Switzerland
‡ Computer Science and Engineering Department, UCSD, USA

e-mail: {name.surname}@epfl.ch, acoskun@cs.ucsd.edu

ABSTRACT
Thermal management is a critical challenge in the design of high
performance multi-processor system-on-chips (MPSoCs). There-
fore, accurate and fast thermal modeling tools are necessary for
efficiently analyzing the thermal profiles of MPSoCs. This paper
advances state-of-the-art MPSoC thermal modeling approaches in
several directions. Our first contribution is a novel matrix state-
space compatible representation of MPSoC thermal behavior. This
representation can be used to choose the “best fit” solver among
various ordinary differential equation (ODE) solvers according to
the required accuracy and simulation speed. Then, we exploit this
representation to develop an adaptive thermal simulation infrastruc-
ture that provides the shortest simulation time for the desired ther-
mal modeling accuracy and the given MPSoC floorplan. The exper-
imental results, which are based on a commercial 8-core MPSoC,
show that our thermal simulation method achieves both higher ther-
mal estimation accuracy (6× better) and faster simulation time (up
to 70%) when compared to state-of-the-art MPSoC thermal simu-
lators.

1. INTRODUCTION
Nowadays commercial multi-processor system-on-chips (MP-

SoCs) with up to several tens of cores are available in the market,
such as IBM’s Cell [7], Sun’s Niagara-1 [8] and Tilera’s 64-core ar-
chitecture [9]. As the number of cores and power density increase
in such high performance systems and the technology scaling con-
tinues, temperature-induced challenges become more severe. The
ITRS roadmap outlines that, in the near future, peak power dissi-
pation and consequent thermal implications will constitute a ma-
jor performance bottleneck for multi-core systems [11]. Moreover,
temperature gradients and hot spots do not only affect the perfor-
mance of the system, but also lead to unreliable circuit operation
and degrade chip lifetime [10].

Over the last decade, many tools, algorithms and thermal man-
agement methods have been proposed to mitigate temperature-
induced challenges. HotSpot [5] and the Forward Euler (FE)-based
HW/SW thermal emulator [16] present thermal modeling tools ap-
plicable to MPSoCs. These approaches model the die as a net-
work of thermal resistances and capacitances, and solve the associ-
ated differential equations using an Ordinary Differential Equation
(ODE) solver. However, so far no complete analysis has been per-
formed to explore the possible trade-offs between the accuracy and
simulation time of the different ODE solvers. Especially for large
MPSoCs, accurate temperature simulation using existing solvers
might require prohibitively long simulation time, if exploration
time vs. accuracy trade-offs are not examined carefully.

This paper advances the state-of-the-art of MPSoC thermal mod-
eling in two main directions. First, we propose a novel matrix
state-space compatible representation of the MPSoC thermal be-
havior. This representation, integrated with adaptable ODE solvers,
enables examining the trade-offs between accuracy and simulation
time in MPSoC thermal modeling under various run-time condi-
tions. Contrarily, current methods utilize only one type of ODE
solver, e.g., first order solvers ([14], [19]), to make thermal sim-
ulation faster. We present a thorough theoretical study of state-of-
the-art thermal simulators to identify the Pareto points (temperature

Figure 1: Modeling of the heat transfer inside the MPSoC

estimation time vs. accuracy) of various ODE solvers.
Second, we design a scalable thermal simulator infrastructure,

which identifies the optimal thermal modeling parameters for a
given set of design constraints such as MPSoC floorplan granu-
larity or desired thermal simulation time. The parameters used in
the optimization flow are the order of the ODE solver, the num-
ber of cells used to model a floorplan, the simulation time step and
other matrix-related parameters. Each set of simulation parame-
ters provided by our thermal simulator infrastructure is associated
with a thermal simulation method that has the shortest simulation
time for a certain accuracy (or the highest accuracy for the given
simulation time). Our experimental setup is based on Sun’s Ul-
traSPARC T1 [8], and we utilize real-life workload traces ranging
from web-server to multimedia benchmarks [18]. The results val-
idate the benefits of our adaptive ODE thermal simulation infras-
tructure for a number of cases of operating conditions and accuracy
requirements. The experiments show that our simulation infras-
tructure achieves up to 6× higher thermal estimation accuracy, and
70% faster simulation when compared to state-of-the-art MPSoC
thermal simulators.

