
NoC Design and Implementation
in 65nm Technology

Antonio Pullini1, Federico Angiolini2, Paolo Meloni3, David Atienza4,5, Srinivasan Murali6,

Luigi Raffo3, Giovanni De Micheli4, and Luca Benini2

1Politecnico di Torino, Torino, Italy

2DEIS, University of Bologna, Bologna, Italy

3DIEE, University of Cagliari, Cagliari, Italy

4LSI, EPFL, Lausanne, Switzerland
5DACYA, Complutense University, Madrid, Spain

6CSL, Stanford University, California, USA

Abstract

As embedded computing evolves towards ever more pow-
erful architectures, the challenge of properly interconnect-
ing large numbers of on-chip computation blocks is becom-
ing prominent. Networks-on-Chip (NoCs) have been pro-
posed as a scalable solution to both physical design issues
and increasing bandwidth demands. However, this claim
has not been fully validated yet, since the design properties
and tradeoffs of NoCs have not been studied in detail below
the 100 nm threshold.

This work is aimed at shedding light on the opportunities
and challenges, both expected and unexpected, of NoC de-
sign in nanometer CMOS. We present fully working 65 nm
NoC designs, a complete NoC synthesis flow and detailed
scalability analysis.

1 Introduction

As steady progress is being made in the miniaturization
of chip features, embedded systems are quickly evolving to-
wards complex devices, including a large set of computation
engines, dedicated accelerators, input/output controllers
and multiple memory buffers. MultiProcessor System-on-
Chip (MPSoC) is a commonly used term to describe the re-
sulting outcome. However, this feature- and performance-
oriented evolution is not devoid of significant challenges,
including mastering the increasing design complexity and
minimizing power consumption. Moreover, miniaturization
itself is bringing its own set of design issues at the physical
level, originated primarily by an increasing ratio of wire vs.
logic propagation delay.

One of the most critical areas of MPSoC design is the
interconnect subsystem, due to architectural and physical
scalability concerns. Traditional shared bus interconnects
are relatively easy to design, but do not scale well. Thus,
evolutions have been conceived both from the protocol (e.g.
outstanding transactions with out-of-order delivery) and the
topology (e.g. bridges, crossbars) points of view. Never-
theless, scalability is still suboptimal, as protocol improve-
ments still hit a bandwidth limit due to the available physi-
cal resources, and topological extensions require the use of
bridges (i.e. multiple buses or “spaghetti-like” design)) or
large area overheads in routing structures (i.e. using cross-
bars).

Networks-on-Chip (NoCs) have been suggested as a
promising solution to the scalability problem [5]. By bring-
ing packet-based communication paradigms to the on-chip
domain, NoCs address many of the issues of interconnect
fabric design. Wire lengths can be controlled by match-
ing network topology with physical constraints and band-
width can be boosted by increasing the number of links and
switches. Furthermore, compared to irregular, bridge-based
assemblies of clusters of processing elements, NoCs also
help in tackling design complexity issues [21, 6].

While these key advantages of NoCs have been largely
accepted nowadays, the practical implementation of NoCs
in very deep submicron technology, below the 100 nm
threshold, is a very open challenge. The crucial issue is
again related to wiring. Even if capacitive loads and propa-
gation delays can be controlled much better than in shared
buses, issues such as wiring congestion, link power con-
sumption, and the need for placement-aware logic synthesis
still have to be explored to assess the feasibility of NoCs in
forthcoming technology nodes.

This paper presents a detailed description of a 65 nm

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

NoC design flow and outlines some of the tradeoffs that
a next-generation back-end implies. In this work we ex-
plore link performance, placement issues, scaling results in
shifting from 90 nm to 65 nm technologies, and the degrees
of freedom allowed by the availability of multiple libraries
(with different power/performance tradeoffs) at the same
technology node.

The remainder of the paper is organized as follows. In
Section 2 we overview previous work in the field on on-
chip interconnects in general and, more particularly, focus
on NoC synthesis and topology design and layout. Then, in
Section 3 we introduce our NoC design flow, spanning from
the target application task graph to the placement&routing
steps. Next, in Section 4 we analyze and discuss the major
properties of the 65 nm NoC design flow, while in Section 5
we show performance, area and power comparisons. Fi-
nally, in Section 6 we draw our conclusions and propose
future extensions.

2 Related Work

The problem of high-performance or low-power synthe-
sis of on-chip interconnects based on the bus paradigm has
been studied extensively in the literature [30, 12, 31]. The
use of point-to-point links and bus design using floorplan
feedback has been also explored [17]. Recent research has
focused on efficient synthesis methods for NoC-based inter-
connects and comparisons with bus-based SoCs [18, 24, 2].
Relevant research in application-specific custom topology
design has been proposed in earlier works on NoC design
for well-behaved or regular traffics [32, 16, 9].

Floorplanning estimations and analytical models have
been employed during the topology design process to ob-
tain area and wirelength estimates [34, 24], but these works
are limited to libraries of standard topologies. A physical
planner has been used to focus on minimizing power con-
sumption on the links of NoC topologies [1]. However, this
method does not consider the area and power consumption
of switches in the design. In [27], a flow that addresses
the problem of full custom NoC topology design with early
floorplan estimation is proposed. However, even though
these works have considered the various problems of NoCs
synthesis at the physical level, none of them has studied and
covered extensively the possible consequences of different
process technology nodes on complete NoC-based intercon-
nects, as we present in this paper.

