
358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

A Pattern-Mining Method for High-Throughput
Lab-on-a-Chip Data Analysis

Sungroh Yoon, Luca Benini, Senior Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—Biochips are emerging as a useful tool for high-
throughput acquisition of biological data and continue to grow
in information quality and in discovering new applications. Re-
cent advances include CMOS-based integrated biosensor arrays
for deoxyribonucleic acid (DNA) expression analysis (Hassibi
and Lee, 2005), (Schienle et al., 2004), and active research is
ongoing for the miniaturization and integration of protein mi-
croarrays (Kiyonaka et al., 2004), (Rubina et al., 2003), (Scrivener
et al., 2003), tissue microarrays (TMAs), (Chen et al., 2004),
(Shergill et al., 2004), and fluorescence-based multiplexed cytokine
immunoassays (Wang et al., 2002). The main advantages of mi-
crofluidic lab-on-a-chip include ease of use, speed of analysis, low
sample and reagent consumption, and high reproducibility due to
standardization and automation. Without effective data-analysis
methods, however, the merit of acquiring massive data through
biochips will be marginal. The high-dimensional nature of such
data requires novel techniques that can cope with the curse of
dimensionality better than conventional data-analysis approaches.
In this paper, the authors proposed a pattern-mining method to
analyze large-scale biological data obtained from high-throughput
biochip experiments. In particular, when a data set is given as
a matrix, the method can find patterns appearing in the form
of (possibly overlapping) submatrices of the input matrix. The
method exploits the techniques developed for the symbolic ma-
nipulation of Boolean functions. Leveraged by this approach, the
method can find, given a data matrix, all patterns that satisfy
specific input parameters. The authors tested the method with
several large-scale biochip data and observed that the proposed
method outperforms the alternatives in terms of efficiency and the
number of patterns discovered.

Index Terms—Bioinformatics, biomedical signal analysis, bio-
medical transducers, computer-aided analysis, data management,
logic design.

I. INTRODUCTION

INTEREST in in vivo and in vitro applications of lab-on-
a-chip, also called microfluidics-based biochips or biomi-

croelectromechanical system (bio-MEMS), is growing [15],
[40]. The main advantages of this technology include ease-of-
use, speed of analysis, low sample and reagent consumption,
and high reproducibility due to standardization and automa-
tion. Biochips has become one of the standard tools for high-
throughput acquisition of biological data, as is evident from

Manuscript received February 26, 2005; revised June 5, 2005. This work
was supported in part by grants from J. Yang and A. Yamazaki. This paper was
recommended by Associate Editor J. Zeng.

S. Yoon is with the Computer Systems Laboratory, Stanford University,
Stanford, CA 94305 USA (e-mail: sryoon@stanford.edu).

L. Benini is with the Department of Electrical Engineering and Computer
Science (DEIS), University of Bologna, 40136 Bologna, Italy.

G. De Micheli is with the Integrated Systems Center, Ecole Polytechnique
Fédérale de Lausanne (EPF Lausanne), CH-1015 Lausanne, Switzerland.

Digital Object Identifier 10.1109/TCAD.2005.855960

Fig. 1. Growth of GenBank database. The growth rate exceeds the pace set by
Moore’s Law.

the recent advances in integrated biosensor arrays [17], [35],
protein microarrays [19], [33], [36], tissue microarrays (TMAs)
[8], [37], and fluorescence-based multiplexed cytokine immu-
noassays [41].

However, the usefulness of this fascinating innovation may
be limited without an effective means of analysis of the data ob-
tained. In fact, technical breakthroughs in biotechnologies have
already led to a rapid growth of biological data, both in size
and complexity. For example, in recent years, the rate at which
the GenBank database (http://www.ncbi.nlm.nih.gov/Genbank)
has grown exceeds the pace set by Moore’s Law, as seen in
Fig. 1. Therefore, it is of utmost importance to have a fast
and statistically robust data-analysis tool that can lead to
breakthrough improvements in quality and time-to-market, by
providing the designers of high-throughput biochips with the
necessary feedback for the next design iteration in a timely
manner.

Multiple new methods have been proposed to effectively an-
alyze large-scale biological data obtained from high-throughput
biotechnologies, despite the mature literature on traditional
clinical-data analysis. This is partly because the data acquired
from biochips often exhibit different characteristics from tradi-
tional clinical data. For instance, as seen in Fig. 2, the number of
variables involved in a typical genomic study is far more than
that of the observations, in contrast to a typical clinical study
where there are normally more observations than variables

0278-0070/$20.00 © 2006 IEEE

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 359

Fig. 2. Major difference between classic clinical studies and genomic studies
[20]. In contrast to clinical data, genomic data often results in a highly
underdetermined system.

Fig. 3. Comparison between classic clusters and the patterns our method can
find. (a) Objects are partitioned into mutually exclusive groups. (b) Patterns in
our definition are allowed to belong to multiple groups.

[20]. Thus, in typical genomic studies, we often encounter the
curse of dimensionality and the problem of identifying a highly
underdetermined system.

Among the methods that have been proposed to handle
this challenge, one of the most natural and in fact effective
approaches is to focus only on subsets of the entire data [2].
By performing simultaneous clustering of rows and columns in
a data matrix, we can discover some local structure appearing
in the form of overlapping submatrices of the matrix. In this
paper, we use the term pattern to refer to this local structure
(see Fig. 3). In the literature, the local structure modeled by a
submatrix is also termed coclusters, biclusters, or modules. The
interested reader is directed to [23] for a review.

We observe that many patterns defined in the literature pos-
sess a common property. Suppose that D is a certain condition
under which a pattern, P , is defined. Here, we refer to the
pattern P as homogeneous if any legitimate subpattern of
P also satisfies the condition D. Examples of homogeneous
patterns in the literature include conserved gene expression
motifs (xMOTIFs) [29], δ-valid kj-patterns [7], gene expres-
sion module sampler (GEMS) [43], order-preserving submatrix
problems (OPSMs) [3], order preserving (OP)-Clusters [21],
and δ-pClusters [42], just to name a few.

Despite its relevance, the problem of homogeneous pattern
mining is often computationally challenging. Let A be a matrix
with row set R and column set C. The matrix A can be
converted to a weighted bipartite graph G = (V,E), where the
vertex set V = R ∪ C and the edge set E consists of edge {i, j}
connecting row i ∈ R and column j ∈ C with weight aij . A

submatrix of A then corresponds to a biclique in the graph G.
To find not just any submatrix but a useful one, we need to
consider individual elements of a submatrix, or equivalently,
the edge weights of a biclique. Moreover, in order to avoid
redundancy, we usually focus on finding maximal submatrices.
Therefore, the problem of discovering patterns with certain
semantics is at least as hard as that of finding the maximum
edge biclique in a bipartite graph, a problem known to be
NP-complete [23], [30].

In this paper, we propose a novel pattern-mining method
that exploits the techniques commonly used for the symbolic
manipulation of Boolean functions. The techniques have been
reported to be useful in solving many practical instances of in-
tractable problems [5], [6], [12], [25], [34]. In particular, we use
the zero-suppressed binary decision diagrams (ZBDDs) [26],
[27] to implicitly represent and manipulate massive interme-
diate data occurring in the pattern-mining process. Leveraged
by this approach, our method can find, given a data matrix,
all homogeneous patterns that satisfy specific input parameters.
Especially, our method can find three types of homogeneous
patterns, which are defined in such a way that they can serve
as representative examples of the homogeneous patterns fre-
quently encountered in the literature.