The paper is organized as follows. Section 2 discusses the related
work. In Section 3, our thermal simulation model is presented, and
a matrix representation that can utilize first, second and fourth order
solvers is proposed. Section 4 describes our experimental set-up,
and analyzes the modeling parameters that affect the accuracy and
speed of thermal simulation, identifying trade-offs between these
design metrics for various ODEs. Section 5 describes our method-
ology for designing an optimal thermal simulation framework, and
evaluates its performance based on a commercial 8-core. Finally,
in Section 6 we present the main conclusions of this work.

2. RELATED WORK
Thermal modeling and simulation at various levels of abstrac-

tion have been hot topics over the past years [1]-[5]. In [5], a ther-
mal/power model for superscalar architectures is presented. Vari-
ous abstraction levels have been used to model MPSoC tempera-
ture, such as finite element [3] and Green-function [4]. HotSpot [5]

and the Forward Euler (FE)-based emulator [16] model the MPSoC
as a network of thermal resistances and capacitances, and solve the
automated model using an ODE solver.

Thermal management techniques received a lot of attention re-
cently due to the collateral effect of increasing power density. Dy-
namic techniques to manage thermal hot spots have been first in-
troduced by Brooks et al. [12]. In [6] and [15], a significant reduc-
tion in localized hot spots has been obtained using thread migration
techniques. Temperature-aware scheduling for MPSoCs has been
presented in [18, 19]. In [14], the authors solve the optimum fre-
quency assignment problem under thermal constraints using con-
vex optimization and an approximation of the heat flow equation
based on an FE model for rapid thermal behavior estimation. How-
ever, this speed-up has a significant loss in accuracy due to the lin-
earization of the thermal conductance coefficient of the materials.

To the best of our knowledge, a thermal simulation tool that is
able to automatically choose its simulation parameters according to
user accuracy and desired simulation time constraints has not been
proposed before. In addition to providing an automated way to
select the optimum simulation method, we present a detailed study
on how various parameters (grid granularity, simulation step size,
order of the ODE solver or matrix update rate) affect the accuracy
and the computational complexity of the MPSoC thermal simulator.

3. THERMAL SIMULATION MODEL
In this section our thermal simulation model is described. Af-

ter describing the heat propagation model, we introduce a matrix-
based state-space representation suitable for various ODE solvers.
Finally, we present a thorough theoretical analysis comparing the
ODE solvers.

3.1 Heat Propagation Model
Similar to previous work [16], we have used two layers to model

the MPSoC: the silicon layer and the heat spreading copper layer.
The chip floorplan has been divided into grid cells with cubic shape.
Each functional unit in the floorplan can be represented by one
or more thermal cells in the silicon layer. The thermal model is
formed considering the heat conductances G and capacitances C of
the cells ([16],[5]). The heat flow is then modeled by a differential
equation solving the resistance and capacitance network. The ther-
mal behavior of the MPSoC is computed through the interaction of
multiple discrete-time differential equations interacting with each
other. A graphical representation is presented in Figure 1.

In Figure 1, the gray and brown blocks represent the silicon and
copper layer, respectively. The ambient temperature is modeled
as a layer with uniform temperature and infinite thermal capac-
ity. The red mark inside the silicon cell represents the cell’s power
dissipation. At any moment in time, the temperature change of
each block due to its neighbors is given by the temperature differ-
ence between the two blocks, multiplied by the constant that la-
bels each pair of arrows. Since the heat propagation inside MP-
SoCs is a non-linear process, all coefficients inside the arrows
are temperature-dependent in our model. The direction of the ar-
row identifies the sign of the temperature change. For example,
the temperature change of cell Si−0 due to cell Si−1 is given by
−(X(Si−0)−X(Si−1)) ·Ksi−si, where X(n) is the temperature
of cell n and Ksi−si is a multiplicative constant. The temperature
increase of cell Si−0 due to power dissipation is proportional to
αth power of frequency, fα. The coefficient α expresses the de-
pendence between the frequency and the power dissipated into a
core. If α = 1, we have a linear dependence of power to frequency
(i.e., as in frequency scaling) while if 1 < α ≤ 2 we obtain a
quadratic or sub-quadratic dependence (i.e., voltage and frequency
scaling) [14].