In addition, methods to build area and power models
for various NoC components have been developed to en-
able system-level exploration of SoCs using NoC intercon-
nects [4, 14, 29, 39]. However, the existing area-power
models of the NoC components, such as switches or net-
work interfaces, were not targeting the 65 nm manufactur-
ing technology and may need to be revised with the latest
back-end tools to properly capture model requirements, as
we illustrate in our results.

At a higher level of abstraction, different methods have
been proposed to analyze traffic information and obtain
models that can be utilized as inputs to bus and NoC de-
sign methodologies [22, 26]. These approaches are com-
plementary to this work. In addition, the problem of sup-
porting multiple applications has been studied [3, 25]. Also,
methodologies that unify resource reservation, mapping and
routing in NoC designs have presented [15, 23]. How-
ever, these works do not fully explore the topology design
process.

Important research contributions have been presented
on automatic code generation of NoC topologies for sim-
ulation [40, 33, 10] and synthesis [20, 19]. These works
complement the presented one, as their inputs are typically
NoC designed topologies and even enable the use of post-
synthesis timing libraries in their simulation models.

A very interesting study on the impact of technology
scaling on the energy efficiency of standard topologies
(such as meshes, tori and their variants) has been pre-
sented in [13]. Our work differs from this research in two
ways: first, we consider the design of platform-specific NoC
topologies and architectures. Second, we use a complete
design flow that is integrated with standard industrial tool-
chains to perform accurate physical implementations of the
NoCs.

3 NoC Design Flow

An overview of our proposed complete flow for design-
ing NoCs for MPSoCs is presented in Figure 1. This flow
comprises several tools that are integrated together. First,
SunFloor, which automates the front-end process of NoC
design. Second, ×pipesCompiler, which automates the ar-
chitecture generation phase (leveraging the ×pipes library
of NoC components). Finally, several industrial tools that
automate the back-end processes, i.e. the logic synthesis
and physical design.

3.1 SunFloor

The SunFloor tool, presented in [27], is used to synthe-
size the best custom NoC topology for a given MPSoC plat-
form, which satisfies the communication constraints of the
design. The tool uses as inputs the communication char-
acteristics of the applications, as well as the design objec-
tives and constraints. Then, it generates the optimal network
topology, i.e. the number and size of needed switches, the
connectivity between them and the paths used by the differ-
ent traffic flows to route data across the switches. To this
end, the tool includes several important features:

• It supports multiple optimization objectives, such as
minimizing power consumption and maximizing per-
formance.

• It synthesizes topologies that are free from message-
and routing-dependent deadlocks.

• It closes the gap between the architectural and physical
design phases by performing a floorplan-aware synthe-
sis process.

• It automatically sets the NoC architectural parameters,
like the frequency of operation.

3.2 SunFloor Area and Power Libraries

In order to synthesize efficient NoC topologies, the Sun-
Floor tool needs accurate area and power models describing
the NoC switches and links [27]. The models used need to
be parametric in various aspects, such as the switch car-
dinality. As it can be seen from Figure 1, our toolchain
not only supports a front-end to back-end flow, but also has
feedback from the back-end physical design process to the
front-end phase.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Figure 1. Our proposed complete NoC design flow for MPSoCs

At the beginning of the NoC design process, preliminary
syntheses (including placement&routing) of the switches
are carried out, varying several architectural parameters,
namely, the number of input and output ports, the depth of
buffers and the flit width. The same process is performed for
NoC links, varying their length and flit width. Then, from
the layout implementations, the area, power and delay val-
ues are obtained for the different configurations. The results
are stored as tables and utilized by the SunFloor tool. The
area, power and frequency values for some example switch
configurations are shown later in Figure 4. The power con-
sumption of different NoC links is presented in Figure 3.

3.3 The ×pipes NoC Library

In the next phase of the design flow, the RTL-level
SystemC code of the switches, network interfaces and
links for the designed topology is automatically gener-
ated. To this end, we use ×pipes [7], a library of soft
macros for the network components, and the associated tool
×pipesCompiler [20], which configures and interconnects
the network elements and the cores. The RTL-level Sys-
temC representation of ×pipes can be fully simulated within
a cycle-accurate virtual platform, to assess and optimize its
performance and for validation purposes.

×pipes includes three elementary components: switches,
Network Interfaces (NIs) and links, which are highly con-
figurable to be able to build any NoC topology. Switches
can be instantiated with any number of input and output
ports, and include FIFOs at each port to implement out-
put buffering. The switches include logic to implement an
ACK/NACK flow control policy [11], and handle priori-
ties among incoming packets that demand the same phys-
ical link. NIs are instantiated to enable the communica-
tion of any external component to the NoC (e.g. processing

cores or memories) using the Open Core Protocol (OCP)
v2.0 [28]. The NIs are in charge of converting the OCP
transactions into packets and then into sequences of bits or
FLow control unITS (flits), which are the basic transmis-
sion element, thus limiting the number of physical wires
required for each link. Two different types of NIs can be in-
stantiated in ×pipes, according to the role of the connected
component, namely initiator and target. For master/slave
cores, two NIs (one of each type) need to be instantiated.
×pipes uses source-based routing. Hence, each NI includes
a Look-Up Table (LUT) that holds the paths to reach the
other cores with which communication is expected to hap-
pen. The connectivity of each core to other cores, and there-
fore its associated LUT, is defined in the previous phase of
our NoC synthesis process (see Section 3.1).