In our experiments, we first tested the proposed method
with synthetic data sets to verify its validity. We then applied
our method to some biological data in order to evaluate its
applicability to actual biological data sets. We used gene-
expression data obtained from genome chip experiments [13],
[22]. This type of data is one of the most large-scale biochip
data available. We observed that our method outperforms the
alternative methods that are designed to find the same patterns,
not only in terms of efficiency but also with respect to the total
number of patterns discovered. In particular, we confirmed that
the use of ZBDDs can greatly enhance the scalability of our
approach and enable us to apply it to large-scale data sets.

The remainder of this paper is organized as follows. In
Section II, we brief the reader on some biochip technologies in
order to show the wide applicability of our method. Section III
presents the formal definition of homogeneous patterns our
method can find. In Sections IV and V, we explain at length
the proposed method, which consists of essentially two stages.
The first stage, which is detailed in Section IV, is to find
special homogeneous patterns called atomic patterns. Section V
presents the second stage of our method, which derives general
(nonatomic) homogeneous patterns from the atomic patterns
previously found. Section VI provides our experimental results,
followed by the conclusion in Section VII.

II. BACKGROUND: DATA ACQUISITION BY

HIGH-THROUGHPUT BIOCHIPS

After readout and preliminary data processing, biological
data produced by high-throughput technologies are typically
arranged in a matrix. Our method can analyze any type of
biochip data, as long as the input data are represented as a ma-
trix of real numbers. Here we present several examples, in order
to provide an idea of the wide applicability of our approach.
Some of these technologies have already been implemented

360 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

into a biochip, whereas others are currently under active re-
search for miniaturization and integration.

One of the most well known and widely available is the de-
oxyribonucleic acid (DNA) microarray technology [13], [22],
which enables us to monitor the expression levels of a large
number of genes simultaneously, providing a global view of
gene-expression information of the organism under study [2],
[20], [31]. Depending upon the specific technology used, a
DNA microarray data matrix reflects either absolute-expression
levels (e.g., Affymetrix GeneChips [22]) or relative expression
ratios (e.g., complementary DNA (cDNA) microarrays [13]) of
thousands of genes under hundreds of experimental conditions.
Recently, CMOS-based integrated DNA microarrays have been
reported [17], [35], and the scale of integration will continue
to grow.

The TMA technique enables researchers to extract small
cylinders of tissue from histological sections and arrange them
in a matrix configuration on a recipient paraffin block such that
hundreds can be analyzed simultaneously [8], [37]. TMA thus
allows the rapid and cost-effective validation of novel markers
in multiple pathological tissue specimens.

The protein microarray is a crucial biomaterial for the rapid
and high-throughput assay of many biological events where
proteins are involved. In contrast to the DNA microarray, it has
not been sufficiently established because of protein instability
under the conventional dry conditions [19]. However, protein
microarrays will eventually reveal vast amounts of information
essential to the understanding of gene functions and products.

Other examples include the fluorescence-based multiplexed
cytokine immunoassays [41] and ligand chips [33]. In partic-
ular, using the cytokine chip, cytokine expression in breast-
cancer cells were examined and the chemokines associated with
human cervical cancers were successfully identified [41].

III. DEFINITIONS AND OVERVIEW

Our method is a generalization of some homogeneous
pattern-mining techniques in the literature [3], [7], [9], [21],
[29], [43], [44]. Thus, within a unified framework, our approach
can find various types of homogeneous patterns. In particu-
lar, we focus on finding three specific types of homogeneous
patterns in this paper. Their formal definitions are provided in
Section III-A. Some biological intuition behind these defini-
tions is presented in Section III-B. The problem statement and
an overview of our approach will follow in Sections III-C and
III-D, respectively.

A. Definition of Homogeneous Patterns

Throughout the paper, we let A denote an input data matrix
of real numbers with set of rows R = {1, 2, . . . , n} and set
of columns C = {1, 2, . . . ,m}. That is, A ∈ R

n×m. We also
denote the matrix A by pair (R,C). We first provide a formal
definition of a homogeneous pattern.
Definition 1: Given A = (R,C), an input matrix, and D, a

certain condition defined on a matrix, let pair P = (I, J) denote
a submatrix of A, namely, I ⊆ R and J ⊆ C. The submatrix P
is called a pattern appearing in A under D, if P satisfies the
condition D.

Fig. 4. Example of an input matrix and some patterns appearing in the matrix.
The condition D here defines a matrix in which the values on each row are
constant. (a) Input matrix A. (b) Patterns P1, P2, P3.

Example 1: Fig. 4(a) presents matrix A ∈ R
4×4 with R =

C = {1, 2, 3, 4}. Let D define a matrix in which the values
on each row are constant. Fig. 4(b) shows P1, P2, P3, some
patterns appearing in the matrix A under the condition D.
Definition 2: Let P be a pattern appearing in matrix A under

condition D. The pattern P is called homogeneous if any subset
(or submatrix) of P is also a pattern appearing in the matrix A
under the condition D.
Example 2: In Fig. 4(b), it can be easily verified that any

submatrix of P1, P2, and P3 is another pattern appearing in the
matrix A under the same condition D, since the values on each
row of such a submatrix remain constant. Thus, P1, P2, and P3

are all homogeneous patterns.
We introduce the three types of homogeneous patterns which

can be found by the pattern-mining method we are proposing in
this paper. Table I is for a quick lookup of related information.
In what follows, the term pattern always means a homogeneous
pattern, unless otherwise stated.
1) Type-1 Patterns:
Definition 3: For any set S on R, the range of S, denoted

by RANGE(S), is the difference between the largest and the
smallest elements of S.
Definition 4: Given matrix A = (R,C) and threshold τ ≥ 0,

a type-1 pattern is a matrix denoted by (I, J), such that:
1) I ⊆ R and J ⊆ C; and 2) for each i ∈ I , RANGE({aij |∀j ∈
j}) ≤ τ .

Example 3: Fig. 5 presents an input matrix and some type-1
patterns appearing in the matrix with respect to the parameter
τ = 0.5.

Type-1 patterns are a representative example of the patterns
that have a one-row-based or one-column-based definition.
Examples include a pattern with constant values on rows, as
seen in Fig. 4, or with constant values on columns. In the
literature, patterns such as xMOTIFs [29], δ-valid kj-patterns
[7], and GEMS [43] belong to this type.

The reader can easily verify that any type-1 pattern is homo-
geneous. Furthermore, the following property holds for type-1
patterns.
Property 1: If (I1, J1) and (I2, J2) are both type-1 patterns

with respect to τ , then the pattern (I1 ∪ I2, J1 ∩ J2) is also type
1 with respect to τ .

Example 4: The patterns shown in Fig. 4(b) satisfies De-
finition 4 with respect to τ = 0, and thus, P1, P2, and P3

are all type-1 patterns. Let P1 = (I1, J1), P2 = (I2, J2), and
P3 = (I3, J3). Then, I3 = I1 ∪ I2 and J3 = J1 ∩ J2. Thus,
Property 1 holds for these patterns.

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 361

TABLE I
CLASSIFICATION OF HOMOGENEOUS PATTERNS

Fig. 5. Type-1 patterns appearing in the input matrix A (the parameter τ = 0.5). (a) Input matrix A. (b) Type-1 patterns P1, P2, P3, and P4.

Fig. 6. Example of type-2 patterns. (a) Input matrix A. (b) Type-2 patterns P1, P2, P3, and P4.

2) Type-2 Patterns:
Definition 5: Given matrix A = (R,C), let J ⊆ C be a set

of size k ≥ 2 and let 〈o1, o2, . . . , ok〉 be a linear ordering of
J . A type-2 pattern is a matrix denoted by (I, J) such that:
1) I ⊆ R; and 2) for each i ∈ I , aio1 > aio2 > · · · > aiok

.
Example 5: Fig. 6 presents a data matrix and type-2 patterns

appearing in it. The order of the values on each row is pre-
served. For example, for i ∈ I = {1, 2} in P1, ai1 > ai4 > ai2;
for i ∈ I = {1, 2, 3} in P4, ai3 > ai4 > ai2.