3.2 First Order ODE Solvers
A first order ODE solver is the simplest and fastest solver

for solving the complex system of differential equations model-
ing the MPSoC. Because of its simplicity, it has been used by
many state-of-the-art thermal simulators like the earliest versions
of HotSpot [5] or real-time thermal emulation frameworks targeting
embedded SoCs [16]. Furthermore, it has been utilized by state-of-
the-art thermal management policies for fast estimation of temper-
ature on the MPSoC [14, 19].

The Forward Euler FE method is described by Eqn. 1:

Xn+1 = Xn + ∆t · ∂X(t)

∂t

˛̨
˛̨
t=tn

(1)

where Xn and Xn+1 are the vectors containing the temperature of
any thermal cell composing the MPSoC respectively at time n and
n + 1. ∆t is the simulation step size and ∂X(t)

∂t

˛̨
˛
t=tn

is the vector

containing the temperature rate of change at time n. By using the
model represented in Figure 1, the last term in Eqn.1 equals to:

∂X(t)

∂t

˛̨
˛̨
t=tn

= A′(tn) ·Xn + B′ · Un + W ′ (2)

where matrix A′(tn) expresses the part of the on-chip temperature
spreading process that depends only on the cell’s temperature. This
equation basically expresses all arrows of Fig. 1 in the matrix form
except Kcu−RT , which needs to be modeled separately. Matrix B’
is a matrix where B′

i,j contains the conversion factor between the
power assigned to functional unit j and the temperature increase in
cell i. Matrices A′(tn) and B’ contain the system dynamics that
depend entirely on the current state and on the given power as-
signment vector Un. The part of the dynamic system that is not
controllable by the input vector, such as the heat dissipation of the
copper layer due to room temperature, is expressed by vector W’.
Then, by substituting 2 into 1, Eqn. 3 is obtained:

Xn+1 = A(tn) ·Xn + B · Un + W (3)

where:

A(tn) = I + ∆tA
′(tn) (4)

B = ∆tB
′ (5)

W = ∆tW
′ (6)

The equation above is a time-varying state-space representation
modeling the thermal behavior of the MPSoC using a first order
ODE solver. The computation here is simple and requires only
a matrix multiplication. An important property of a solver is its
“stability”. A solver is called numerically stable if an error does
not exponentially grow during the calculation of the final solution.
The FE method has potential stability problems when the chosen
time-step for the thermal simulations is large, as shown in the liter-
ature [14, 16], which will be explored and addressed in this paper.

A first order ODE method that is unconditionally stable is the
Backward Euler (BE) method. This integration algorithm ensures
that the accuracy error does not grow exponentially over time for
any simulation step size. The Backward Euler method is described
by Eqn. 7:

Xn+1 = Xn + ∆t · ∂X(t)

∂t

˛̨
˛̨
t=tn+1

(7)

Assuming A′(tn) ' A′(tn+1), and using Eqn. 8:

∂X(t)

∂t

˛̨
˛̨
t=tn+1

= A′(tn+1) ·Xn+1 + B′ · Un + W ′ (8)

we can obtain Eqn. 9 in a discrete-time domain:

Xn+1 = A(tn) ·Xn + B(tn) · Un + W (tn) (9)

where:

A(tn) = [I −∆tA
′(tn)]−1 (10)

B(tn) = [I −∆tA
′(tn)]−1∆tB

′ (11)

W (tn) = [I −∆tA
′(tn)]−1∆tW

′ (12)

This method achieves unconditional stability at the cost of a signif-
icant increase in computational complexity with respect to the FE
algorithm. The most costly computational requirement for the BE
method is the inverse matrix computation. It has been shown in the
literature [16],[5] that the accuracy of both first order methods is
O(∆2

t) [20].

Figure 2: Floorplan model of Sun Niagara MPSoC.

