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ABSTRACT
With technology advances, the number of cores integrated on a chip
and their speed of operation is increasing. This, in turn is leading
to a significant increase in chip temperature. Temperature gradi-
ents and hot-spots not only affect the performance of the system,
but also lead to unreliable circuit operation and affect the life-time
of the chip. Meeting the temperature constraints and reducing the
hot-spots are critical for achieving reliable and efficient operation
of complex multi-core systems. In this work, we present Pro-Temp,
a convex optimization based method that pro-actively controls the
temperature of the cores, while minimizing the power consumption
and satisfying application performance constraints. The method
guarantees that the temperature of the cores are below a user-
defined threshold at all instances of operation, while also reducing
the hot-spots. We perform experiments on several realistic multi-
core benchmarks, which show that the proposed method guarantees
that the cores never exceed the maximum temperature limit, while
matching the application performance requirements. We compare
this to traditional methods, where we find several temperature vio-
lations during the operation of the system.

Keywords
Thermal-aware design, temperature control, dynamic frequency
scaling, static and dynamic optimization.

1. INTRODUCTION
With technology scaling, the number of transistors available on

a chip and their speed of operation is increasing rapidly. To ef-
ficiently utilize the large number of transistors with manageable
design complexity and wiring requirements, designers have started
integrating multiple processor, memory and hardware cores on the
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same chip. Today, several commercial multi-core architectures
with few cores to several tens of cores are available. Examples
include the IBM’s Cell [1], Sun’s Niagara [2], Tilera’s 64-core ar-
chitecture [4], to name a few.

As the number of cores on the chip and their speed of operation
is increasing, the semiconductor industry is facing several techno-
logical challenges to build these systems. It is predicted that in the
near future, peak power dissipation and consequent thermal impli-
cations will be a major performance bottleneck for multi-core sys-
tems [5]. Temperature gradients and hot-spots not only affect the
performance of the system, but also lead to unreliable circuit oper-
ation and affect the life-time of the chip [6]. For ensuring a reliable
system operation, the cores need to operate below a maximum tem-
perature value, which is usually between 85°to 110°Celsius [17].
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Figure 1: Snap-shot of the thermal behavior for traditional DFS
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Figure 2: Snap-shot of the thermal behavior for the proposed
Pro-Temp method

1.1 Basic Dynamic Frequency Scaling for
Thermal Management

Dynamic frequency and voltage scaling (DFS) is a powerful
method to reduce the power consumption of the cores, by matching
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their performance to application characteristics. In many systems,
one or more power management units monitor the application be-
havior and periodically scale the processor frequencies to meet the
required performance level. It is also commonly used to manage the
thermal behavior of the cores: when a core reaches a pre-defined
temperature threshold level, it is shutdown or its frequency is re-
duced. However, such a thermal management policy has three ma-
jor drawbacks:

(1) It is reactive in nature. The cores operate for a long period
above the maximum allowable temperature, before the frequency
scaling takes place. This is true even when the temperature thresh-
old for frequency scaling is designed to be much lower than the
maximum allowable temperature. As an example, in Figure 1, we
show the temperature variations on a core utilizing such a scheme
(the details of the experiment are presented later, in Section 5). In
this example, the maximum allowed temperature is assumed to be
100°Celsius, and frequency scaling is applied when a core reaches
90°Celsius. This example shows that the maximum temperature is
violated for sometime, before the DFS forces the core to cool down.

(2) As frequency scaling of the different cores are usually per-
formed independently, the method does not achieve optimal per-
formance for the given temperature constraints. When scaling the
frequency of a core, it does not consider the thermal behavior of the
other cores.

(3) Finally, the method does not reduce the thermal gradients and
hotspots of the chip.

In this work, we present Pro-Temp, a convex optimization based
method to set the frequencies of the cores. The method pro-actively
controls the temperature of the cores, while minimizing the power
consumption and satisfying application performance constraints.
The proposed method overcomes all the above drawbacks of tra-
ditional frequency scaling. It guarantees that the cores always op-
erate below the maximum temperature limit at all time instances
of operation and application workloads, while reducing the ther-
mal hotspots and gradients. The frequency assignment for each
core also takes into account the global knowledge of the tempera-
ture and utilization of all the other cores. In Figure 2, the thermal
behavior of the core (from Figure 1) for our Pro-Temp scheme is
presented, which shows that the maximum temperature constraint
is met at all time instances.