Type-2 patterns are a representative example of the patterns
in which the order of the values (or some states defined by them)
on a row or column is preserved for the other rows or columns
as well. Examples in the literature include OPSMs [3] and
OP-Clusters [21].

It can easily be verified that a type-2 pattern is homogeneous.
In addition, the following property holds for type-2 patterns.
Property 2: If both (I1, J1) and (I2, J2) are type-2 patterns,

then the pattern (I1 ∪ I2, J1 ∩ J2) is also type 2.
Example 6: Property 2 holds for the patterns shown in

Fig. 6(b). For example, let P2 = (I2, J2), P3 = (I3, J3), and
P4 = (I4, J4). Then, it can be verified that I4 = I2 ∪ I3 and
J4 = J2 ∩ J3.

3) Type-3 Patterns:
Definition 6: Given matrix A = (R,C) and threshold τ ≥ 0,

a type-3 pattern is a matrix denoted by P = (I, J) such that:

1) I ⊆ R and J ⊆ C; and 2) for any 2 × 2 submatrix

[
e f
g h

]

in P , |e− g − f + h| ≤ τ .
Example 7: Fig. 7 shows a data matrix and some type-3

patterns appearing in the matrix with respect to the param-
eter τ = 1.

Type-3 patterns are to model a matrix in which the elements
exhibit some coherent behavior. Examples include a matrix
in which the value of the elements fluctuate in harmony and
a matrix in which all elements have the same value. Type-3
patterns in Definition 6 are in essence equivalent to δ-pClusters
[42] and closely related to δ-biclusters1 [9] and flexible over-
lapped biclustering (FLOC) clusters [44].

The reader can verify that type-3 patterns are homogeneous.
However, Properties 1 and 2 do not necessarily hold for type-3
patterns. Also note that the same set of type-3 patterns can be
found from input A and the transpose of A. This is because

two matrices

[
e f
g h

]
and

[
e g
f h

]
are indistinguishable in

the definition since |e− g − f + h| = |(e− g)− (f − h)| =
|(e− f)− (g − h)|.

B. Biology Behind the Definitions of Patterns

The three types of homogeneous patterns were defined in
such a way that they can effectively capture important biolog-
ical phenomena involved in various applications. For example,
in gene-coregulation analysis, researchers are often interested
in recognizing common fluctuations in the expression levels
of multiple genes. Finding type-2 and type-3 patterns from
gene-expression data matrices may be useful in this application.
Discovering type-1 patterns can provide some biological insight

1δ-biclusters are not homogeneous patterns, since a subcluster of a
δ-bicluster is not necessarily a δ-bicluster [9], [42]. However, δ-biclusters are
included here because they also aim at modeling the coherent behavior of
matrix elements, and it has been reported that δ-biclusters are closely related
to δ-pClusters in many aspects [42], [46].

362 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 7. Example of type-3 patterns (parameter τ = 1). (a) Input matrix A.
(b) Type-3 patterns P1, P2, and P3.

Fig. 8. Flowchart of our method. The first step (Algorithms 1, 2, and 3) is
to find atomic patterns. The second step (Algorithms 4 and 5) is to derive
nonatomic patterns.

for applications such as the task of marker-gene identification,
where we are interested in correlating the activity of one or
more genes to specific subphenotypes, and thus, finding genes
expressed only in some phenotypes. For more examples, the
reader can refer to [23], as well as the references listed in
Table I.

C. Problem Statement

Given an input-data matrix A = (R,C), a specific definition
D ∈ {Definition 4,Definition 5,Definition 6}, and the parame-
ters specified in D, the problem of pattern mining is to find
all maximal homogeneous patterns P = (I, J) appearing in A
under D. We search only maximal2 patterns or those that are not
contained by other patterns as a submatrix, since nonmaximal
patterns contain redundant information. Optionally, we can
specify the minimum size of patterns in order not to generate
patterns that are too small.

D. Overview of our Approach

Our pattern-mining algorithm consists of essentially two
steps. The first step is to find special patterns called atomic
patterns. The second step is to derive other general (nonatomic)
patterns from the atomic patterns previously found. These two
steps are detailed in Sections IV and V, respectively. Fig. 8
provides a flowchart of our method, and Tables II and III list
related information for a quick reference.

2Formally, a pattern P = (I, J) is called maximal if there is no pattern P ′ =
(I′, J ′) such that I ⊆ I′ and J ⊆ J ′ under the identical input conditions.

TABLE II
STEP 1—FINDING ATOMIC PATTERNS

TABLE III
STEP 2—DERIVING NONATOMIC PATTERNS FROM ATOMIC PATTERNS

E. Notation

Table IV lists some important notations that will be used
throughout the paper, especially in Section V.

IV. FINDING ATOMIC PATTERNS

Informally, an atomic pattern is represented by a matrix that
has only one row (type 1) or two rows (types 2 and 3) but
as many columns as possible. In this section, we provide the
formal definition of atomic patterns and specific algorithms to
find them.

A. Finding Type-1 Atomic Patterns

Definition 7: Given input matrix A = (R,C) and threshold
τ ≥ 0, a type-1 atomic pattern for row i ∈ R is a one-row ma-
trix, denoted by pair P = ({i}, J), that satisfies the following:
1) P is a type-1 pattern on A; and 2) there is no J ′ such that
J ′ ⊃ J and ({i}, J ′) is also a type-1 pattern.

The condition (2) in the above definition is not to generate
those atomic patterns that are contained by others, since such
patterns are redundant.

Algorithm 1 (Fig. 9) details our approach to find type-1
atomic patterns of Definition 4. The key idea of this algorithm
is simple: when the elements of a set S are sorted and arranged
in the corresponding order, range(S) is simply the absolute
difference between the first and the last elements of S. The
worst case complexity of the algorithm is polynomial in |C|,
and the maximum number of atomic patterns found per row by
Algorithm 1 is (|C| − 1).

In Lines 1–4, the column indices are sorted in ascending
order according to the value of the corresponding elements. The
variables begin and end in Lines 5–6 are to point to the first and
the last elements of the subarray under consideration at some
point. Inside the while loop in Lines 7–16, J , the column set
of an atomic pattern, is generated as the variables begin and
end are incremented. Note that multiple J can exist per row
and overlap with each other. Since the array D is sorted, the
algorithm only needs to compare in Line 8 the first element
(D[begin]) and the last element (D[end]), in order to see if all
the elements in the subarray are similar. In Lines 8–9, the vari-
able end is extended as long as D[end].val−D[begin].val ≤ τ .
The algorithm reports J in Line 11 or Line 13. Lines 14–16 are
to adjust the variable begin appropriately after one instance of

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 363

TABLE IV
NOTATIONS

Fig. 9. Algorithm 1.

J is found, because multiple overlapping instances of J can be
found for each row.
Example 8: Fig. 10(b) presents the type-1 atomic patterns

discovered by Algorithm 1 from the data matrix in Fig. 5(a),
repeated here in Fig. 10(a) for convenience. The parameter used
is τ = 0.5.

B. Finding Type-2 Atomic Patterns

Definition 8: Given input matrix A = (R,C), a type-2
atomic pattern for rows i, k ∈ R(i �= k) is a two-row matrix,
denoted by pair P = ({i, k}, J), that satisfies the following:
1) P is a type-2 pattern on A; and 2) there is no J ′ such that
J ′ ⊃ J and ({i, k}, J ′) is also a type-2 pattern.

Our approach to find type-2 atomic patterns is outlined in
Algorithm 2 (Fig. 11). The main problem is to find a largest
two-row matrix in which the order of the values on each row
is preserved. The key is to exploit algorithms to solve the
problem of finding maximal common subsequences (MCSs) of
two sequences [11], [16].

