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Abstract. With the increasing availability of experimental data on
gene-gene and protein-protein interactions, modeling of gene regulatory
networks has gained a special attention lately.Tohave abetter understand-
ing of these networks it is necessary to capture their dynamical proper-
ties, by computing its steady states. Various methods have been proposed
to compute steady states but almost all of them suffer from the state space
explosion problem with the increasing size of the networks. Hence it be-
comes difficult to model even moderate sized networks using these tech-
niques. In this paper, we present a new representation of gene regulatory
networks, which facilitates the steady state computation of networks as
large as 1200 nodes and 5000 edges. We benchmarked and validated our
algorithm on the T helper model from [8] and performed in silico knock
out experiments: showing both a reduction in computation time and cor-
rect steady state identification.

1 Introduction

The face of biological research has evolved at an alarming rate over the last two
decades. From a one-gene/one-protein analysis it has borne witness to a multi-
tude of technologies that allows us to capture and integrate a vast amount of
information generated by high throughput methods such as DNA microarrays,
siRNA knock-down and protein-protein interactions. While a wealth of informa-
tion is present on the interaction of the genes and proteins, the exact stoichiom-
etry and precise kinetics still evades our technologies and understanding. In such
situation, one could either wait to gather the crucial information on the precise
biochemical processes or choose to model the flow of information in genetic regu-
latory networks. We chose the latter as we think that the information is sufficient
already to identify qualitative behavior of the studied biological system. We also
claim that enabling such kind of approaches should further the understanding
of the design and identifications of keys elements that dictate cell fate.

The methodology presented here is an improvement of the methods described
by [8] to model dicrete regulatory networks and proposes to use a data structure
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called binary decision diagram (BDD) to represent and manipulate Boolean net-
works. This data transformation enables the compact representation of the state
space of the network and their efficient dynamic analysis. BDDs have primarily
been used in several other applications like logic synthesis and testing in the
field of Electronic Design Automation [21,22] and model checking [23,24]. In this
paper, we show their application on biological regulatory networks. Some work
on modelling the gene regulatory networks using the formal methods have been
introduced in [27,28,29].

We use the already published T helper cell regulatory network [8,7] as a frame-
work to validate our approach and show that our software, GenYsis finds all
steady states and correctly identifies the outcome of gene perturbation experi-
ments. We show that GenYsis scales well with the size of the network and can
compute cell states in the network with size over 1000 nodes in reasonable time
using modest computing resources.

2 Binary Decision Diagrams

2.1 Introduction

A Binary Decision Diagram(BDD) is a directed acyclic graph consisting of a root
node, intermediate decision nodes and two terminal nodes, namely 0-terminal
and 1-terminal. BDDs can be used for representing Boolean functions. Each
variable of the function is represented as a decison node of the graph. Each
decision node has two outgoing edges to represent evaluation of variable to 1
and 0. All paths from root node to 1-terminal gives the variable evaluations for
which the function is true. There might be some variables missing in some of the
paths. These variables have a “Don’t Care” evaluation, i.e. they can take either
0 or 1 value.

A simple BDD that represents the Boolean function f = (a AND b) OR c
is shown in Figure 1.

It has three paths from root node (node f) to 1-terminal node. For the path,
a

0−→ c
1−→ 1, two possible assignments (a = 0, b = 1, c = 1) and (a = 0, b = 0,

c = 1) leads to 1-terminal from root node f . Similarly, the path a
1−→ b

1−→ 1,
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Fig. 1. BDD for the function f = (a ∧ b) ∨ c
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represents the assignments (a = 1, b = 1, c = 1) and (a = 1, b = 1, c = 0). Finally
the last path a

1−→ b
0−→ c

1−→ 1 representing (a = 1, b = 0, c = 1) complete the
five possible TRUE evaluations for the Boolean formula f .

Here, we use Reduced Ordered BDDs (ROBDDs), which are the compact
reduced form of BDDs. For the sake of brevity whenever we say BDD in this
paper, we are referring to ROBDDs.