×pipes supports link pipelining, where logical buffers are
interleaved along links. This feature reduces signal prop-
agation delays, and as we illustrate in our analysis (Sec-
tion 4.2) and results (Section 5), it is a very relevant element
in latest technology nodes.

×pipes is a fully synchronous NoC. The main reason for
this choice is to avoid the design flow complexity, the hard-
ware cost and the performance overhead associated with
clock domain crossing. However, the NIs feature two dif-
ferent clock inputs on the NoC side and on the OCP side;
the only constraint is that the ×pipes frequency should be
an integer multiple of the frequency of the OCP core. This
arrangement has minimal hardware and performance penal-
ties, while still providing flexible support for attaching to
the NoC cores running at many different possible speeds.

3.4 Flow Back-End

In the proposed NoC design and synthesis framework
for ×pipes we provide a complete back-end flow based on

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

standard cell synthesis. First, we perform the logic syn-
thesis step, by utilizing standard Synopsys tools. The de-
tails of this part of the flow will be given in Section 4.1.
We follow this procedure by using 90 and 65 nm technol-
ogy libraries by a partner foundry, tuned for different per-
formance/power tradeoffs, with different threshold and sup-
ply voltages. While full custom design would certainly im-
prove results, it would also greatly decrease flexibility and
increase design time.

Figure 2. The synthesis flow for ×pipes

During synthesis, we can optionally instruct the logic
synthesis tools to save power when buffers are inactive by
applying clock gating to NoC blocks. The gating logic can
be instantiated only for sequential cells which feature an in-
put enable pin, which are a large majority of the datapath
flip-flops of ×pipes.

We subsequently perform the detailed place-
ment&routing step within Synopsys Astro [35]. Two
of the main placement strategies commonly available
within industrial tools are virtual flat and soft macros. In
the former option, the tool is fed with the complete design,
and albeit placement guidelines can be given, the tool is
allowed to modify the global floorplan. This theoretically
allows for maximum optimization and better handling of
design violations; unfortunately, for a design as large as
a whole NoC-based chip, we found it to be extremely
demanding on system resources (more than 5 GB of RAM
were needed by the placement process, and runtimes were
unacceptable). The soft macro alternative is based on rigid
fences which separate floorplan areas. Each module of the
design is assigned to one such area; the tool is able to freely
perform placement operations within such modules and
areas, but it is not allowed to trespass fences.

We resort to a mix of the two strategies for optimal re-
sults. First, we feed Astro with a rough floorplan, gener-
ated either manually or by SunFloor. This floorplan con-
tains hard macros and soft macros, separated by fences. The
hard macros represent IP cores and memories, and are mod-
eled as black boxes. Hard macros are defined with a Library
Exchange Format (LEF) file and a Verilog Interface Logical
Model, and obstruct an area of our choice. These boxes also
obstruct some of the metal layers laying directly above; the
exact number of obstructed levels is configurable, depend-
ing on how many metal layers the IP cores are supposed to
require and on whether we want to allow over-the-cell rout-

ing for the NoC wires vs. between-the-cell. Soft macros en-
close the modules of ×pipes; by constraining the placement
tool to operate on one tile at a time, faster runtimes can be
achieved. For proper results, however, it becomes necessary
to specify rough timing constraints at the soft macro bound-
aries; we achieve this by pre-characterization of the links
(please see Section 4.2 below).

The next step in the flow is clock tree insertion. While
a separate clock tree could be added to each soft macro, it
would be difficult to control the skew when joining the trees
together and attaching them to a single clock source. There-
fore, for this step, we shift up again in the design hierarchy,
and operate at a global level. The clock tree is added by
leveraging clock borrowing algorithms in the tools; in other
words, clock skews are exploited to accommodate the delay
properties of the circuits, by supplying wider clock periods
where the logic paths are most critical. Once the clock tree
has been generated, its wires are kept untouched within the
tool, to prevent further skews from appearing.

At this point, the power supply nets are added. To im-
prove supply stability, we choose the power grid scheme
instead of the traditional power ring; power nets are distrib-
uted from the topmost metal layers of the chip, instead of
from a ring around the die. This minimizes IR drops (volt-
age drops and fluctuations due to resistive effects in the sup-
ply networks and to the current draw). After the power nets
have been routed, the tool begins to route the logic wires.
After an initial mapping, search&repair loops are executed
to fix any violations.

As a final step, post-routing optimizations are performed.
This stage includes crosstalk minimization, antenna effect
minimization, and insertion of filler cells. Finally, a signoff
procedure can be run by using Synopsys PrimeTime [38]
to accurately validate the timing properties of the resulting
design.

3.5 Post-Layout Analysis

Post-layout verification and power estimation is achieved
as follows. First, the HDL netlist representing the final
placed&routed topology, including accurate delay models,
is simulated by injecting functional traffic through the OCP
ports of the NIs. This simulation is aimed both at verify-
ing functionality of the placed fabric and at collecting a
switching activity report. At this point, accurate wire capac-
itance and resistance information, as back-annotated from
the placed&routed layout, is combined with the switching
activity report using Synopsys PrimePower [37]. The out-
put is a layout-aware power/energy estimation of the simu-
lation.

4 Wire Design in 65 nm Technologies

As mentioned above, wires are a very important element
in sub-100 nm technologies. Our experience with a 65 nm
design flow has shown that wires are critical both within
NoC modules and for inter-module links. The following
subsections will briefly describe our findings at both levels.