Besides an input-data matrix, Algorithm 2 takes an additional
input parameter minJ to specify the minimum cardinality of the
column set of an atomic pattern. This is to limit the total number
of atomic patterns per pair of rows.

Fig. 10. (a) Input matrix A. (b) Type-1 atomic patterns found from A by
Algorithm 1 (τ = 0.5).

Fig. 11. Algorithm 2.

In Lines 1–5, the elements of each row are sorted with
respect to their value, and the column indices are ordered
accordingly. Lines 6–7 are to convert arrays of column indices
to sequences. In Line 8, an MCS-search algorithm is invoked.
In Lines 9–11, each MCS found is converted to a set and
returned.

The MCS problem has been extensively studied in the liter-
ature, and the typical solution relies on dynamic programming
[11], [16]. The worst case complexity of an algorithm to solve
the MCS problem is polynomial in the length of sequences [11],
[16]. Some details of an MCS algorithm can be found in the
following example.
Example 9: Fig. 12(c) presents the type-2 atomic patterns

discovered by Algorithm 2 from the data matrix in Fig. 6(a),
repeated here in Fig. 12(a) for convenience. The parameter used
is minJ = 3. We can solve the MCS problem by modeling it as

364 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 12. (a) Input data. (b) Finding MCS for rows 1 and 2. (c) Type-2 atomic patterns found by Algorithm 2 (minJ = 3).

a sequence-alignment problem [16]. In a sequence-alignment
problem, the scores for a match, a mismatch, and a space
should first be assigned. For the MCS problem, the scores for
a match, a mismatch, and a space are one, zero, and zero,
respectively [16]. Fig. 12(b) shows the dynamic-programming
table for computing the MCS of two sequences X = 〈3, 1, 4, 2〉
and Y = 〈1, 3, 4, 2〉, derived from rows 1 and 2 of the input
matrix A, respectively. We denote the entry in the ith row and
the jth column by D[i, j]. We index the topmost row by i = 0
and use j = 0 to indicate the leftmost column. Let xi and yj

denote the ith and the jth element of X and Y , respectively.
Then, the optimal substructure of the MCS problem gives the
following recursive formula [11]:

D[i, j]

=

0, if i = 0 or j = 0,
D[i− 1, j − 1] + 1, if i, j > 0 and xi = yj .
max(D[i− 1, j],D[i, j − 1]), if i, j > 0 and xi �= yj

In addition, we place a traceback pointer (↖, ↑,←−) in every
entry D[i, j] for i > 0 and j > 0, indicating where the value in
the entry D[i, j] originated (i.e., D[i− 1, j − 1], D[i− 1, j],
or D[i, j − 1]). Each MCS corresponds to a traceback path
from the largest element in the table, and this path is obtained
by following the traceback pointers, which are indicated by
the bold arrows in Fig. 12(b). In this particular example, two
MCS exist, namely, 〈3, 4, 2〉 and 〈1, 4, 2〉. More details on this
procedure can be found in [11] and [16].

One possible improvement of Algorithm 2 would be to
consider “noisy ordering.” That is, we can devise an algorithm
that can rearrange elements with similar values in such a way
that a longer MCS can emerge. This heuristic will help find
atomic patterns with more columns, from which larger type-2
patterns can potentially be derived.

C. Finding Type-3 Atomic Patterns

Definition 9: Given input matrix A = (R,C) and threshold
τ ≥ 0, a type-3 atomic pattern for rows i, k ∈ R(i �= k) is a
two-row matrix, denoted by pair P = ({i, k}, J), that satisfies
the following: 1) P is a type-3 pattern on A; and 2) there is no
J ′, such that J ′ ⊃ J and ({i, k}, J ′) is also a type-3 pattern.

Algorithm 3 (Fig. 13) details our approach to find type-
3 atomic patterns defined in Definition 6. This algorithm is
equivalent to Algorithm 1, except for Line 2. An informal
explanation is as follows. Algorithm 1 is to find a type-1
atomic pattern, or a one-row matrix in which the elements

Fig. 13. Algorithm 3.

have similar values. Algorithm 3 is to find a two-row matrix

in which any 2 × 2 submatrix

[
e f
g h

]
has similar values

of (e− g) and (f − h), since |e− g − f + h| = |(e− g)−
(f − h)| ≤ τ . Thus, we can use Algorithm 1 to find type-3
atomic patterns simply by subtracting the values in one row
from the values in another and considering the result as a one-
row matrix. This subtraction occurs in Line 2 of Algorithm 3.
Some details helpful to understand our informal proof can be
found in [42].
Example 10: Fig. 14(b) presents the type-3 atomic patterns

found by Algorithm 3 from the data in Fig. 7(a), repeated in
Fig. 14(a). The parameter used is τ = 1.

V. OUR PATTERN-MINING ALGORITHM

A. Overview

We can formulate the pattern-mining problem in terms of a
binary relation.
Definition 10: Given A = (R,C), an input-data matrix, and

D, a specific definition of a pattern, RD is a binary relation on
2R × 2C

RD = {(I, J)| The pair (I, J) forms a pattern

appearing in A under the definition D} . (1)

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 365

Under this definition, the objective of pattern mining is to
find the elements of the relation RD. We aim at finding only
maximal patterns, as stated in Section III-C.

Assume that we can find a function, denoted by J, that
accepts as input I ∈ 2R and produces all maximal J ∈ 2C such
that (I, J) ∈ RD. Then, we may devise a naive algorithm that
can provide all the elements of RD: First, enumerate every
I ∈ 2R and then feed it to the function J. Obviously, this
approach is not feasible for a data matrix of nontrivial size
since the powerset 2R grows exponentially. Here, we explain
how to improve this idea of exploiting the function J so that
we can apply it to mining homogeneous patterns appearing in
large-scale data matrices. Formally, the definition of J is as
follows.
Definition 11: Given matrix A = (R,C), J is a function that

maps I ∈ 2R to the image J(I), where

J(I) =
{
J ∈ 2C |(I, J) ∈ RD

and /∃J ′ ⊃ J s.t. (I, J ′) ∈ RD} .

In Section V-B, we first explain how to define the function J

using the atomic patterns previously developed. In addition, we
propose a novel technique to implement the function efficiently.
The technique is based upon a data structure called ZBDDs
[27]. Section V-C then presents how to exploit the function J to
find homogeneous patterns, avoiding the exhaustive enumera-
tion of I ∈ 2R. We propose two algorithms. One uses a breadth-
first approach and the other employs a depth-first approach.
Finally, Section V-D provides remarks on algorithm complexity
and other issues.

B. Representation and Implementation of the Function J

We first introduce the operator ⊗, which is essentially the
pairwise intersection of two sets of subsets but does not contain
redundant subsets.
Definition 12: Let T and U be two sets of subsets. Also, let

Q = {T ∩ U |∀T ∈ T ,∀U ∈ U}. Then, the binary operator ⊗
on T and U is defined as follows:

T ⊗ U = Q− {Q|∃Q′ ∈ Q s.t. Q′ ⊃ Q}. (2)

Theorem 1: Let T , U , W be sets of sets. Then, (T ⊗ U)⊗
W = T ⊗ (U ⊗W).