The representation of Boolean functions as BDDs is memory efficient as iso-
morphic subgraphs can be shared by multiple nodes. The size of the BDD scales
well in most cases with the size of the Boolean function and all the logic op-
erations like AND, OR, Existential quantification, Universal quantification, etc.
can be performed in polynomial (with the size of the BDD) time on this data
structure [1]. This implicit representation does not require the explicit construc-
tion of a truth table and can be directly constructed from the Boolean function.
Further details on BDD construction and logic operations on them is outside the
scope of this paper, interested readers can find details in [1,2,3].

There are many existing packages that can be used for working with BDDs
like CUDD, CMUBDD, etc. In this paper we use the CUDD package [20], which
is the most efficient package for BDD representation and evaluation.

2.2 Representation of Gene Regulatory Networks

In this section we show how gene regulatory networks can be mapped to BDDs.
We start with the representation of regulatory networks as Boolean functions and
then we use these functions to construct corresponding BDD representation.

Given a gene regulatory network, the state of a node (or gene) i at time t is
represented with the Boolean variable xi(t). To evaluate the evolution in time
of each node, it is necessary to describe the state of each node at time t + 1 as
a function of state of those nodes acting as input at time t [8]:

xi(t + 1) =

⎛
⎝

m∨
j=1

xa
j (t)

⎞
⎠ ∧ ¬

⎛
⎝

n∨
j=1

xin
j (t)

⎞
⎠ (1)

xi(t + 1) =

⎛
⎝

m∨
j=1

xa
j (t)

⎞
⎠ (2)

xi(t + 1) = ¬

⎛
⎝

n∨
j=1

xin
j (t)

⎞
⎠ (3)

xj ∈ {0, 1}
xa

m and xin
n are the set of activators and inhibitors of xi

∧ and ∨ represent logical AND and OR

Equation 1 is used if the gene i has both activators and inhibitors. Equation 2 is
used if the gene i has only activators and equation 3, if there are only inhibitors.
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In equation 1, inhibitors are strong enough to change the state of a gene from 1
to 0, while activators can change the state from 0 to 1 if and only if there are
no inhibitors acting on that gene.

A snapshot of the activity level of all the genes in the network at a time t
is called the state of the network. The state of the network is represented by
a Boolean vector of size N (number of genes in the network). Each bit of this
vector represents whether the gene is active or inactive. Another Boolean vector
of size N is used to represent the status of the genes at next step. We call the
previous vector as present state(Vt) and latter one as next state (Vt+1).

The transition between states of the network can be either synchronous and
asynchronous. If the transitions are synchronous, all the genes change their state
at the same time point. If the transition is asynchronous, atmost one gene can
change its state between two consecutive states. Biologically, it is more realistic
to assume that genes have different response times, and hence an asynchronous
network might seem more realistic. In this paper, we use the asynchronous model
to represent state transition of the regulatory network and assume that time points
are close enough, so that only one gene can make a transition at each time point.

Now we shall see how the Boolean functions in equations 1-3 can be used
to construct a BDD representation. Let Ti(Vt, Vt+1) be the BDD representing
transition of gene i from Vt to Vt+1 and T (Vt, Vt+1) be the BDD representing
the transition from state of the network at time t to state at time t + 1. The
relation between Ti(Vt, Vt+1) and T (Vt, Vt+1) is given by equation 4. Equation
4 says that all genes make asynchronous transitions and state of the network at
time t can have multiple successor states.

T (Vt, Vt+1) = T0(Vt, Vt+1) ∨ T1(Vt, Vt+1) ∨ ... ∨ TN (Vt, Vt+1) (4)

To impose the constraint that two consecutive states differ in atmost one gene
evaluation, we define Ti(Vt, Vt+1) in equation 5, which states that for gene i, its
evaluation at the next time step v′i(∈ Vt+1) and function fi(Vt)(= xi(t+1)) have
the same value, and all the other genes remain at their activation level from the
previous time step.