4.1 Placement-Aware Logic Synthesis

The traditional flow for standard cell design features
logic synthesis and placement as two clearly decoupled
stages. While our in-house experience [2] shows that this

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

flow achieved reasonable enough results for 130 nm NoC
design, we have found this assumption to be substantially
inadequate at the 65 nm node. The origin of the problem
lies in the same concept that enables the splitting of the
two steps, namely, wireload models. Wireload models are
pre-characterized equations, supplied within technology li-
braries, that attempt to predict the capacitive load that a gate
will have to drive based on its fan-out alone. A gate driving
a fan-out of two other gates is very likely to be part of a local
circuit. Thus, its capacitive load is little more than the in-
put capacitance of the two downstream gates. A gate with a
fan-out of one thousand is likely to be the driver of a global
network. Therefore, some extra capacitance is expected due
to the long wires needed to carry the signal around. This as-
sumption works very well as long as wire loads do not be-
come too large. Otherwise, the characterization of wireload
models becomes very complex, and the prediction inaccu-
racies become critical. In our 65 nm test explorations, we
have found unacceptable performance degradation due to
inaccuracies in wireload estimation. Even when synthesiz-
ing single NoC modules (i.e., even without considering long
links), after the logic synthesis step, tools were expecting
some target frequency to be reachable. However, after the
placement phase, the results were up to 30% worse. Unfor-
tunately, traditional placement tools are not able to deeply
modify the netlists they are given as an input. In general,
they can only insert additional buffering to account for un-
expected loads on few selected wires. Therefore, if the input
netlist is fundamentally off the mark due to erroneous wire-
load expectations, not only a performance loss is certain,
but the placement runtime skyrockets.

To address this issue we leverage placement-aware logic
synthesis tools, such as Synopsys Physical Compiler [36].
In this type of flow, after a very quick initial logic synthe-
sis based on wireload models, the tool internally attempts a
coarse placement of the current netlist, and also keeps opti-
mizing the netlist based on the expected placement and the
wire loads it implies. The final resulting netlist already con-
siders placement-related effects. Therefore, after this netlist
is fed to the actual placement tool, performance results do
not incur major penalties.

In addition, we have found other wiring- and placement-
related problems within soft macros due to congestion. In
our test designs, placements tools performed poorly both
when modules had to be placed within too small and too
wide fences. While the former case is clearly understand-
able, we attribute the unexpected latter effect to the place-
ment tool heuristics, which are probably performing worse
when the solution space becomes very large. Thus, the
problem must be solved by proper tuning of the spacing
among the soft macro fences and, consequently, accurate
area models of the NoC modules are required to avoid
very time-consuming manual interventions in the synthesis
process.

4.2 Link Delay and Link Power

In order to assess the impact of global wires, we have
studied 65 nm NoC links in isolation from the NoC mod-
ules. An overview of some of our analyses can be found
in Figure 3. Our results show that several factors have to
be considered in link design. Two obvious factors are link
length and desired clock frequency. Short links or links
clocked at a very slow frequency do not pose problems.
However, as either length or target frequency are increased,
an undesired effect appears in the form of high power con-

sumption. The reason is that when links are pushed for
high performance, back-end tools automatically insert large
amounts of buffering gates, increasing the energy cost of the
links. In our validation experiments, the feasibility thresh-
old of high-frequency or very long links was in some cases
set by the inability to decrease delay further and in some
cases by crosstalk concerns. In other words, the added
buffers would sometimes be too large to be safely deployed.

Another extremely important dependency we noticed
was on the specific technology library in use. As Section 5
shows, especially at the 65 nm node, a single “technology
library” no longer exists for standard cell design. In fact,
manufacturing technologies are spreading across a variety
of libraries optimized for specific uses, such as low power
or high performance, with several intermediate levels fea-
turing for example different threshold voltage values. In
this case, if very low power libraries are used, the size and
speed of the buffers that can be interleaved along wires be-
comes dramatically inferior, which results in much tighter
constraints on frequency of operation or length. Figure 3(a)
reports power consumption for a 65 nm low power library
tuned for a low threshold voltage (called LP-LVT in the
following), and therefore for a power/performance tradeoff.
Figure 3(b) is based on a 65 nm low power library tuned for
a high threshold voltage (LP-HVT), and therefore for mini-
mum power consumption. As can be seen, the LP-HVT li-
brary is substantially more power effective than the LP-LVT
library, but puts much tighter constraints on link feasibility.

Link repeaters can be used to tackle this issue. We de-
fine repeaters as clocked registers along links. By providing
one or more extra clock periods to traverse long distances,
they solve the link infeasibility problem at a much lower
cost than that of deploying whole NoC switches in the mid-
dle of the links. In some cases, repeaters may even produce
more power-effective solutions than regular wire buffering
along particularly critical links, but at a performance cost
(i.e., one extra cycle of latency). In all cases, the NoC flow
control protocol must be designed in such a way as to en-
able a transparent insertion of the repeaters. Alternatively,
repeaters must contain extra logic to properly handle the
flow control handshake signals.

In our design flow we include support for pipelined links
at all levels of abstraction, starting from the high-level Sun-
Floor tool down to final layout tools. In fact, in our earlier
work [27], the topologies synthesized by SunFloor required
that the links could be traversed in a single clock cycle. In
this work, we have removed this assumption by including
in SunFloor the pre-characterization of link delay informa-
tion. Therefore, Sunfloor automatically pipelines long links
in the design, based on the targeted frequency of operation.
When a link is pipelined and its latency increases, SunFloor
considers this information to determine the average latency
of the NoC and, therefore, takes it into account in its cost
metrics.