A proof of Theorem 1 is provided in Appendix B. The
associative law thus holds for the operator ⊗, and it is trivial
to show that the commutative law, T ⊗ U = U ⊗ T , holds.
Consequently, we can develop the following notation.
Definition 13: The pairwise intersection of the k sets of sets

T1, T2, . . . , Tk is denoted by

T1 ⊗ T2 ⊗ · · · ⊗ Tk =
k⊗

i=1

Ti. (3)

In addition, we define the operator COVER(S) for a set S in
order to facilitate further explanation.
Definition 14: Given a set S = {s1, s2, . . . , sk} with k ≥ 2,

COVER(S) is a minimum edge cover of Kk, the complete

Fig. 14. (a) Input matrix A. (b) Type-3 atomic patterns found from A by
Algorithm 3 (τ = 1).

graph with k vertices, in which the set of vertices corre-
sponds to S.
Example 11: {{0, 1, 2}, {2, 3, 4}} ⊗ {{0, 2}, {4, 5}} =

{{0, 2}, {4}}. Let S1 = {1, 2, 3, 4} and S2 = {10, 11, 12}.
Then, a possible instance of COVER(S1) = {{1, 3}, {2, 4}},
and an example of COVER(S2) = {{10, 11}, {10, 12}}.
1) Redefining J in Terms of Atomic Patterns: The image

J(I) defined in Definition 11 can be redefined using atomic
patterns by the following theorem (see Appendix C for a proof).
Theorem 2: Let J1, J2, and J3 denote the function J for

types 1, 2, and 3, respectively. Given input data A = (R,C),
the image of I ∈ 2R, or J(I), can be represented as follows.

1) When the set I has only one or two elements

J1 ({r}) = {J | The pair ({r}, J) is a type 1

atomic patternfor row r ∈ R} (4)

J2 ({q, r}) = {J | The pair ({q, r}, J) is a type 2

atomic patternfor rows q, r ∈ R} (5)

J3 ({q, r}) = {J | The pair ({q, r}, J) is a type 3

atomic patternfor rows q, r ∈ R}. (6)

2) Otherwise

J1(I) =
⊗
∀i∈I

J1 ({i}) (7)

J2(I) =
⊗

∀I′∈COVER(I)

J2(I ′) (8)

J3(I) =
⊗

∀{i,k}⊆I

J3 ({i, k}) . (9)

To evaluate (7)–(9), we need to invoke the operator⊗ at most
(|I| − 1), (�|I|/2� − 1), and

(|I|
2

)
times, respectively.

366 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 15. Decomposition of the complete graph K4. (a) Example 12: Theorem 2. (b) Example 13: Corollary 1. (c) Example 14: Corollary 2.

Example 12: To find the pattern P1 in Fig. 7(b), we can use
Theorem 2 and the atomic patterns presented in Fig. 14(b) as
follows:

J3 ({1, 2, 4, 5}) = J3 ({1, 2})⊗ J3 ({1, 4})⊗ J3 ({1, 5})
⊗ J3 ({2, 4})⊗ J3 ({2, 5})⊗ J3 ({4, 5})

= {{3, 5}} ⊗ {{1, 4}, {3, 5}}
⊗ {{1, 2}, {3, 5}} ⊗ {{1, 2, 3, 5}, {4, 5}}
⊗ {{3, 4, 5}} ⊗ {{3, 4, 5}}

= {{3, 5}} .

2) Enhancement by Dynamic Programming: We can reduce
the number of the ⊗ operations required to evaluate the equa-
tions in Theorem 2 by storing and reusing intermediate results.
This idea is similar to the concept of dynamic programming. In
the equations in Theorem 2, we can see that the optimal sub-
structure [11] appears, which is a hallmark of the applicability
of dynamic programming.

For example, the process of realizing J3 can be compared to
that of decomposing a complete graph into its cliques. We start
our explanation with revisiting Example 12. Let Kk denote the
complete graph with k graph vertices. Suppose that we have
the graph K4, in which the vertices represent the elements of
I = {1, 2, 4, 5} as shown in Fig. 15(a). In this figure, we can
decompose the graph K4 into

(
4
2

)
= 6 different K2. This de-

composition corresponds to evaluating (9). We, thus, evaluated
J3({1, 2, 4, 5}) using J3({1, 2}),J3({1, 4}), . . . ,J3({4, 5}) in
Example 12.

Alternatively, we can decompose K4 into two different K3

and one K2 as shown in Fig. 15(b). The shaded triangle
represents the set I − {5} = {1, 2, 4} and the triangle indicated
by bold lines represents I − {4} = {1, 2, 5}. This suggests a
different way of evaluating J3({1, 2, 4, 5}), namely, the evalu-
ation using J3({1, 2, 4}), J3({1, 2, 5}), and J3({4, 5}).

The alternative decomposition of J1 and J2 corresponding to
Fig. 15(b) is simpler. Since I = (I − {4}) ∪ (I − {5}), Jt(I)
is merely Jt(I − {4})⊗ Jt(I − {5}), for each t ∈ {1, 2}.

Corollary 1: Given input data A = (R,C), let set I ∈ 2R

and suppose that i, k ∈ I and i �= k. Then, the image Jt(I) for
each type t ∈ {1, 2, 3} can be represented as follows:

J1(I) = J1 (I − {i})⊗ J1 (I − {k}) (10)

J2(I) = J2 (I − {i})⊗ J2 (I − {k}) (11)

J3(I) = J3 (I − {i})⊗ J3 (I − {k})⊗ J3 ({i, k}) . (12)

When applying Corollary 1, we need to call the operator ⊗
only once (types 1 and 2) or twice (type 3), as long as the
intermediate results J(I − {i}) and J(I − {k}) are available.
In Section V-C2, we explain how to store and reuse intermediate
results efficiently using a breadth-first search algorithm.
Example 13: We can apply Corollary 1 to the previous

example as follows:

J3 ({1, 2, 4, 5}) = J3 ({1, 2, 4})⊗ J3 ({1, 2, 5})
⊗ J3 ({4, 5})

= {{3, 5}} ⊗ {{3, 5}} ⊗ {{3, 4, 5}}
= {{3, 5}} .

Fig. 15(c) shows another method of decomposing the graph
K4 for type-3 patterns. Here, K4 is decomposed into one K3

and three different K2. The shaded triangle represents the set
I − {5} = {1, 2, 4} and the dotted lines the sets {1,5}, {2,5},
and {4, 5}. This suggests a different way of evaluating
J3({1, 2, 4, 5}) using J3({1, 2, 4}), J3({1, 5}), J3({2, 5}), and
J3({4, 5}). The decomposition of J1 and J2 corresponding to
Fig. 15(c) remains, in essence, the same as the previous case.
Corollary 2: Given input data A = (R,C), let set I ∈ 2R

and suppose that k, l ∈ I and k �= l. Then, the image Jt(I) for
each type t ∈ {1, 2, 3} can be represented as follows:

J1(I) = J1 (I − {k})⊗ J1 ({k}) (13)

J2(I) = J2 (I − {k})⊗ J2 ({k, l}) (14)

J3(I) = J3 (I − {k})⊗

⊗
∀i∈I,i �=k

J3 ({i, k})

 . (15)

In order to apply Corollary 2, we need to execute the operator
⊗ twice (types 1 and 2) or at most (|I| − 1) times (type 3), as
long as the result of J(I − {k}) is available. The number of
⊗ operations involved in the computation of J3 in Corollary
2 is thus more than that in Corollary 1. However, it is easier
to manage the partial results in Corollary 2, thus compensating
for the larger number of ⊗ operations required. Section V-C3
presents a depth-first search algorithm, which exploits
Corollary 2 to evaluate J efficiently.

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 367

Fig. 16. ZBDD representation of atomic patterns: (a) J3({2, 5}) = {{3, 4, 5}}. (b) J3({1, 4}) = {{1, 4}, {3, 5}}. (c) J3({1, 4}) = {{1, 4}, {3, 5}} and
J3({1, 5}) = {{1, 2}, {3, 5}}.

Example 14: We can apply Corollary 2 to Example 12 as
follows:

J3 ({1, 2, 4, 5}) = J3 ({1, 2, 4})⊗ J3 ({1, 5})
⊗ J3 ({2, 5})⊗ J3 ({4, 5})

= {{3, 5}} ⊗ {{1, 2}, {3, 5}}
⊗ {{3, 4, 5}} ⊗ {{3, 4, 5}}

= {{3, 5}} .