Ti(Vt, Vt+1) = (v′i ↔ fi(Vt)) ∧
∧
j �=i

(
v′j ↔ vj

)
(5)

Let us go through a small example to have a better understanding of the
process.

Example 1. In figure 2, gene ‘A’ has an auto-activation and is inhibited by the
presence of gene ‘C’. Gene ‘B’ is activated by the presence of gene ‘A’ and
presence of gene ‘B’ inhibits gene ‘C’. The present state and next state vectors
are given by Vt = {a, b, c} and Vt+1 = {a′, b′, c′} respectively. Boolean functions
describing this small network are given by:

a′ = a ∧ ¬c (6)
b′ = a (7)
c′ = ¬b (8)
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Fig. 2. An example of Gene Regulatory Network
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Fig. 3. BDD representing the state space of example in figure 2. The dashed edges
represent 0 evaluation of the variables and the solid edges represent the 1 evaluation.
For clarity, edges going to 0-terminal are not shown in this figure.

Corresponding transition relations for each gene is then given by:

T0(Vt, Vt+1) = a′ ↔ (a ∧ ¬c) ∧ b′ ↔ (b) ∧ c′ ↔ (c) (9)
T1(Vt, Vt+1) = b′ ↔ (a) ∧ a′ ↔ (a) ∧ c′ ↔ (c) (10)
T2(Vt, Vt+1) = c′ ↔ (¬b) ∧ a′ ↔ (a) ∧ b′ ↔ (b) (11)

The BDD representation for T (Vt, Vt+1) by using equations 9-11 in equation
4 is shown in figure 3. For clarity in figure 3, edges pointing to 0-terminal are
removed. This BDD represents all the possible state transitions of the network.
To find the immediate successor states of a given state of the network(say for
example a = 1, b = 0, c = 1), the following steps can be performed on BDD
T (Vt, Vt+1):

1. Assign initial activity levels to the genes a, b,and c (i.e. vi ∈ Vt).
2. Remove all outgoing edges which do not satisfy the evaluations in step 1.
3. Find all the paths from root node to 1-terminal and for each path only print

variables in set Vt+1.
4. Swap variable names from the set Vt+1 with the corresponding variable

names in the set Vt, on all the printed paths. ��
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The steps given in above example can be implemented by using efficient logic
functions such as “AND” and “Existential Quantify” along with the expressive
power of BDDs [1,2], as follows:

1. Construct a BDD ‘X’ which represents the initial state.
2. Take logical ‘AND’ of BDD ‘X’ with the BDD T (Vt, Vt+1).
3. Existentially quantify out variables in Vt from the resulting BDD.
4. Swap variables v′i ∈ Vt+1 with vi ∈ Vt in the BDD got from the last step.

The BDD formed after executing step 4 represents all the immediate successor
states from a given initial state.

3 Computing the Steady States

In this section, we will see how to efficiently compute steady states on the BDD
representation of the gene regulatory networks. But first we shall give some
definitions that we are going to use in the rest of the section. Let, f be the state
transition function.

Definition 1. Forward image, If (S(Vt)) is the set of immediate successors of
the states in S(Vt) on the state transition graph.

Definition 2. Backward image, Ib(S(Vt)) is the set of immediate predecessors
of the states in S(Vt) on the state transition graph.

Definition 3. Forward reachable states FR(S0) from the states S0 are all the
states that can be reached from S0 by iteratively computing forward image in the
transition relation T (Vt, Vt+1) until no new states are reachable.

Definition 4. Backward reachable states, BR(S0), are all the states in T (Vt,
Vt+1) whose forward reachable states contain S0.