3.3 Second Order ODE Solvers
As a representative example of second order solvers, we ana-

lyze the Crank-Nicholson (CN) method. This integration algorithm
combines FE with BE to obtain a second order method due to can-
cellation of the error terms. CN method reaches an accuracy of
O(∆2

t). This method can be described using Eqn. 13:

Xn+1 = Xn +
∆t

2
·
"

∂X(t)

∂t

˛̨
˛̨
t=tn

+
∂X(t)

∂t

˛̨
˛̨
t=tn+1

#
(13)

Assuming A′(tn) ' A′(tn+1), and using Eqn. 2 and 8, we obtain:

Xn+1 = A(tn) ·Xn + B(tn) · Un + W (tn) (14)

where:

A(tn) = [I − 0.5 ·∆tA
′(tn)]−1 · [I + 0.5 ·∆tA

′(tn)] (15)

B(tn) = [I − 0.5 ·∆tA
′(tn)]−1 ·∆tB

′ (16)

W (tn) = [I − 0.5 ·∆tA
′(tn)]−1 ·∆tW

′ (17)

As a matter of fact, higher model orders have higher computation
complexity. On the other hand, the CN method is also uncondition-
ally stable and has a higher accuracy in comparison to first order
solvers when larger simulation time-steps are used. The accuracy
of such second order methods can reach O(∆3

t) [20].

3.4 Multi-Step Fourth Order ODE Solver
Numerical ODE solution methods, start from an initial point and

take a small step in time to find the next solution point. This process
continues with subsequent steps to map out the solution. Single-
step methods (such as Euler’s method) refer to only one previous
point and its derivative to determine the current value. Multi-step
methods take several intermediate points within every simulation
step to obtain a higher order method. This way, they increase the
accuracy of the approximation of the derivatives by using a linear
combination of these internal additional points. A multi-step solver
has been embedded in the last release of HotSpot [5]. One particu-
lar subgroup of this family of multi-step solvers is the Runge-Kutta
method, which includes a fourth order solver (RK4). The algo-
rithm that we use for implementing the RK4 solver employs a FE
method to compute derivatives at the internal points. By using the
model represented in Figure 1, this method is described by follow-
ing equations:

k1 = ∆t · [A′(tn) ·Xn + B′ · Un + W ′] (18)

k2 = ∆t · [A′(tn+0.5)(Xn + 0.5 · k1) + B′ · Un + W ′]
(19)

k3 = ∆t · [A′(tn+0.5)(Xn + 0.5 · k2) + B′ · Un + W ′]
(20)

k4 = ∆t · [A′(tn+1)(Xn + k3) + B′ · Un + W ′] (21)

Xn+1 = Xn +
1

6
· (k1 + 2k2 + 2k3 + k4) (22)

Figure 3: Circuit for the determination of ∆Tcs and ∆Tss.

Assuming A′(tn) ' A′(tn+0.5) ' A′(tn+1), we obtain:

Xn+1 = A(tn) ·Xn + B(tn) · Un + W (tn) (23)

where:

F = ∆tA
′(tn) (24)

A(tn) = I +
1

6
[6F + 3F 2 + F 3 + 0.25F 4] (25)

B(tn) = ∆t · [I +
1

6
(3F + F 2 + 0.25F 3)] ·B′ (26)

W (tn) = ∆t · [I +
1

6
(3F + F 2 + 0.25F 3)] ·W ′ (27)

Note that this method does not require the inverse matrix compu-
tation. In addition, like FE, this method is not unconditionally sta-
ble, since RK4 method uses the FE for computing the rate of change
of the temperature function in the internal point, and hence inherits
its stability properties. The theoretical accuracy of this multi-step
fourth order method can reach O(∆5

t) [20].

4. THERMAL SIMULATOR ANALYSIS
In this section we provide a theoretical analysis about the effects

of the parameters in the ODE solvers on the speed and the accuracy
of simulation results. Then, we provide an experimental validation
with our 8-core MPSoC case study.

4.1 Experimental Methodology
Our experimental setup is based on the 8-core UltraSPARC T1

(Niagara-1) architecture from Sun Microsystems [8]. Its floorplan
is shown in Figure 2. In the thermal model, we use a baseline
modeling granularity of grid cells with 1mm side each, and the val-
ues regarding thermal resistance, silicon thickness and copper layer
thickness have been derived from [17] and [8]. We utilize real-life
workloads which were ran on an UltraSPARC T1 chip (ranging
from web-server to playing multimedia) [18]. Using the utilization
of cores, we derived the power traces based on the average power
values reported in [8]. In all of the results for UltraSPARC T1, we
display the average gains in accuracy and speed over all the bench-
marks with respect to the state-of-the-art thermal simulators.