5 Experimental Results

5.1 Technology Scaling from 90 to 65 nm

In our first set of results (see Figure 4) we have studied
the effect of scaling when the ×pipes switches are synthe-
sized in four different libraries, namely, two 65 nm and two
90 nm ones, tuned for different power/performance trade-
offs (LP-LVT and LP-HVT). In these experiments, switches
were fully placed&routed, including the addition of a clock

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

250 500 750 1000 1250 1500 1750 2000

0,5

1,5

2,5

5,0

9,0

0

5

10

15

20

25

30

35

40

45

Normalized power

Clock frequency (MHz)

Link length (mm)

(a) performance/power oriented 65 nm library (LP-LVT)

250 500 750 1000 1250 1500 1750 2000

0,5

1,5

2,5

5,0

9,0

0,0

1,0

2,0

3,0

4,0

5,0

6,0

Normalized power

Clock frequency (MHz)

Link length (mm)

(b) very low-power 65 nm library (LP-HVT)

Figure 3. Power consumption of 38-bit links
of varying lengths at different operating fre-
quencies. Values normalized to shortest link
at slowest frequency for confidentiality rea-
sons. Missing columns represent infeasible
length/frequency combinations.

tree. Then, syntheses were tuned for the maximum oper-
ating frequency. To this end, we disabled the clock gating
option. As can be seen in the results, 65 nm libraries pro-
vide large opportunities for improvement over their 90 nm
predecessors. In fact, we have observed power consump-
tions which are about 50% lower (up to 75% lower when
comparing the LP-HVT versions), and area savings of 40-
50%.

It is also important to observe the large difference in
synthesis results among two different libraries at the same
technology node. For the 65 nm case, the LP-HVT library
is consuming one order of magnitude less power than the
LP-LVT variant. In addition, our results indicate that this
performance spread is increased compared to the 90 nm li-
braries. For example, by observing the achievable clock
frequency, LP-HVT 65 nm libraries reach 50% lower fre-
quencies than their 90 nm equivalents, but LP-LVT 65 nm
libraries are actually 25% faster than their 90 nm equiva-
lents. This trend suggests that new degrees of freedom are
available to designers in new technology nodes.

In our second set of experiments we have analyzed com-
plete NoC topologies, namely 4x4 meshes (see Figure 5).
We have synthesized them with the higher-performance ver-
sion of the 90 nm and 65 nm libraries presented above. For
the 90 nm case, we modeled IP cores as 1 mm2 obstructions,

(a) power

(b) operating frequency

(c) area

Figure 4. Analysis of two representative
×pipes switches in different technology li-
braries. Figures normalized to the 4x4 switch
in the LP-HVT library.

while, for the 65 nm topologies, we assumed the same hy-
potheses and a scaled one, where IP cores require 0.63x0.63
mm2. The area scaling factor is derived from datasheet
analyses and experiments on adder designs.

As the results in Table 1 show, the jump to the 65 nm
node presents large advantages in area, power consump-
tion and maximum achievable frequency. The most im-
pressive result is the power over bandwidth metric, which
improves by a factor of 2. The gains are similar to those
for single switches reported above, except for the power
consumption figure, which features smaller savings. The
main reason is that, in regular meshes, links are generally

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

(a) 90 nm, 1 mm2 obstructions (b) 65 nm, 1 mm2 obstructions (c) 65 nm, 0.63x0.63 mm2 ob-
structions

Figure 5. Three 4x4 ×pipes meshes.

90 nm, 1 mm2 65 nm, 1 mm2 65 nm, 0.63x0.63 mm2

Relative frequency 1.00 1.25 1.25
Relative cell area 1.00 0.49 0.48
Relative power 1.00 0.66 0.63

Relative bandwidth 1.00 1.25 1.25
Relative power/bandwidth 1.00 0.53 0.50

Relative link power 1.00 1.16 0.71

Table 1. Synthesis results on three 4x4 NoC meshes. Figures normalized to the 90 nm results.

short (at most 1.2 mm in the meshes with 1 mm2 cores),
enough so to not represent a performance bottleneck even
at the 65 nm node. However, in 65 nm technology, there is
still a power consumption penalty to be paid due to the ex-
tra required buffering along the wires. For this reason, the
links in the 65 nm mesh with 1 mm2 cores, which are the
most constrained of this experiment due to a mix of tech-
nology properties, length and operating frequency, are the
most power-expensive and have an impact on overall fig-
ures. The scaled 65 nm mesh is less link-constrained, lead-
ing to slightly smaller area and power consumption.

5.2 Topology design

Next, we have applied the SunFloor tool to a high band-
width application, typical of today’s video applications, and
to a low bandwidth application, typical of mobile applica-
tions.

5.3 High Bandwidth Application

The objective of this experiment, whose results are out-
lined in Table 2, was twofold. First, we aimed at finding
the impact of technology scaling on the sizes of the com-
munication architectures and on the topologies required to
match the application characteristics. Second, we wanted to
analyze the impact of the choice of libraries (i.e. LP-LVT
or LP-HVT) used for the technology process. The compar-
isons we performed are:

• Same Platform for both 90 nm and 65 nm In this ex-
periment, we assumed that the same platform would
be used in 90 nm and 65 nm nodes, and we tried to
find the impact of technology scaling on the designed

Figure 6. Enhanced VOPD application, called
DVOPD, with the capability to decode two
streams in parallel.