1.2 The Pro-Temp Scheme
The Pro-Temp method consists of two phases: an off-line and an

on-line phase. In the off-line phase (done at design time), we deter-
mine an optimal frequency assignment for the different processors
in order to meet a particular workload constraint, while satisfying
the thermal constraints. The frequency assignments are such that,
for the entire time-period before the next DFS can be applied, the
cores are guaranteed to operate below the maximum temperature
value. For this, we use a convex optimization based method [25]
to solve the thermal heat flow equations of the chip [24]. In the
optimization process, we also reduce the temperature gradients and
hot spots on the chip. We apply the method for different workload
requirements and starting temperature values of the cores, and store
the resulting frequency assignments in a table.

This table is then used at run-time (the on-line phase) by the
thermal/power management unit, which periodically applies DFS
to the cores. The thermal management unit monitors the applica-
tion workloads processed by the cores and their temperature val-
ues. When DFS is applied, for the current workload and the current
maximum temperature value on the chip, the unit chooses the opti-
mal frequency assignment from the table (which was computed in
the off-line phase).

To validate our proposed method, we perform experiments on
a multi-core model based on the Sun’s 8-core Niagara architec-
ture [2]. We perform experiments on several realistic multi-core
benchmarks, which show that the proposed method guarantees that
the cores never exceed the maximum temperature limit. We com-
pare this to the traditional DFS method, where we find several tem-
perature violations during the operation of the cores. The experi-
ments also show that the methods in a large performance improve-
ment over the traditional DFS mechanism.

Here, we would like to note the fact that there have been nu-
merous works in the field of thermal-aware processor design and
task management (please refer Section 2 for details). The existing
methods cover a very large design space, from dynamic to static,
such as application of DFS [7], task assignment and scheduling
policies [8], task migration strategies [10], floorplanning policies
[16, 15], etc. For a single system, usually many of these policies
are applied together [3]. For example, the DFS method can be ap-
plied on a system, where the individual tasks are assigned to pro-
cessors based on an efficient physical-aware thermal policy, such
as presented in [11]. In this work, we only target the design of
an efficient pro-active thermal control mechanism that can set the
operating frequencies of the cores. This method, can then be used
in conjunction with the other thermal policies, such as task migra-
tion and task assignment. While our method will guarantee that the
temperature of the cores will be less than the maximum value, it is
possible to further reduce the temperature gradients on the chip by
utilizing other methods in conjunction with ours. Towards this end,
in Section 5.4, we show how our method can be integrated with an
efficient thermal-aware task assignment strategy.

2. RELATED WORK
A large number of researchers in computer architecture have fo-

cused on power management and thermal control for multi-core
systems and MPSoCs [3, 11, 21]. While reducing power density
has the effect of reducing overall temperature, power-aware de-
sign does not directly imply that thermal gradients between dif-
ferent components are minimized or individual hot spots do not
appear [17, 3]. Processor power optimizations using frequency and
voltage scaling have been proposed in several works [11, 7].

In the last years, research on control policy design for thermal
management has received a lot of attention as a collateral effect
of increasing power density. In [21, 9], the authors have pro-
posed adaptive mechanisms for thermal management, focusing on
handling key micro-architectural hotspots. In addition, task and
thread migration techniques have been proposed as basic ther-
mal management schemes in multi-core platforms [10, 3]. They
use performance counter-based information or compile-time pre-
characterization and achieve significant reductions in localized hot-
spots. In [22], the authors present a set scheduling mechanisms for
MPSoCs to perform temperature management at system-level. In
[26], an efficient task assignment policy for multi-core systems is
presented.

Finally, several groups have addressed the problem of thermal
modeling and simulation at different levels of abstraction [13]-
[18]. In [17] a thermal/power model for super-scalar architec-
tures is presented. It predicts temperature variations in proces-
sor components and shows effects in leakage power and perfor-
mance. [18] outlines a simulation model and its validation on em-
bedded cores, which shows temperature variations of 13.6°across
the die. Also, [12] models performance and power efficiency in
multi-core architectures considering thermal constraints, but it does
not propose any optimization policy. At the physical level, various
methods have been suggested to model the heat transfer in the sub-



Figure 3: Phase 1 of the Pro-Temp Method
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Figure 4: Table structure from the output of Phase 1

strate. Finite-difference time domain [13], finite element [15], and
Green-function [16] based algorithms have been applied for on-
chip thermal modeling.

3. DESIGN METHODOLOGY
In this section, we describe in detail the operation of the Pro-

Temp method.