Definition 5. Steady State is the set of states SS(Vt) having the following two
properties:

1. Forward image If (SS(Vt)) is same as SS(Vt).
2. For all the states in SS(Vt), if that state is reached once, then the probability

of revisiting that state is one. [19]

The first property of a steady state implies that there are only three possible
variants of steady states as shown in figure 4. The second property of steady
state ensures that there are only simple cycles(figure 4(a) and 4(b)) in the set
SS(Vps) and invalidates the third kind of steady state(figure 4(c)) with complex
loops as some of the states in this loop might not be revisited. The first property
is contained in the second property of steady states. An efficient algorithm can
be designed for finding steady states that satisfy the first property, though any
efficient algorithm satisfying property 2 is not known yet. Here we use the mod-
ified algorithm by [18] for computing the set of steady states satisfying property
1 and then remove the false steady states of type III (in figure 4) from that set.
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(a) Self Loop (b) Simple Loop (c) Complex Loop(false steady state)

Fig. 4. Different types of steady states

Algorithm [18] for computing steady states is based on two main theorems. For
the sake of completeness of the paper, we present these theorems and algorithms
here again. Proof of these theorems can be found in [18].

Theorem 1. A state i ∈ S is a steady state if and only if FR(i) ⊆ BR(i). State
i is transient otherwise.

Theorem 2. If state i ∈ S is transient, then states in BR(i) are all transient.
If state i is steady, then all the states in FR(i) are steady states. In the latter
case set {BR(i) − FR(i)} are all transient.

Based on these two theorems, the algorithm for steady state computation is
given in Algorithm 2. Algorithm 2 uses the functions forward set() and back-
ward set() for computing forward reachable (FR(S)) and backward reachable
(BR(S)) states respectively. These functions are given in Algorithm 1. In Algo-
rithm 1, FSk and RSk, are the frontier set and reachable set respectively in the
kth iteration of the while loop. Frontier set (Backward set) in iteration k + 1,
is computed by taking the forward (backward) image of the frontier (backward)
set in the kth iteration and removing from this image set the states that have
already been explored in previous iterations (which are stored in Reached Set).
Reached Set is updated by adding the new states from frontier(backward) set.
This process is iterated until no new states can be added to Reached Set. The
final Reached Set represents the forward (backward) reachable set from the set
of initial states S0.

The Algorithm 2 uses Theorems 1 and 2. In line 5 of Algorithm 2, a prospec-
tive steady state is selected from the state space T ′ and forward and backward
reachable sets from this seed state are computed in lines 6 and 7. Then Theorem
1 as implemented in line 8, checks if the seed state is a steady state. If the seed
state is indeed a steady state then using Theorem 2 (as implemented in lines
9-12), all the states in forward reachable set are declared steady states in line 9
and rest of the states in backward reachable set are declared transient states in
line 10. Otherwise, the seed state and all the other states in backward reachable
set are declared transient in line 12. In line 13, state space is reduced by remov-
ing the states that have already been tested for reachability and the process is
repeated to find another steady state on the reduced state space. This process is
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Algorithm 1. Computing Forward and Backward reachable sets
forward set(S0, T )1

/∗ backward set(S0, T ) ∗/2

begin3

RS(0) ←− ∅, FS(0) ←− {S0}4

k ←− 05

while FS(k) �= ∅ do6

FS(k+1) = If (FS(k))(Vt+1 ← Vt) ∧ RS(k)7

/∗ FS(k+1) = Ib(FS(k))(Vt ← Vt+1) ∧ RS(k) ∗/8

RS(k+1) = RS(k) ∨ FS(k+1)9

k ←− k + 110

return (FR(S0) ←− RS(k))11

/∗ return (BR(S0) ←− RS(k)(Vt+1 ← Vt)) ∗/12

end13

iterated until the whole state space is explored (i.e. until T 
= ∅). Since in each
iteration, states in backward reachable set are removed from the state space, the
size of the state space reduces in each iteration. The number of iterations also
depends upon how the seed state is selected.