3) Efficient Implementation of the Operator ⊗ Using
ZBDDs: We assume the reader to be familiar with the basic
concepts of Boolean functions and with the data structures com-
monly used for the symbolic manipulation of such functions
such as BDDs [5] and, in particular, ZBDDs [26]. Appendix A
provides a brief introduction to ZBDDs. More extensive back-
ground material on this subject can be found in [12] and in
[25]–[27].

In order to use ZBDDs to implement the operator ⊗, we first
need to represent the operands of ⊗ by ZBDDs. A combination
of m elements is an m-bit vector 〈b1, b2, . . . , bm〉 ∈ B

m, where
B = {0, 1}. The ith bit reports whether the ith element is
contained in the combination. Thus, a set of combinations
corresponds to a Boolean function f : B

m → B and can be
represented by ZBDDs. The operand of ⊗ is a set of column
sets J(I) and each column set J ∈ J(I) can easily be converted
to a combination as follows. Given input data A = (R,C),
assume C = {1, 2, . . . ,m}. Then, the set J corresponds to
an m-bit vector 〈b1, b2, . . . , bm〉, where bi = 1 if i ∈ J , and
bi = 0, otherwise. Representing this m-bit vector by ZBDDs is
a standard procedure and is thus beyond the scope of this paper.
We refer the interested reader to Appendix A and [25]–[27] for
further details.
Example 15: In Fig. 14(b), J3({2, 5}) = {{3, 4, 5}}. The

set {3, 4, 5} can be converted to a 5-bit vector (00111) and
represented by the ZBDD in Fig. 16(a). In the same example,
J3({4, 5}) = J3({2, 5}). Thus, J3({4, 5}) can be represented
by the identical ZBDD for J3({2, 5}) without creating a
new one.
Example 16: In Fig. 14(b), J3({1, 4}) = {{1, 4}, {3, 5}}.

This corresponds to the set of combinations {10010, 00101}
and can be represented by the ZBDD in Fig. 16(b). Also,

J3({1, 5}) = {{1, 2}, {3, 5}} can share the part of the ZBDD
for J3({1, 4}), as shown in Fig. 16(c).

Next, we implement the operator ⊗ by directly manipulating
the ZBDDs representing the operands. This allows us to avoid
explicit enumeration of the intermediate results, thus providing
a large speed-up over the conventional methods to represent
and manipulate sets [26], [27]. As is often the case with
the operators defined on ZBDDs, we define the operator ⊗
recursively. We first partition a set of combinations into two
smaller sets of combinations. Let T be a set of combinations.
We partition T into T1 and T0 with respect to the ith element bi

in such a way that T1 have all the combinations where bi = 1,
and T0 includes all the other combinations where bi = 0. This
partition can easily be done in a ZBDD by simply recognizing
two subgraphs with respect to the topmost vertex. The sub-
graphs connected by the 1-edge and 0-edge correspond to T1

and T0, respectively. Based upon this partitioning, it follows
that T ⊗ U = (T0 ⊗ U0) ∪ (T1 ⊗ U0) ∪ (T0 ⊗ U1) ∪ (T1 ⊗
U1). Further implementation details can be found in [4], [5],
[26], and [27].

C. Finding Homogeneous Patterns

We present two methods to find homogeneous patterns. Both
methods utilize the function J previously developed. Before
providing the details of these methods in Sections V-C2 and
V-C3, we present an example to explain the fundamental ideas
common in both methods.
1) An Example of Finding Type-3 Patterns: Fig. 17 shows

the process for finding the patterns in Fig. 7(b) from the data
matrix in Fig. 7(a), in which the set of rows R = {1, 2, 3, 4, 5}.
In the graphs shown in the figure, each vertex v has two
associated fields, namely v.I and v.J . The field v.I is to save a
set of rows, and the field v.J is to store the image J(v.I). The
level of the vertex v is defined as the cardinality of v.I . Also,
we connect vertex v1 at level l and vertex v2 at level l + 1 by
an edge if v1.I ⊂ v2.I .

Fig. 17(a) presents a graph in which each vertex represents
an elements in 2R and a vertex is connected to others by the
above rule. For example, v.I = {1, 2} for the vertex v indicated
by “12.” This vertex is connected to the vertices indicated by
“123,” “124,” and “125.”

368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 17. Process of finding the patterns presented in Fig. 7(b). This is only for the explanation of the idea, and in practice, we do not need the graph in its entirety
all the time. Refer to Algorithms 4 and 5 for details.

We can make two key observations in the graph constructed
as above. First, not all vertices need to be examined. Thus,
we can avoid exhaustive enumeration of I ∈ 2R. Second, the
intermediate results required to apply Corollaries 1 and 2 are
available from the vertices at the previous level.

The first observation is based upon the following fact: If
J(I) = ∅, then J(I ′) = ∅ for all I ′ ⊇ I . This is because if the
pair (I, J) does not represent a homogeneous pattern, then
the pair (I ′, J) with I ′ ⊇ I cannot be a homogeneous pattern,
either. For example, in Fig. 14(b), we know that J3({3, 5}) = ∅.
Thus, it is possible to conclude that J3(I) = ∅ for all I ⊇
{3, 5}. Consequently, we can eliminate any vertex v such that
v.I ⊇ {3, 5}. In the graph in Fig. 17(b), the vertices to be
deleted are indicated.

The example in Fig. 17(c) shows that another vertex-
elimination process is possible, starting from the vertices at
level 3, namely, “123” and “134.” The vertex “123” should be
deleted because J3({1, 2, 3}) = J3({1, 2})⊗ J3({1, 3})⊗
J3({2, 3}) = ∅. We can remove the vertex “134” similarly.
Thus, any vertex v such that v.I ⊇ {1, 2, 3} or v.I ⊇ {1, 3, 4}
can be deleted. Finally, the graph in Fig. 17(d) shows the
vertices that remain undeleted. It is these vertices to which we
apply the function J to find homogeneous patterns. Since the
remaining vertices correspond to all I ∈ 2R that can potentially
be the row set of a homogeneous pattern, applying the function
J to these vertices enables us to find all the homogeneous
patterns that satisfy the input parameters specified.

To exploit the intermediate results stored in the vertices at
the previous level, the breadth-first algorithm in Section V-C2
starts with the vertices at level 2 and proceed to level l + 1
from level l only after no vertex at level l is left. This is
compatible with the decomposition of J in Corollary 1. In
contrast, the depth-first algorithm in Section V-C3 starts with
vertex v at level 2 and proceeds until the algorithm examines
all the vertices whose I set contains v.I . Then, the algorithm
starts with another vertex at level 2. This algorithm fits with
the decomposition of J in Corollary 2. Both algorithms find the
same homogeneous patterns, although one can be faster than

the other, depending upon the specific input data matrix and
parameters used.

One important comment is in order. Obviously, it is not
realistic to construct the graph like the one in Fig. 17(a) in
its entirety, especially when the set R has many elements.
The examples in Fig. 17 are only for explanation. As will be
described in Algorithms 4 and 5 (Figs. 18 and 19, respectively),
the breadth-first and the depth-first algorithms do not need to
examine all the vertices simultaneously.
2) Breadth-First Algorithm: Algorithm 4 details our

breadth-first approach to find homogeneous patterns. The input
is a data matrix, pattern type, and parameters for atomic-pattern
generation. The output are homogeneous patterns found from
the input data matrix.

In Line 1, atomic patterns are generated by the algorithms
explained in Section IV with the input parameters.