4.2 Stability Analysis
Explicit integration methods where the inverse matrix calcula-

tion is not employed suffer from a potential instability problem.
Instability means that the integration error can grow exponentially
at every simulation step. This issue occurs when the simulation
time step is bigger or comparable to the inverse of the maximum
absolute temperature rate of change of the MPSoC [20]. The max-
imum allowable simulation step size ∆tmax is then given by the
following equation:

∆tmax ≈ 1

max
˛̨
˛ ∂X(t)

∂t

˛̨
˛

(28)

In this section our goal is to find the maximum allowable simulation
step size that avoids instability problems in the solver, assuming a

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

block size / cell size

sim
ula

tio
n

ste
p

siz
e

[s]

theoretical
experimental

Figure 4: Experimental vs. theoretical values of ∆tmax for var-
ious grid resolution values.

worst-case scenario.
According to our analysis, based on the model shown in Figure

1, the highest worst case temperature rate of change in cell Si−0

occurs when the following conditions are true:
1. Si−0 is at room temperature
2. Si−0 has the highest power dissipated per cell Pmax

3. Between Si−0 and Cu−0, there exists the maximum temper-
ature difference possible, ∆Tcs.

4. Between Si−0 and neighboring cells, there exists the maxi-
mum temperature difference possible, ∆Tss.

In this particular case, the maximum temperature rate of change is
expressed by the following equation:

max

˛̨
˛̨∂X(t)

∂t

˛̨
˛̨ =

Pmax∆t
C(Si−0)

+ 4Ksi−si∆Tss + Ksi−cu∆Tcs

∆t
(29)

where Pmax is the the highest power dissipated per cell and
C(Si−0) is the silicon cell thermal capacitance. To determine the
value of ∆Tcs and ∆Tss, we use the circuit in Figure 3.

This circuit maximizes temperature differences between the cell
Si−0 and the other two cells (Si−1 and Cu−0) by modeling the
scenario where the left half side of the cells in the floorplan are
not dissipating any power and the right half side has the highest
power density in the circuit. Thus, cell Si−1 is at room temper-
ature (Tamb) and cell Si−1 is consuming Pmax. Our target is to
compute the temperature of Si−1 and Cu−0 at the equilibrium point
when the highest temperature differences are present between cells.
When the transient response is finalized, the result is:

∆Tss = X(Si−0)−X(Si−1) = X(Si−0)− Tamb (30)

where X(j) is the temperature of cell j. According to preceding
equations, to solve equation 29 we need to determine the temper-
ature value of cells Si−0. By analyzing and solving the circuit in
Figure 3, we obtain:

∆Tss =

Pmax∆t
C(Si−0)

(kcu−si + kcu−RT)

kcu−siksi−si + kcu−RT (ksi−cu + ksi−si)
(31)

To determine the value of ∆Tcs, a different scenario needs to be
considered. The scenario assumes that all silicon cells are consum-
ing Pmax. The circuit is equivalent to the previous one in Figure
3, but this time without the arrow Ksi−si or the cell Si−1. In this
case, at the equilibrium, the following equation holds:

∆Tcs = X(Si−0)−X(Cu−0) (32)

By solving the previously described network, we obtain:

∆Tcs =
Pmax∆t

ksi−cuC(Si−0)
(33)

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−3

10
−2

10
−1

10
0

block size / cell size

m
ax

 a
bs

 e
rr

or
 [°

C
]

FE
BE
CN
RK4

Figure 5: Accuracy vs. grid resolution of the floorplan.

Then, by substituting Eqn. 33, 31 and 29 into 28, we are able
to compute ∆tmax. The resulting function is a highly non-linear
function that depends on parameters such as MPSoC thermal pro-
file, thermal cell size and dimensions of the MPSoC.