NoCs. This is often done by system designers, who
reuse the same platform (possibly as a part of a big-
ger system) to reduce the design and verification ef-
forts. This analysis is based on a Dual Video Ob-
ject Plane Decoder (DVOPD) application, where two
video streams are decoded in parallel by utilizing 26
processing/hardware cores. This application is a scaled
version of the VOPD benchmark presented in [8]. The
communication characteristics of the DVOPD bench-
mark are shown in Figure 6. We have assumed that
the cores of the application (each core is represented
by a vertex in Figure 6) were of size 1 mm2 in 90 nm
technology and would shrink to 0.63x0.63 mm2 when
migrating to 65 nm.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Library, Application Max Freq. Switch Count Largest Switch Switch Power Link Power Total NoC Power Avg. latency

90 nm LP-LVT, DVOPD 400 MHz 4 10x9 140.83 mW 57.58 mW 198.3mW 3.42 cycles
90 nm LP-HVT, DVOPD - - - - - - -
65 nm LP-LVT, DVOPD 400 MHz 4 10x9 59.13 mW 24.46 mW 83.59 mW 3.91 cycles
65 nm LP-HVT, DVOPD - - - - - - -

65 nm LP-LVT, DVOPDX2 800 MHz 6 7x6 131.99 mW 47.98 mW 179.97 mW 4.24 cycles

65 nm LP-LVT, TVOPD 800 MHz 10 7x7 189.35 mW 79.93 mW 269.29 mW 4.35 cycles

Table 2. High Bandwidth Application Results

• Higher Bandwidth Platform in 65 nm To evaluate the
scalability of the interconnect in 65nm technology,
we have additionally considered a second benchmark,
where the bandwidth requirements of the DVOPD
were doubled, referred to as DVOPDX2.

• Larger and Higher Bandwidth Platform in 65nm As
the core sizes are smaller in 65 nm technology, we
could fit more cores on the chip in comparison to 90
nm. Therefore, to take this effect into account, we
considered a third benchmark, called TVOPD, where
3 video streams were decoded in parallel following the
same graph as in the DVOPD application (shown in
Figure 6), instead of 2 video streams as in DVOPD.
This new design consisted of 38 cores. We also as-
sumed that the base application bandwidth require-
ments would be doubled, as in DVOPDX2.

The characteristics of the NoCs synthesized by our tool
chain for the benchmarks are shown in Table 2. The average
latency presented in the table is defined as the latency for a
head flit of a packet to move from the output of the initiator
NI to the input of the target NI, when there is no congestion
in the network. In this study, we fixed the network flit width
to match the data width of the cores (equal to 32 bits). The
DVOPD application bandwidth requirements demanded a
400 MHz operation for the NoC, which was automatically
determined by the SunFloor tool. We could observe several
interesting facts:

• The switches designed using the LP-HVT libraries
were not able to meet the required frequency and band-
width requirements, due to their focus on very low
power operation. Thus, only the LP-LVT libraries re-
sulted in valid designs for the benchmark.

• For the DVOPD application (represented by the rows
1-4 in the table), the best topology synthesized by our
tool flow remains the same (i.e., same switch count and
sizes), with both 90 nm and 65 nm libraries. The ratio
of link power to switch power consumption, however,
increased when moving to the 65 nm technology. This
is despite the fact that, for this benchmark, the core
sizes were smaller in 65 nm technology, which led to
an overall reduction in the total length of wires. The
reason for this reduction was that the switch power
consumption reduces by 55% when we moved from
90 nm to 65 nm, whereas the wire power consumption
was reduced only by 31%. This result is in agreement
with the findings in Table 1.

• The number of switches needed increased to 6 and
10 for the DVOPDX2 and TVOPD scenarios, respec-
tively. This is because these benchmarks have doubled
bandwidth requirements with respect to the DVOPD
application; thereby, they require double the operat-
ing frequency for the NoC (800 MHz). In fact, as

DVOPDX2 TVOPD
0

10

20

30

40

50

60

70

80

N
u
m

b
er

 o
f

L
in

k
s

unpipelined
1−stage pipeline

Figure 7. Amount of pipelined links in two
sample benchmarks.

big switches cannot satisfy such a high operating fre-
quency, the SunFloor tool synthesized a design with
many smaller switches. As the topology size increases,
as expected, the average head flit latency also in-
creases.

• The 65 nm technology is very power efficient. In fact,
this technology supported twice the application band-
width requirements (the DVOPDX2 benchmark) at a
lower power consumption than the 90 nm technology
library.