In Lines 2–11, the base vertices at level 2 are generated.
Each vertex v has three associated data fields. The fields v.I
and v.J are the same as explained in the previous section. The
field v.level is to store the level of the vertex v. For type-2 or
type-3 patterns, a new vertex is created for each pair of rows,
unless no atomic pattern exists for the pair. The base vertices
for type-1 patterns also start at level 2 by merging two atomic
patterns.

In Lines 13–34, the algorithm iterates for each level and per-
forms the following for each vertex at level l. In Lines 16–17,
the algorithm reports any candidate patterns obtained from the
previous iteration. In Lines 18–34, new vertices appearing at
level l + 1 are generated. To this end, the algorithm examines
two vertices vi and vj at level l. Lines 21–22 are to test if
the two vertices are qualified to create a new vertex at level
l + 1. As long as the sets vi.I and vj .I have the same elements
but one, the vertices vi and vj can create a new vertex at the
next level. Since a vertex at level l + 1 should have only one
more row than a vertex at level l, if the union of vi.I and
vj .I has more than l + 1 elements, the two vertices vi and vj

cannot spawn a new vertex in the next level. For example, if
vi.I = {1, 2, 3} and vj .I = {1, 2, 4}, then these two vertices

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 369

Fig. 18. Algorithm 4.

can create a new vertex v at level 4 with v.I = {1, 2, 3, 4}.
In contrast, if vi.I = {1, 2, 3} and vj .I = {1, 4, 5}, then they
cannot generate a new vertex at level 4, because the row sets
differ by two elements. This way of creating new vertices is to
avoid exhaustive enumeration. In Line 23, if the two vertices vi

and vj are eligible for creating a new vertex, the algorithm sees
whether the corresponding vertex already exists or not. If not,
the algorithm computes the set J for this new vertex by Corol-
lary 1 in Lines 24–29. In Lines 30–34, the new vertex v is actu-
ally created and stored for further reference in the next iteration,
if the set J is not empty. Otherwise, no new vertex is created.
This corresponds to removing all the values downstream of the
vertex v in which v.J = ∅ [e.g., Fig. 17(b) and (c)].

In Line 35, a vertex is deleted as soon as it becomes of no use.
Thus, the algorithm can keep at most two levels of the vertices
at a time, rather than the entire graph.

In Line 36, any redundant patterns are removed and the
remaining patterns are returned.

Fig. 19. Algorithm 5.

3) Depth-First Algorithm: In Section V-C2, we explained
our breadth-first approach. In this section, we introduce an al-
ternative pattern-mining algorithm using a depth-first approach.
We start the description with the examples in Figs. 17 and 20.
In order to visit the vertices in the depth-first sense, we need
to restructure the graph. In particular, we remove some edges
from the graph in Fig. 17(a) so that the graph becomes the trie
in Fig. 20(a). A trie [1] is a special structure for representing
sets of words. Here, we regard the set I ∈ 2R as a word
assuming a total order among the elements in R. For instance,
we can assume the total order 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 for the set
R = {1, 2, 3, 4, 5}. Hence, the set I = {1, 2, 3} corresponds
to the word “123.” This word is inserted into the trie as the
descendant of the word “12” and as the parent of the words
“1234” and “1235,” as shown in Fig. 20(a).

Algorithm 4 provides the details of our depth-first approach.
In Lines 2–6, the algorithm traverses the trie in preorder. More
precisely, our algorithm constructs the trie in preorder rather
than traverses it. In other words, the algorithm creates vertices

370 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 20. Example for explaining the depth-first pattern-mining algorithm.

whenever necessary and deletes them afterwards rather than
keeping the trie in its entirety all the time. In Line 7, the
algorithm reports the homogeneous patterns produced after
removing redundant patterns, if any.

For each vertex v encountered in this preorder construction
of the trie, the algorithm performs the following (Lines 8–36).
The algorithm computes v.J by Corollary 2 in Line 18–24.
If the set v.J is empty, the algorithm does not proceed to
examining the descendant vertices and returns to the parent
vertex (Line 25). This is equivalent to deleting all the de-
scendant vertices in Fig. 20(b). If the set v.J is not empty,
the algorithm produces homogeneous patterns (v.I, J) for all
J ∈ J(v.I) in Lines 26–27. Then, the algorithm creates a list of
the descendant vertices in Lines 28–29. This step is necessary
because the algorithm does not keep the entire trie all the time,
and thus, the vertex v is not already connected to its children.
The “largest” element in Line 28 means the “largest” element
in the total order we are assuming among the elements of R. For
example, the largest element of the set {1, 2, 4} is the element
“4,” assuming 1 ≺ 2 ≺ 4. In Lines 30–35, the algorithm creates
the descendant vertices and visits them to repeat the steps
performed in Lines 8–36.

D. Remarks

The pattern-mining problem addressed in this paper is related
to the problem of finding the maximum edge biclique in a
bipartite graph, a problem known to be NP-complete [23], [30].
Although the worst case complexity of Algorithms 4 and 5 is
exponential in the number of rows in the input data matrix,
the execution time on typical benchmarks is practical, as will
be shown in Section VI. This is due to efficient techniques,
such as the ZBDD-based symbolic manipulations and the
dynamic-programming approach, which enable us to avoid the
exhaustive and explicit enumeration of the intermediate results.
In particular, the role of the ZBDDs is crucial in this study.
Without using the ZBDDs, it would not be possible to achieve
the efficiency that the current implementation of our algorithm
shows.

In fact, reduced ordered BDDs (ROBDDs) and variants such
as ZBDDs have been widely used to solve many practical
instances of intractable problems [12], [25], [27]. Some data-
analysis methods recently proposed [28], [45] rely on this idea
of managing massive data through the symbolic representation
of Boolean functions. In particular, the method proposed in this
study is a generalization and extension of our earlier work [45],
which focused only on finding type-3 patterns.

Our pattern-mining algorithms discussed so far are exact in
the sense that they can find all the patterns that satisfy specific
input parameters. If desired, it is possible to employ a heuristic
algorithm that runs quickly but can find only a subset of the
possible patterns. For example, we can implement the “greedy”
⊗ operator that reports only k largest (in terms of cardinality)
sets, which will make the cardinality ofJ decrease. We can also
utilize a measure of overlap such as Jaccard’s coefficient [24] to
avoid generating “similar-looking” atomic patterns, thus reduc-
ing the number of atomic patterns considered in later steps.

VI. EXPERIMENTAL RESULTS

We implemented our method in C++ on a 3.06-GHz
Linux machine with 4-GB RAM. We used the libraries pro-
vided by the BDD packages Colorado University decision
diagram (CUDD) (http://vlsi.colorado.edu/~fabio/CUDD/) and
EXTRA (http://www.ee.pdx.edu/~alanmi/research/extra.htm)
for the implementation of the operator ⊗ defined in
Section V-B. For comparison, we also developed an
implementation of our method without using the ZBDDs.
Table V shows the algorithms used in our experiments.
Table VI lists the parameters used for each experiment
presented in this section.

A. Synthetic Data Sets

To verify the correctness of our method, we tested it with
synthetic data sets that have predefined embedded patterns. The
synthetic data were prepared as follows. We first created null
matrices of 100 rows and five different numbers of columns

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 371

TABLE V
PATTERN-MINING METHODS TESTED IN THE EXPERIMENTS

TABLE VI
ALGORITHM PARAMETERS USED FOR THE EXPERIMENTS

Fig. 21. Performance comparison using synthetic data sets. The missing points on the plots mean that the corresponding experiment could not be finished in
reasonable time. (a) Response time spent by each method in order to find all the embedded patterns from the synthetic data sets of various sizes. (b) Number of
patterns found by each method within the same time spent as our method.