Function initial state() in Algorithm 2 selects a prospective steady state from
the given state space T ′. In this function (implemented in lines 17-25), a BDD
representing a random path from the root node to 1-terminal, is selected in
line 17. The variables vi ∈ Vt+1 on this path P are removed (line 18) and
the resulting BDD is called the intial state,s. Forward reachable set from this
random initial state is then computed in lines 19-24. During the forward set
computation, when the frontier set evaluates to ∅ in iteration k, a random state
is taken from the frontier set in iteration k − 1 and returned as the seed state.
The motivation behind this function is that a state in the last frontier set is
more likely to be a steady state then a random state in the state space T . This
function differs from the one given in [18], in which the authors propose to do
forward reachability until a user-defined depth (i.e. k is taken as input). But
in our experience the number of iterations of while loop in line 4 of Algorithm
2 can be reduced by a large factor if we do complete forward reachability and
select a state from the frontier set in the last iteration as compared to selecting
from one of the intermediate iterations. This is because any state from frontier
set of kth iteration should have a larger backward reachable set then any other
state in previous k − 1 iterations. And larger the size of backward reachable set,
smaller the number of iterations required to exhaust the state space.

The Algorithm 2 gives the set of steady states satisfying property 1 as men-
tioned in the definition of steady states. Pseudocode for doing the complete
dynamic analysis is given in Algorithm 3, which uses the function isFalseLoop()
to check for false steady states. In the function isFalseLoop(), given a steady
state S, a random state s0 is selected from this set S and the image of s0 is
computed in line 14. In lines 15-19, we test if the immediate successor state of
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Algorithm 2. Steady State Algorithm
all Steady States(T )1

begin2

T ′ ←− T3

while T ′ �= ∅ do4

s ←− initial state(T ′)5

FR(s) ←− forward set(s, T ′)6

BR(s) ←− backward set(s, T ′)7

if FR(s) ∧ BR(s) = ∅ then8

report FR(s) as a steady state9

report BR(s) ∧ FR(s) as all transient states10

else11

report s ∨ BR(s) as all transient states12

T ′ ←− T ′ ∧ s ∨ BR(s)13

end14

initial state(T )15

begin16

P = random path to 1 node(T )17

s(Vt) = ∃v∈VtP18

RS(0) ←− ∅, FS(0) ←− {s}19

k ←− 020

while FS(k) �= ∅ do21

FS(k+1) = If (FS(k))(Vt+1 ← Vt) ∧ RS(k)22

RS(k+1) = RS(k) ∨ FS(k+1)23

k ←− k + 124

s ←− random path to 1 node(FS(k−1))25

return s26

end27

this initial state is a single state or a set of state. To do this, a random path(or
the state) from the image set is computed(line 15) and removed from this set in
line 16. If the resulting set is not empty (line 17), then the given steady state is
declared false. Otherwise the lines 13-21 are iterated with the frontier set and the
reached set being updated as in line 20 and 21. Function isFalseLoop() removes
all the type III steady states, because these steady states will always contain
one or more states with two possible immediate successors. All the other steady
states are simple loops and are reported genuine by this function.

3.1 Results

We have implemented our software, GenYsis in C++ using the CUDD soft-
ware package for BDD manipulation. To analyse the computational efficiency of
our methodology, we have tested GenYsis on a range of biological networks of
varying complexity. In Table 1 we report the time taken by GenYsis on these
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Algorithm 3. Computing all genuine Steady States

Input : Transition function T
Output: Steady state array SS[]

comp steady states()1

begin2

SS[] = all Steady States(T )3

for i = 0 to SS[].size() do4

if isFalseLoop(SS[i], T ) == false then5

report SS[i] as a genuine steady state6

end7

isFalseLoop(S,T )8

begin9

s0 = random path to 1 node(S)10

RS(0) ←− ∅, FS(0) ←− {s0}11

k ←− 012

while FS(k) �= ∅ do13

FS(k+1) = If (FS(k))(Vt+1 ← Vt)14

s′ = random path to 1 node(FS(k+1))15

FStemp = FS(k+1) ∧ s′16

if FStemp �= ∅ then17

/* false steady state */18

return true19

FS(k+1) = FS(k+1) ∧ RS(k)20

RS(k+1) = RS(k) ∨ FS(k+1)21

k ←− k + 122

/* genuine steady state */23

return false24

end25

Table 1. Computational results on some gene regulatory networks

Network Nodes Edges
Steady Number of

Memory
Time taken (in sec)