5.4 Effect of Link Pipelining

The SunFloor tool automatically pipelines long links,
based on the required NoC operating frequency and the link
lengths obtained from the floorplan of the design. Such link
pipelining is needed for NoCs that require a high operating
frequency. As an example, without link pipelining support,
the NoC for the DVOPDX2 and TVOPD designs could only
operate at 500 MHz, while the application bandwidth re-
quirements necessitate 800 MHz operation. In Figure 7, we
plot the number of pipeline stages required for the differ-
ent links in the DVOPDX2 and TVOPD designs. A non-
pipelined link requires one clock cycle for traversal, while a
link with a single pipeline stage requires two clock cycles.
For all these benchmarks, we found that all the links could
be traversed within 2 clock cycles. As the design com-
plexity increases (when we move to the TVOPD design),
the portion of links that require pipelining also increases.
The SunFloor tool automatically considers the increase in
latency due to link pipelining when determining the aver-
age latency of the NoC, and is therefore able to account for
the overhead in its performance metrics.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Library Max Freq. Switch Count Largest Switch Switch Power Link Power Total NoC Power Avg. latency

90 nm LP-LVT 50 MHz 2 11x11 10.46 mW 5.47 mW 15.93 mW 3.94 cycles
90 nm LP-HVT 50 MHz 2 11x11 4.27 mW 2.1 mW 6.36 mW 3.94 cycles
65 nm LP-LVT 50 MHz 2 11x11 4.72 mW 2.31 mW 7.03 mW 3.94 cycles
65 nm LP-HVT 50 MHz 5 9x9 2.61 mW 1.65 mW 3.86 mW 3.94 cycles

Table 3. Low Bandwidth Application Results.

Application Library Bandwidth per mW

DVOPD 90 nm LP-LVT 67.27 MB/s/mW
DVOPD 65 nm LP-LVT 159.64 MB/s/mW

DES 90 nm LP-LVT 94.62 MB/s/mW
DES 90 nm LP-HVT 229.56 MB/s/mW
DES 65 nm LP-LVT 207.68 MB/s/mW
DES 65 nm LP-HVT 378.23 MB/s/mW

Table 4. Bandwidth supported per milliwatt of
power consumption

Figure 8. DES benchmark.

5.5 Low Bandwidth Application

NoCs can be used effectively not just for high bandwidth
applications, but also for low bandwidth applications that
have tight power budget constraints. Therefore, in our fi-
nal set of experiments, we have assessed the performance
of NoCs to forthcoming requirements of low-power appli-
cations and mobile systems.

In order to represent mobile applications with these low
power requirements, we have considered the DES encryp-
tion benchmark, a low bandwidth application that is im-
plemented on 19 cores. The communication characteristics
for the benchmark are shown in Figure 8. The designed
NoCs for the 2 different technologies for the LP-LVT and
LP-HVT libraries are shown in Table 3. As seen from the
table, for low power requirements, the LP-HVT libraries are
far superior to the LP-LVT libraries. As an example, for the
DES mapping in the 65 nm LP-HVT technology, we also
present the resulting chip layout in Figure 9.

In addition, we investigated the energy efficiency of the
NoCs for the different applications across the different tech-
nology generations. The total bandwidth required by the
DVOPD application is 13.34 GB/s, while for the DES ap-
plication, it is 1.46 GB/s. In Table 4, we present the band-
width supported per milliwatt of power consumption by the
different NoC designs for the DVOPD and DES applica-
tions. This metric captures the energy efficiency of the dif-
ferent technology libraries. The 65 nm technology libraries
have much higher energy efficiency. For example, for the
DES application, using the LP-LVT libraries, a 2.19X im-
provement is obtained when compared to the 90 nm tech-
nology. Another interesting fact to note is that, for the DES
application, the NoC supports a higher bandwidth per mW
power consumption than for the DVOPD application. This
is because of two reasons: firstly, the DVOPD application
needs a higher operating frequency, which requires the syn-

Figure 9. Layout of the DES mapping on 65
nm LP-HVT technology. Over-the-cell routing
was allowed in this example.

thesis tools to utilize more power intensive components for
the switches. Secondly, the communication traffic is more
evenly spread in the DVOPD application, thereby requiring
more inter-switch traffic flows than the DES application.

Finally, we have compared the quality of the custom
topology generated for the DES benchmark with that of
a mesh topology (19 switches, with each core connected
to a switch) and a quasi-mesh topology (10 switches,
with 2 cores connected to a single switch). In this case
we have performed cycle-accurate simulations of the DES
benchmark with the designed NoCs using the ×pipes plat-
form [20]. The total application runtimes for the 3 designs
are shown in Figure 10. As this figure indicates, the entire
application performance (which also includes the time for
computation) improves by 7% when the custom topology is
used.

6 Conclusions And Future Work

NoCs have emerged as a promising structured way of
realizing interconnections on silicon, and obviate the lim-
itations of bus-based solution. NoCs can have regular or
ad-hoc topologies, and it is essential to assess their per-
formance and power features in forthcoming technology
nodes. In this paper, we have performed a complete and
thorough study of the trends imposed by deep submicron
manufacturing processes in fully working 65 nm NoC de-
signs. Moreover, we have presented a complete platform

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Figure 10. Runtime comparison of best topol-
ogy synthesized by SunFloor vs. quasi-mesh
and mesh topologies

generation flow using NoC interconnects that considers the
design constraints imposed by the 65nm technology node to
generate fully functional chip layouts from initial high-level
application models.

Our experimental results show that, while new technol-
ogy nodes allow for large benefits in terms of power con-
sumption, device area and operating frequency, they also
pose non-trivial challenges, which must be properly tackled
by NoC design flows. Our experience with a 65 nm NoC
flow led us to the conclusion that an investment was needed
in design tools, especially in the back-end phase, and that
architectural support (pipelined links) was also required for
optimal results. A very positive outcome, however, is that
the scalability of NoCs does not deteriorate even for large
65 nm designs, and that NoCs prove capable of tackling the
challenges of 65 nm processes.