3.1 System Description and Assumptions
We use the following realistic assumptions for the system char-

acteristics. The system that we target has multiple cores, with each
core running a single task or thread. We assume there is at least
one thermal sensor for each core, and we utilize a centralized ther-
mal management unit for monitoring the values of the sensors. We
assume that one of the processors also acts as a control unit to as-
sign the incoming tasks to the different processors. In our system,
we utilize a simple task assignment policy: when a task arrives, the
control unit assigns the task to any idle processor. If all the pro-
cessors are busy, the task is queued up in a task-queue. Please note
that other complex task assignment policies can also be used along
with our method (an example of which is shown in Section 5.4).

We define the workload of a task as the total amount of time
required for running the task, at the highest operating frequency. In

most systems, the thermal management and frequency scaling are
applied in the milli-seconds scale [3]. We assume that workload
of the individual tasks are much smaller than the time window at
which the DFS is applied. This is in fact a realistic assumption
because in our experiments on multi-core benchmarks, the tasks
have a workload of 1 ms - 10 ms.

3.2 Phase 1: Design Time Flow
The off-line phase of the method, which is performed at design

time for a multi-core system, is presented in Figure 3. The floorplan
of the chip and the maximum power consumption and maximum
operating frequencies of the cores are obtained as inputs. Based on
the packaging and the heat spreader used in the system, the thermal
models that can track the temperature variations of the cores are
obtained. For this, we use existing tools and methods, such as the
Hotspot [17] and the MPSoC thermal modeling tool presented in
[19]. The time period at which the DFS needs to be applied is also
obtained as an input.

The convex optimization procedure is solved for different start-
ing temperature values of the cores. As repeating the procedure for
all possible combinations of the starting temperatures of the dif-
ferent cores leads to exponential complexity and infeasibility, we
simplify the process by only iterating on one temperature value.
During run time, this translates to the maximum temperature value
across all the cores. As the optimization method also minimizes
the temperature gradient across the cores, from our experiments we
found that this simplification has very little impact on the quality
of the results (see Section 5 for more details).

The workload requirement of the tasks in a time period directly
translates to a frequency requirement on the processors. As an ex-
ample, assume 200 tasks are assigned to 4 processors in a DFS
time window of 100 ms, with each task having a workload of 1 ms
at 1 GHz frequency. The average speed of the processors should
be 500 MHz to satisfy the workload characteristics of the tasks. In
our design flow, we vary the required average frequency of the pro-
cessors and apply the convex optimization for each design point.
If the required frequency point cannot be supported, the optimiza-
tion notifies an infeasible solution. The mathematical models of the
convex optimization problem are explained in detail in Section 4.

The output of Phase 1 is a table of frequency vectors, with a
different frequency vector for each starting temperature value and
required average frequency, as shown in Figure 4.

3.3 Phase 2: Run Time Control
In the on-line phase of our method, the thermal management unit

utilizes the table obtained in Phase 1 to set the frequencies of the
processors. The DFS is applied periodically, at a pre-defined time
period. In each time period, the utilization of the different pro-
cessors is tracked by the thermal management unit. The unit also
monitors the workload of the tasks waiting in the task queue, to be
executed by the cores. Based on these information, the required
average operating frequency across all the processors for the next
period is calculated by the unit. Before applying the DFS, the unit
gathers the temperature information of the processors and finds the
maximum temperature across the cores. Based on this tempera-
ture value and the required average frequency of the cores, the unit
chooses the frequency assignment for the processors from the ta-
ble. If the frequency point cannot be supported, the unit chooses
the next lower frequency point in the table that can support the
temperature constraints.

4. CONVEX MODELS
In this section, we first briefly describe the convex models. A

more detailed description of the model is presented in [24]. We



then show the additional constraints that are added to achieve uni-
form thermal gradient across the cores. In many existing multi-core
architectures, such as [1] or [2], in order to simplify the design,
the operating frequencies of all the cores are the same. For such
systems, when DFS is applied, the core frequencies are varied uni-
formly. We also show how such uniform frequency setting can be
achieved in the convex model.

Let n be the number of cores in the design. We denote the power
consumption of a core i as pi. The set of cores that are adjacent to
a core i is represented by Adji. The temperature of core i at time
k + 1 is given by the thermal equation:

tk+1,i = tk,i +
X

∀j∈ Adji

ai,j(tk,j − tk,i) + bipi (1)

In this formulation the temperature of core i at the current time
instant depends on the temperature of itself and its neighboring
cores in the previous time instant, as well as on the power con-
sumption of the core. The proportionality constants ai,j and bi are
based on the thermal behavior of the chip, and are calculated as
presented in [17], [19].