In addition to the theoretical derivations, we simulated the 8-core
MPSoC shown in Figure 2 using an explicit solver for various sim-
ulation step sizes (∆t). We then identified ∆tmax as the largest
∆t value for which the integration method was working without
getting unstable. We repeated the simulation for various grid res-
olution values. The comparisons between the theoretical and the
experimental results are shown in Figure 4.

Results show that the theoretical analysis is in line with the ex-
perimental simulations, as both set of results have the same trends
and the difference of values is very small. The reason of the small
difference is that worst case scenario assumptions make our theo-
retical result more conservative—i.e., ∆tmax is 7% lower in the
8-core case study. Note that the theoretical derivation using Eqn.
33, 31, 29 and 28 is much faster to compute than performing an
experimental derivation of ∆tmax.

4.3 Cell Size Influence
The cell size is the parameter that mostly affects the speed of

the simulation. The computational complexity Nop is related to the
grid granularity according to following equation:

Nop = N0 ·
„

block size

cell size

«2

(34)

where N0 is the computational complexity to process the floorplan
using a cell size equal to the smallest functional block of the MP-
SoC. As shown in Eqn. 34, the computational complexity increases
quadratically with a linear increase in the grid resolution. Figure 5
shows the accuracy of the thermal model for the various solvers we
have discussed.

As Figure 5 shows, with a high simulator order, the advantage of
increasing the grid resolution is more obvious than the advantage
observed for low-order simulators. In fact, for low accuracy solvers
(such as FE or BE), the increase in accuracy is almost irrelevant
considering the quadratic increase in computational complexity.

4.4 Simulation Time Step
In the previous section, we determined the value of ∆tmax. For

∆t > ∆tmax, explicit methods like the FE or the RK4 are un-
stable. On the other hand, if the simulation time step is reduced,
the explicit methods obtain an increase in accuracy, but at a higher
computational complexity. The computational complexity Nop is
related to the time step size ∆t, as shown in equation 35:

Nop = N0 ·
„

∆t0

∆t

«
(35)

where N0 is the computational complexity using a step size equal

10
−5

10
−4

10
−3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

simulation time step [s]

m
ax

 a
bs

 e
rr

or
 [°

C
]

FE
BE
CN
RK4

Figure 6: Accuracy vs. simulation time step ∆t.

0 0.005 0.01 0.015 0.02 0.025
10

−3

10
−2

10
−1

10
0

invert matrix calculation period [s]

m
ax

 a
bs

 e
rr

or
 [°

C
]

FE
BE
CN
RK4

Figure 7: Accuracy vs. matrix calculation period.

to ∆t0. The computational complexity is inversely proportional to
∆t. Figure 6 shows the accuracy change with respect to simulation
step size.

The effect of decreasing ∆t is visible for all the solvers. In ad-
dition, the cost in terms of computational complexity is relatively
small with respect to the gain in accuracy. We also observe that usu-
ally more than one solver can meet the given error limit. For exam-
ple, to achieve a desired maximum error of 10−2 ◦C, the first order
solver requires ∆t ' 6 · 10−5, the second order solver requires
∆t ' 5 · 10−4, and the fourth order solver requires ∆t ' 10−3.
The method we present in Section 5 automatically identifies which
option provides the fastest simulation result, according to the prop-
erties of the particular MPSoC architecture.

4.5 Inverse Matrix Calculation Period
Another parameter that influences the accuracy / simulation time

trade-off is the matrix calculation period (TMC). This is the time
that passes between two consecutive computations of the matrices
A(tn), B(tn) and W (tn). The challenge is that, these matrices
are temperature dependent and they change over time during the
runtime operation of the MPSoC. If the matrices are not computed
sufficiently often, this can reduce accuracy. Figure 7 quantifies this
error for different solvers and TMC values.

As Figure 7 shows, for higher order solvers, reducing TMC be-
comes more beneficial than reducing TMC for low-order solvers.
For low accuracy solvers, the increase of accuracy is not high
enough to justify the increase in computational complexity.