In the future, we plan to perform a more careful analysis
of the parasitic and leakage effects in the design of ultra-low
power NoCs.

7 Acknowledgments

This work is partially supported by the Swiss Na-
tional Science Foundation (FNS Research Grant 20021-
109450/1), the US National Science Foundation (NSF, con-
tract CCR-0305718) for Stanford University, the Spanish
Government Research Grant TIN2005-5619, and a grant by
STMicroelectronics for University of Bologna.

References

[1] T. Ahonen, et al. Topology optimization for application-specific networks-
on-chip. In Proc. SLIP), 2004.

[2] F. Angiolini, et al. Contrasting a NoC and a traditional interconnect fabric
with layout awareness. In Proc. DATE, 2006.

[3] M.-N. K. Bambha, et al. Joint application mapping/interconnect synthesis
techniques for embedded chip-scale multiprocessors. IEEE Trans. PDS, 2005.

[4] N. Banerjee, et al. A power and performance model for network-on-chip
architectures. In Proc. DATE, 2004.

[5] L. Benini, et al. Networks on chip: a new SoC paradigm. IEEE Computer,
2002.

[6] L. Benini, et al. Networks on chips: Technology and Tools. Morgan Kaufmann
Publishers, 2006.

[7] D. Bertozzi, et al. xpipes: A network-on-chip architecture for gigascale
systems-on-chip. IEEE Circuits and Systems Magazine, 2004.

[8] D. Bertozzi, et al. NoC synthesis flow for customized domain specific multi-
processor systems-on-chip. IEEE Trans. PDS, 2005.

[9] J. Chan, et al. Nocgen: a template based reuse methodology for NoC archi-
tecture. In Proc. ISVLSI, 2004.

[10] M. Coppola, et al. OCCN: a network-on-chip modeling and simulation frame-
work. In Proc. DATE’04, 2004.

[11] W. Dally, et al. Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers, 2003.

[12] M. Gasteier, et al. Bus-based communication synthesis on system level. ACM
TODAES, 1999.

[13] W. Hang-Sheng, et al. A technology-aware and energy-oriented topology
exploration for on-chip networks. In Proc. DATE, 2005.

[14] W. Hang-Sheng, et al. Orion: a power-performance simulator for intercon-
nection networks. In Proc. MICRO, 2002.

[15] A. Hansson, et al. A unified approach to constrained mapping and routing on
NoC architectures. In Proc. CODES+ISSS, 2005.

[16] W. H. Ho, et al. A methodology for designing efficient on-chip interconnects
on well-behaved communication patterns. In Proc. HPCA, 2003.

[17] J. Hu, et al. System-level point-to-point communication synthesis using floor-
planning information. In Proc. ASP-DAC, 2002.

[18] J. Hu, et al. Exploiting the routing flexibility for energy/performance aware
mapping of regular NoC architectures. In Proc. DATE, 2003.

[19] Y. Hu, et al. Communication latency aware low power NoC synthesis. In
Proc. DAC ’06, 2006.

[20] A. Jalabert, et al. xpipescompiler: A tool for instantiating application specific
NoC. In Proc. DATE, 2004.

[21] A. Jantsch, et al. Networks on chip. Kluwer Academic Publishers, 2003.

[22] K. Lahiri, et al. Design space exploration for optimizing on-chip communi-
cation architecture. IEEE T-CAD), 2004.

[23] S. Manolache, et al. Fault and energy-aware communication mapping with
guaranteed latency for applications implemented on NoC. In Proc. DAC,
2005.

[24] S. Murali, et al. Mapping and physical planning of NoC architectures with
quality-of-service guarantees. In Proc. ASP-DAC, 2005.

[25] S. Murali, et al. A methodology for mapping multiple use-cases onto NoCs.
In Proc. DATE, 2006.

[26] S. Murali, et al. An application-specific design methodology for stbus cross-
bar generation. In Proc. DATE, 2005.

[27] S. Murali, et al. Designing application-specific networks on chips with floor-
plan information. In Proc. ICCAD, 2006.

[28] OCP-IP. Open core protocol standard, 2003. http://www.ocpip.org/
home.

[29] G. Palermo, et al. Pirate: A framework for power/performance exploration of
network-on-chip architectures. In Proc. PATMOS), 2004.

[30] S. Pasricha, et al. Fast exploration of bus-based on-chip communication ar-
chitectures. In Proc. CODES+ISSS, 2004.

[31] C. S. Patel. Power constrained design of multiprocessor interconnection net-
works. In Proc. ICCD, 1997.

[32] A. Pinto, et al. Efficient synthesis of NoCs. In Proc. ICCD, 2003.

[33] D. Siguenza-Tortosa, et al. Vhdl-based simulation environment for proteo
noc. In Proc. HLDVT Workshop, 2002.

[34] K. Srinivasan, et al. An automated technique for topology and route gen-
eration of application specific on-chip interconnection networks. In Proc.
ICCAD, 2005.

[35] Synopsys. Astro. http://www.synopsys.com.

[36] Synopsys. Physical Compiler. http://www.synopsys.com.

[37] Synopsys. PrimePower. http://www.synopsys.com.

[38] Synopsys. PrimeTime. http://www.synopsys.com.

[39] T. T. Ye, et al. Analysis of power consumption on switch fabrics in network
routers. In Proc. DAC, 2002.

[40] X. Zhu, et al. A hierarchical modeling framework for on-chip communication

architectures. In Proc. ICCAD, 2002.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