The total number of time-steps used for the thermal calculations
depends on the time-period at which DFS is applied. In our experi-
ments, in order to achieve numerical stability, the thermal equation
(Equation 1) had to be solved with a time step of 0.4 ms. If the DFS
scheme is applied every 100 ms, then the total number of time-steps
needed is 250. We denote the number of time-steps needed by m,
and is obtained as an input to the optimization procedure.

The initial operating temperature of the cores, t0,i, is set to
tstart, which is an input to the procedure (please refer to Figure
3). The required target operating frequency of the cores (denoted
by ftarget) and the maximum allowable temperature (denoted by
tmax) are also obtained as inputs.

The frequency of operation of core i is represented by the vari-
able fi, i = 1, . . . , n. The objective of the optimization proce-
dure is to find the optimal fi values, such that the average of the
frequencies of the cores meets the targeted frequency (ftarget),
while minimizing the power consumption and satisfying temper-
ature constraints.

The operating voltage of a processor depends on the operating
frequency, and this dependence varies with different process and
technology generations. In this work we assume that the square of
the voltage scales linearly with the frequency of operation, as it is
a common method to scale voltage [23]. The power consumption
values at different time-instances can be obtained by quadratically
scaling the power consumption of the processors at fmax (which is
denoted by pmax), i.e.,

pi = pmax f2
i /f2

max, ∀i (2)

The convex model to solve the thermal and workload con-
strained, power optimization problem is presented below:

min:
Pn

i=1 pi

s.t. t0,i = tstart, ∀i
tk+1,i = tk,i +

P
∀j∈Adji

ai,j(tk,j − tk,i) + bipi∀i, k

tk,i ≤ tmax, ∀k, i
pmax f2

i /f2
max <= pi,k, ∀i, kPn

i=1 fi ≥ n × ftarget

fi ≥ 0, ∀i
(3)

In order to achieve uniform spatial temperature gradients across
the cores, the following additional equations are added to the
model:
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Buffer
L2

Buffer

L2

L2 Cache L2 Cache

L2 CacheL2 Cache

Figure 5: The floorplan of the Sun’s Niagara multi-core archi-
tecture. The processing cores are represented by P1-P8

tk,i − tk,j ≤ tgrad, ∀i, j ∈ 1 · · ·n, ∀k (4)

and the objective function is changed to minimize the gradient
as well:

min:(
nX

i=1

pi + tgrad) (5)

5. EXPERIMENTAL RESULTS
For the experiments, we consider the 8-core Niagara architec-

ture from Sun Microsystems [2]. The floorplan of the architecture
is presented in Figure 5. The architecture has different versions,
with the processors supporting a maximum operating frequency be-
tween 1 GHz to 1.4 GHz. In this work, we assume the maximum
frequency of the processors to be 1 GHz and the maximum power
consumption of each processor core at this frequency to be 4 W.
The power consumption of the other cores on the system is around
30% of the power consumption of the processing cores [2].

We use the execution characteristics of tasks from a mix of dif-
ferent benchmarks, ranging from web-accessing to playing multi-
media files [26]. The maximum task/thread lengths of the bench-
marks is around 10 ms. The experiments are conducted using a
large trace with around 60,000 tasks, modeling several hundred
seconds of actual system execution.

We implemented a simulator to model the task assignment and
execution on the different cores. For simulating the temperature
profiles of the cores, we use the thermal models presented in [19].
We also verified our simulator using the thermal models from the
Hotspot simulator [17].

5.1 Design Time
The convex models presented in the previous section can be

solved with polynomial (in the number of variables and constraints)
time complexity using interior point methods [25]. To solve the
models, we use CVX [27], an efficient convex optimization solver.
For our experimental set-up, the solver takes less than 2 minutes
to determine the optimal solution. As the optimization models are
solved for each temperature and frequency point (as presented ear-
lier in Figure 3), the total time taken to perform phase 1 of the
method is few hours. Please note that phase 1 is performed only
once for a system at design time and the timing overhead for this is
negligible.
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Figure 6: The percentage time spent on average by the cores at different temperature points: (a) for a mix of tasks from different
benchmarks, and (b) for the most computation intensive benchmark
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Figure 8: The temperatures of processors P1 and P2 over time.