Figure 8: Thermal simulator design flow

5. OPTIMAL THERMAL SIMULATOR
In the previous sections we analyzed state-of-the-art thermal

simulators and we have proposed a generic way to represent all
of them using a matrix-based state space representation. Param-
eters affecting the accuracy and the speed of the simulation have
been analyzed both theoretically and experimentally. This section
presents a design flow that determines the “best” thermal simulator
for the desired simulation speed/accuracy trade-off on a given MP-
SoC. The proposed methodology exploits the previously derived
results for the various simulation methods. The block diagram of
the design flow is shown in Figure 8.

The design flow has the following as input parameters: MPSoC
floorplan, power traces for the functional units (optional), desired
simulation accuracy and simulation speed. The flow produces two
outputs: 1) The state-space representation of the chip thermal pro-
file (see Section 3). This output is also useful for the thermal man-
agement policies that require a model of the MPSoC to perform op-
timizations. 2) The design of a thermal simulator. This design is a
set of choices regarding the order of the ODE solver, the simulation
time step, and the parameters described in Section 4 to maximize
the simulation speed for a given accuracy.

The design of the adaptive thermal simulator is composed by
three main steps. The first one performs a pre-processing of input
parameters. It computes the maximum allowable ∆tmax by using
Eqn. 33, 31, 29 and 28. Then, it simulates the thermal behavior of
the MPSoC by using randomly generated power traces or real-life
power traces. This simulation takes a short time, and is done by
using a coarse-grid granularity. More specifically, ∆tmax is used
as simulation time step and the selected grid granularity is equal
to the dimension of the smallest functional block of the floorplan.
In our case study, we simulated the system for a total simulation
time of 100ms, and the simulation was repeated for all the solvers
(FE, BE, CN and RK4). The goal of this pre-processing phase is
to identify the order of the solver and the order of magnitude of the
parameters that will maximize the performance of our solver for
the given constraints. For this reason there is no need to perform
thermal simulations with higher accuracy (and longer simulation
time).

The second phase performs a design space exploration in the
range of values identified by the pre-processing phase. This phase
varies all parameters by a few multiplicative factors and simu-
lates the MPSoC for a longer time. Since matrices used by the
solvers are temperature dependent, the simulation has to be long
enough to generate temperature differences in the MPSoC thermal
profile, to make the position of each Pareto point (shown in Fig-
ure 9) more reliable. More specifically, in the 8-core case study,
we simulated the overall system for 10 seconds for all the com-

Figure 9: Design space exploration using our adaptive thermal
simulator

binations of the following parameters: two grid granularity val-
ues (block size/cell size = 1; 2), three step size values (∆t =
∆tmax;∆tmax/2;∆tmax/4), and three values of matrix calcula-
tion period (TMC = ∆t; 5∆t; 9∆t).

To measure the accuracy error, the 4th order ODE solver with
a small simulation time step and a high grid granularity is used
as the baseline. The last post-processing step of the design phase
creates the two outputs in Figure 8 with the optimum parameters,
as discussed in the next section.

5.1 Case Study
This section performs an experimental validation of the method

proposed in the previous section. The calculation of ∆tmax for
different grid resolutions has already been shown in Figure 4. Fol-
lowing the proposed design method, we simulate the system for a
very short time (100ms) with ∆t = 3E− 3s and a coarse-grid res-
olution with the block size to cell size ratio equal to 1. At this point
we identify the order of the solver, and the proposed simulator de-
sign flow automatically refines our simulation until we obtain the
desired optimum point in the design space. We simulated the case
study for the parameters described in previous sections for all the
simulators (FE, BE, CN, RK4). Results are shown in Figure 9.

The optimum configurations of parameters (or Pareto points)
provide the highest accuracy for a given simulation speed or vice
versa. These configurations are automatically selected by our sim-
ulation framework according to the required accuracy or simulation
speed for the given MPSoC design. Once these Pareto points in the
design space are computed, our thermal simulator design can se-
lect the one closer to the input constraints specified. In this regard,
Figure 10 compares the speed and the accuracy of the proposed
method with state-of-the-art-thermal simulators like HotSpot [5]
and the FE-based thermal simulator presented in [16]. All three
groups of results (Proposed method, HotSpot, FE-based simulator)
have error values with respect to a 4th order ODE solver with a
small simulation time step and a high grid granularity. The time
spent for the derivation in the proposed method of the optimal sim-
ulation parameters has been taken into account. The simulation
time step is constant in both implementations. These results indi-
cate that our adaptive simulation framework, which utilizes various
ODE methods, can improve the simulation speed up to 70% with
respect to HotSpot, while resulting in 6× higher accuracy.