States Iterations Usage BDD const. Steady State Total
Th network 23 34 3 3 < 15 MB 0.001 0.04 0.041
network2 114 129 1 1 < 15 MB 0.03 0.001 0.031
network3 669 2710 4 10 < 17 MB 0.07 3.15 3.22
network4 1263 5031 1 1 < 57 MB 0.95 314.55 315.55

sample networks. The run time is divided into two parts: time taken to construct
BDD and time taken to compute steady states. We also measure the memory
requirements for each sample network when analysed by GenYsis. All the results
are reported on a 1.6 GHz machine running on linux operating system.
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In Table 1, we see that the networks with a size as big as 1263 nodes and
5235 edges can be analysed in less then 6 minutes by using GenYsis. Finding
all possible steady states for large network was not feasible with the previous
methodologies based on finding the characteristic state of all the feedback loops
in the network. Also, GenYsis follows a very intutive way to explore the state
space of the network rather then an indirect and difficult to comprehend way of
computing the characteristic state.

4 T Helper Cell Differentiation

The vertebrate immune system is constituted by diverse cell populations. Here,
we will focus in the CD4+ T lymphocytes known as T helper (Th) cells. These
cells conform a particularly suitable differentiation model, because there is a type
of precursors cells (Th0), which upon receiving an appropriate antigenic stimulus
in vitro, can be further differentiated into cytokine-secreting effector cells, either
Th1 or Th2 cells. At the molecular level, Th1 and Th2 cells can be distinguished
by their pattern of cytokine secretion, which are responsible for their central role
in cell mediated immunity (Th1 cells) and humoral responses (Th2 cells). Under-
standing the molecular mechanisms that regulate the differentiation process from
Th0 towards either Th1 or Th2 is very important, since an immune response bi-
ased towards the Th1 phenotype result in the appearance of autoimmune diseases,
and an enhanced Th2 response can originate allergic reactions [4,10].

There are several factors at the cellular and molecular levels that determine
the differentiation of T helper cells. Importantly, the cytokines present in the
cellular milieu play a key role in directing Th cell polarization. On the one hand,
IFN-γ, IL-12, IL-18 and IL-27 are the major cytokines that promote Th1 devel-
opment [11].And on the other hand, IL-4 is the major cytokine responsible for
driving Th2 responses. Besides this positive roles of cytokines in the differentia-
tion process, there exist also a mutual inhibitory mechanism. Specifically, IFN-γ
play a role in inhibiting the development of Th2 cells, whereas IL-4 inhibits the
appearance of Th1 cells. This interplay of positive and negative signals, at both
the cellular and molecular levels, creates a complexity that is very suitable for
analysis by the modeling approach.

Due to its physiological relevance, there are various mathematical models that
have been proposed for describing the differentiation, activation and proliferation
of T helper lymphocytes. Most of these models, however, focus on interactions
established among the diverse cell populations that somehow modify the dif-
ferentiation of Th cells [5,17]. Also, other modeling efforts have been aimed at
understanding the mechanism of the generation of antibody and T-cell recep-
tor diversity, as well as the molecular networks of cytokine or immunoglobulin
interactions [6,16].

Recently we published the first analyses on the gene regulatory network that
controls the differentiation process from Th0 to either Th1 or Th2 cells [8,7]. The
network (Fig 5) is made of 23 nodes, 26 positive and 8 negative interactions.
Importantly, the model does not need to be seen as metabolic pathway, or a
reaction network, but rather as an information processing network.
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Fig. 5. Th network. The regulatory network that controls the differentiation process
of t helper cells. Positive regulatory interactions are with pointed arrow head and
negetive interactions with round arrow head.

We already studied the dynamical behavior of the Th network using both
discrete and continuous approaches. Such studies permitted the identification of
all the stable states of the system. Specifically, the dynamical system obtained
from the network has three stable fixed points, which correspond to the patterns
of activation observed in normal Th0, Th1 and Th2 cells. Moreover, we were
able to modify the model so as to describe the patterns of expression of null
mutants, as well as constitutive-expression variants.