5.2 Comparisons with Existing Methods
We implemented our proposed Pro-Temp scheme in the simula-

tor. For comparison purposes, we also implemented a traditional
DFS scheme (referred to as the Basic-DFS scheme), where the fre-
quencies of the cores are matched to the application performance
levels. The temperature control performed when a core reaches a
threshold temperature level. In this case, the core js shuts down for
the time-period until the next DFS is applied. The maximum tem-
perature constraint on the cores is set to 100°Celsius. We assume
that the temperature threshold level for application of traditional
DFS to be 90°Celsius. The snap-shots of the temperature of one of
the processors (processor P1) for the traditional DFS and the pro-
posed Pro-Temp scheme were presented earlier, in Figures 1 and
2.

In Figure 6, we plot the percentage time the processors (averaged
across all the processors) spent at different temperature ranges. For
reference, we also plot the values when no temperature control is
applied (referred to as the No-TC method). In this scheme, the
frequencies are scaled only to match the application characteristics.

As seen from the figure, the Pro-Temp method always en-
sures that the processors are below the maximum temperature of
100°Celsius, while the No-TC and Basic-DFS spend a significant
amount of time above the maximum temperature. For the most
computation intensive benchmark, the Basic-DFS scheme spends
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Figure 10: The operating frequency of the processors 1
and 2 as computed by our method

up to 40% of the time above the maximum threshold.
The performance of the system is also much higher for the Pro-

Temp scheme. In Figure 7, we plot the average waiting times of
the tasks for the scheme, normalized with respect to the Basic-DFS
technique. The proposed scheme results in 60% reduction in the
task waiting times. This is because, with the Basic-DFS scheme,
the cores operate fast until they reach the maximum threshold limit.
After that, they are shutdown until they cool down. As the cooling
period is relatively longer than the period in which they heat up,
for computation intensive workloads, the Basic-DFS has a poorer
performance when compared to the Pro-Temp scheme.

The temperature values of two of the processors over time, for
the Pro-Temp method is shown in Figure 8. From the figure, we
can see that the temperature gradient across the processors is low.

5.3 Uniform Vs Variable Frequency Setting
When DFS is applied, the frequencies of all the processors could

either be set to the same value or they can be varied. From the
floorplan of the system presented in Figure 5, we find that the pro-
cessors P1, P4, P5 and P8 are near cooler caches, while the other
four processors are sandwiched by processing cores on two sides.
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Figure 11: Effect of efficient task assignment

The processors near the cooler caches can more easily dissipate
their heat than the other processors. To compensate for the ther-
mal imbalance, the cores in the middle need to operate at a lower
frequency than the cores at the periphery. We modeled both the
uniform and the variable frequency assignment policies and per-
formed experiments using the benchmarks. For a given starting
temperature and maximum temperature constraint, a non-uniform
frequency assignment can support a higher average workload than
the uniform assignment. This is shown in Figure 9.

The frequency assignment for processors P1 and P2, obtained by
our convex optimization procedure for the non-uniform frequency
assignment scheme is presented in Figure 10. From the figure, we
can see that the processor P1 runs significantly faster than P2 to
achieve a similar thermal behavior.

5.4 Effect of Assignment Policy
An efficient thermal policy for assignment of tasks on to cores

is presented in [26]. We integrated this assignment with the Basic-
DFS and our Pro-Temp methods. When the assignment policy is
applied, the percentage of time the Basic-DFS is above the max-
imum temperature reduces, as shown in Figure 11 (for the high
workload benchmark). However, due to the burstiness in the task
arrival pattern, still the method results in cores spending a signif-
icant time over the maximum temperature. As noted earlier, the
Pro-Temp method always results in the chip operating below the
maximum temperature at all instances. However, with the inte-
gration of the efficient task assignment policy with our Pro-Temp
method, the spatial temperature difference across the cores reduces
further (by 16%).

6. CONCLUSIONS
Temperature control of multi-core architectures is critical for

achieving a reliable and high performance operation. In this pa-
per, we have presented a convex optimization based method to pro-
actively control the frequencies of the cores, such that the temper-
ature constraints are met at all time instances of operation. Our
novel approach solves the thermal control problem in two phases:
in the first phase, at design time, the set of feasible frequencies for
the cores for different temperature and workload constraints are ob-
tained by solving convex optimization models for the problem. In
the next phase, at run time, the frequency values from the previous
phase are used to match the current system workload and operat-
ing conditions. Our experiments on realistic benchmarks show that
optimal temperature control is achieved by our method, while en-
suring high performance operation of the system.
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