6. CONCLUSIONS
Development of efficient thermal management strategies for MP-

SoCs relies on fast and accurate thermal modeling tools. This pa-
per advances state-of-the-art temperature-aware system design in

Figure 10: Normalized comparison of the proposed method
(accuracy=3 ·10−3 ◦C) with RK4-based thermal simulators (as
HotSpot) and (FE)-based thermal simulators.

two main directions. First, we have presented a novel state-space
representation that can be used to combine various ODE solvers
or to choose the best fitting solver, without the need for adjusting
the representation according to the solver. The second contribu-
tion is the definition of an optimal thermal simulation framework
that uses this novel representation, and selects the best solver and
the optimum simulation parameters considering the desired con-
straints for a given MPSoC architecture. We have used the optimal
thermal simulation framework for exploring the existing trade-offs
of accuracy and simulation speed in thermal modeling for real-life
MPSoC designs. The experimental results on an 8-core MPSoC
showed that our adaptive thermal simulation achieves significant
gains in accuracy (up to 6×) and speed (up to 70%) with respect to
state-of-the-art thermal simulators.

7. REFERENCES
[1] J. Li et al.,Power-performance implications of thread-level parallelism in chip

multiprocessors, Proc. ISPASS, 2005.
[2] J. Deeney,Thermal modeling and measurement of large high power silicon

devices with asymmetric power distribution, Proc. ISM, 2002.
[3] B. Goplen et al.,Efficient thermal placement of standard cells in 3D ICs using a

force directed approach, Proc. ICCAD 2003.
[4] Y. Zhan et al.,Fast computation of the temperature distribution in VLSI chips

using the discrete cosine transform and table look-up, Proc. ASPDAC 2005.
[5] K. Skadron et al.,Temperature-aware microarchitecture: Modeling and

implementation, TACO, 2004.
[6] P. Chaparro, J. Gonzalez, G. Magklis, Q. Cai, and A. Gonzalez. , Understanding

the thermal implications of multi-core architectures., IEEE TPDS, 2007.
[7] D. Pham et al.,Design and Implementation of a First-Generation Cell Processor.,

Proc. ISSCC, 2005.
[8] P. Kongetira et al.,Niagara: A 32-way multithreaded SPARC processor., IEEE

Micro, 2005.
[9] Tilera Corporation,Tilera’s 64-core architecture,

www.tilera.com/products/processors.php, 2007.
[10] O. Semenov et al.,Impact of self-heating effect on long-term reliability and

performance degradation in CMOS circuits, IEEE T-D&M, 2006.
[11] S. Borkar,Design challenges of technology scaling, IEEE Micro, 1999.
[12] D. Brooks et al.,Dynamic thermal management for high-performance

microprocessors, Proc. HPCA, 2001.
[13] C J. Hughes et al.,Saving energy with architectural and frequency adaptations

for multimedia applications, Proc MICRO, 2001.
[14] S.Murali et al.,Temperature Control of High Performance Multicore Platforms

Using Convex Optimization, Proc. DATE, 2008.
[15] J. Donald et al.,Techniques for multi-core thermal management: Classif. and

new exploration, Proc. ISCA, 2006.
[16] D. Atienza et al.,HW-SW Emulation Framework for Temperature-Aware Design

in MPSoCs, ACM TODAES, 2007.
[17] M.-N. Sabry,High-precision compact-thermal models. IEEE Transactions on

Components and Packaging Technologies, 2005.
[18] A. K. Coskun, et al., Static and Dynamic Temperature-Aware Scheduling for

Multiprocessor SoCs, IEEE Transactions on VLSI, vol.16 no.9, pp. 1127-1140,
Sept. 2008.

[19] F. Zanini, et al., A Control Theory Approach for Thermal Balancing of MPSoC,
Proc. ASP-DAC, 2009.

[20] Burden Richard L, et al., Numerical Analysis, 7th ed. Belmont, CA: Brooks
Cole, 2000.