Central to our previous analyses is the use of the generalized logical analysis
[14,15] for the qualitative analysis of the dynamical properties of the system by
focusing on the feedback loops present in the network. Besides helping to under-
stand the Th network, the generalized logical analysis has been applied to other
regulatory networks, including those involved in organ differentiation control in
the flowers of Arabidopsis thaliana [9], and in the initiation of segmentation dur-
ing Drosophila melanogaster embryogenesis [12,13]. Despite its usefulness, the
generalized logical analysis has two main drawbacks. First, the computational
time needed to analyze all possible feedback loops in a network grows very fast,
so that it is not feasible to study large networks. And second, to study the
behavior of mutants, it is necessary to create alternative models where the pa-
rameters reflect the intended mutation, so that the number of models multiplies
by the number of intended mutants. Hence, an alternative, faster and more easily
scalable methodology is required for the study of the dynamical properties of bi-
ological networks. Our new approach of BDD representation for gene regulatory
networks, can provide an alternate way for efficiently analyzing feedback loops
in the network and perform in silico gene perturbation experiments. When we
apply GenYsis on the T helper cell network of Figure 5, we get the three wild
type steady states as listed in Table 2.
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Table 2. Steady state of the wild type and virtual knock-out of IFN-γ and IFN-γR

Knocked Genes Active genes in steady states

wild type
IFN-γ Tbet SOCS-1 IFN-γR

All the genes are inactive
GATA-3 IL-10 IL-10R IL-4 IL-4R STAT3 STAT6

IFN-γ−
Tbet SOCS-1

All the genes are inactive
GATA-3 IL-10 IL-10R IL-4 IL-4R STAT3 STAT6

IFN-γR−
IFN-γ Tbet SOCS-1

All the genes are inactive
GATA-3 IL-10 IL-10R IL-4 IL-4R STAT3 STAT6

These steady states correspond to the molecular profiles observed in Th0, Th1
and Th2 cells respectively. The first steady state reflects the pattern of Th0 cells,
which are precursor cells that do not produce any of the cytokines included in
the model (IFN-β, IFN-γ, IL-10, IL-12, IL-18 and IL-4). The second steady state
represents Th1 cells with high activation of IFN-γ, IFN-γR, T-bet and SOCS1.
Finally the third steady state corresponds to the activation observed in th2 cells,
with high level of activation of GATA-3, IL-10, IL-10R, IL-4, IL-4R, STAT3 and
STAT6. These results also match those published in [8]. GenYsis took only 0.04
seconds to compute these steady states.

In the literature, modeling of Th cell differentiation at the molecular level has
been shown to be very useful to bring insight into the origin of the unexpected
phenotypes. Previously [7], we made an explanation for the unexpected pheno-
typic similarity between IFN-γ and IFN-γR loss-of-function mutants (figure 5)
[26] [25]. Similarly, using our new BDD based methods we performed virtual
knock-out on both IFN-γ and IFN-γR (see Table 2) and compared it to the
unperturbed system (wild type). In the case of the IFN-γ knock-out, both the
IFN-γ and its receptor are removed from the identified steady state. However
when IFN-γR is knocked out, the steady state observed still contains the pro-
duction of IFN-γ. This is similar to what was obtained with the standard GLA
approach from [7], but GenYsis is 100x faster then latter.

5 Conclusion

This paper gives an efficient way for modeling the gene regulatory networks and
perform dynamic analysis on them. This new approach can model very efficiently
even the biggest regulatory networks available to the modeling community and
provide means to perform in silico experiments on them. The proposed method
has been applied on a T helper cell regulatory network. From the whole range of
experiments that were tested with GenYsis, we have reported in this paper, two
very interesting knock-outs which have been studied extensively by the mod-
elling community for a long time. In future, we will be extending GenYsis to
perform whole suite of in silico gene perturbation experiments including gene
over-expression and multiple perturbations.
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