(1K, 3K, 6K, 9K, and 12K). We then replaced the elements of
each matrix with random numbers ranging from 0 to 500. For
the matrix of n = 100 rows and m ∈ {1K, 3K, 6K, 9K, 12K}
columns, we embedded 0.05m predefined patterns that have at
least 0.1n rows and at least 0.01m columns. Each predefined
pattern was created in such a way that the values in every row or
column fluctuate in harmony3 and that all the methods involved
in the experiment can detect it.

We invoked the methods listed in Table V with the parame-
ters specified in Table VI. The results are depicted in Fig. 21.
Fig. 21(a) shows the response time spent by each method in
order to find all the embedded patterns. Fig. 21(b) shows the
plot of the total number of patterns discovered by each method
given the same time as that spent by our method implemented

3Every row or column is a shifted version of each other; examples are shown
in Fig. 25(a) and (b).

with ZBDDs. We can see in the experiments that it takes
less time for our method to find all the embedded patterns
and that our method can find more patterns given the same
time, compared with the other methods tested. Especially, we
observed that the use of ZBDDs indeed provides a substantial
speed-up over the alternative implementation without ZBDDs.

B. Biological Data Sets

We tested our methods and the alternatives with a couple
of large-scale data set obtained from actual biological exper-
iments. Specifically, we used the gene-expression data sets
produced by Affymetrix gene chips and cDNA microarrays,
since this type of data is one of the largest and most widely
available. As previously emphasized, our method is applicable
to other types of data as well, as long as they can be represented
by a matrix of real numbers. For more information on gene-
expression data, we refer the interested reader to [20].

372 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 22. Heat map of the renal-cell-carcinoma data [18] and some patterns found by our method. The legend for the heat map is also presented in the upper
right corner. The red color indicates upregulation whereas the green color represents downregulation. The black color means no change in the regulation level.
(a) The entire data matrix with 1876 rows (genes) and 27 columns (experimental conditions). (b) Some patterns (submatrices) discovered by our method.

1) Data Preparation: We used two different data sets. The
first was the yeast Saccharomyces cerevisiae cell-cycle ex-
pression data [10], [39] produced by Affymetrix gene-chip
experiments. This data set contains the expression information
of 2884 genes under 17 experimental conditions. The second
was the cDNA microarray data for renal-cell carcinoma [18],
which represents the expression levels of 1876 genes under
27 different experimental conditions. Usually, gene-expression
data is arranged in a data matrix, in which each row corresponds
to one gene and each column to one experimental condition.
Fig. 22 shows the heat map of this data set and some patterns
found by our method.
2) Running-Time Comparison: We ran the methods listed

in Table V with the parameters specified in Table VI. In the
plots in Fig. 23(a) and (b), we compared the time to find the
first k patterns from the yeast-cell-cycle data and the renal-cell-
carcinoma data, respectively. The x-axis is the number of pat-
terns produced and the y-axis is the response time to find these
patterns. Our methods as well as METHOD 2 and METHOD 4
(see Table V) do not take as input the exact number of patterns
to find. Thus, we ran these algorithms multiple times with
different parameter values to find approximately k patterns. For
METHOD 1 and METHOD 3, the exact number of patterns to find
was specified as input parameters.
3) Pattern-Quality Evaluation: The experiments presented

so far have demonstrated that our method outperforms the
alternatives in terms of efficiency and the number of patterns.

Here, we present more experimental results to show that our
method can produce statistically more significant and bio-
logically more-meaningful patterns, thus suggesting that our
method can be helpful to the researchers in biomedicine as well.
To this end, we utilize the concept of correspondence plots [38]
and the mean-squared-residue (MSR) scores [9].

Correspondence plot. To assess the statistical significance
and biological meaning of discovered patterns, we employed a
technique [38] that enables us to compute the p-value of each
pattern with respect to known (putatively correct) biological
knowledge. Suppose prior knowledge classifies N genes into
M classes, H1,H2, . . . , HM . Let P be a pattern with g genes
and assume that out of those g genes, gj genes belong to class
Hj . Assuming the most abundant class for the genes in P is
Hi, the hypergeometric distribution is used to calculate p, the
p-value of the pattern P

p =
g∑

k=gi

(|Hi|
k

)(
N−|Hi|

g−k

)
(
N
g

) . (16)

That is, the p-value corresponds to the probability of obtaining
at least gi elements of the class Hi in a random set of size g. As
the known biological knowledge, the categories of yeast genes
proposed by Tavazoie et al. [39] and the human-genes classes
reported by Higgins et al. [18] were used for our experiments.

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 373

Fig. 23. Performance comparison using biological data sets. The missing points on the plots mean that the corresponding experiment could not be finished in
reasonable time. (a) Yeast-cell-cycle data [10], [39]. (b) Renal-cell carcinoma [18].

Fig. 24. Correspondence plots that show the distribution of p-values of the produced patterns with respect to prior biological knowledge. A point (x, y) on the
plot presents the fraction (y) of patterns whose p-value is at most x. (a) Yeast-cell cycle [39]. (b) Renal-cell carcinoma [18].

In the correspondence plot, early departure of a curve from
the x-axis indicates the existence of patterns with low p-values.
Consequently, the area under a curve approximately shows the
degree of statistical significance of the patterns used to draw the
curve.

Fig. 24 presents the correspondence plots for the patterns
generated by several different methods on the yeast data and
the renal-cell-carcinoma data. The plots also include randomly
generated patterns. Both plots indicate that the patterns shown
are all far from the random noise. It is also demonstrated that
the patterns found by our algorithm tend to be more statistically
significant than the others, meaning that our patterns conform
to the known biological classification more accurately.

MSR scores. The MSR sores can measure the degree of
coherence exhibited by the elements in a matrix [9]. In the
analysis of variance (ANOVA), a residue is defined for each
element in a matrix as the difference between the element
and the mean of all elements of the matrix [32]. The residue
of element aij of a matrix denoted by pair (I, J) is rij =
aij − ai• − a•j + a••, where ai• is the mean of the ith row, a•j
the mean of the jth column, and a•• is the mean of all elements
in A. The MSR of the matrix is then defined as

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

r2
ij . (17)

374 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 25. MSR scores as a measure of pattern quality. A low MSR value typically means a high level of coherence, and vice versa [9]. (a) MSR = 0,
(b) MSR = 0, (c) MSR = 103, and (d) MSR = 946.

Fig. 26. Box plots for MSR comparison. The line in the middle of a box indicates the position of the median. The upper and lower boundaries of the box
represent the location of the 75th and 25th percentiles, respectively. The symbol “×” outside the ends of the tails corresponds to outliers. (a) Yeast-cell cycle [39].
(b) Renal-cell carcinoma [18].

Thus, a low value of residue typically means a high level of
coherence, and vice versa [9]. For example, the MSR score of
the patterns depicted in Fig. 25(a) and (b) is zero, since the
values fluctuate in harmony. In contrast, the pattern shown in
Fig. 25(d) is very noisy, and thus, has a higher MSR score.
The pattern in Fig. 25(c) has an intermediate MSR score.
Consequently, the MSR scores can be useful to evaluate the
quality of patterns of all types defined in this study.

Fig. 26(a) and (b) shows box plots to compare the MSR
scores of the patterns discovered from the yeast-cell cycle and
the renal-cell-carcinoma data, respectively. A box plot is a plot
that represents graphically several descriptive statistics such as
the median and percentiles of a data sample [14]. The reader
can refer to the caption of Fig. 26 to find how to read a
box plot.

As is evident from the box plots, the patterns found by our
method have the lowest median MSR scores in our experiments.
To quantitatively establish this observation, we performed the
Wilcoxon rank-sum test [14] to compare the patterns discovered
by our method with the others. We generated approximately
500 patterns per method for each data set and compared a
group of patterns found by our method with another group of
patterns detected by an alternative method. In all the cases we
tested, the difference in the median was statistically signifi-
cant at 0.01% level (P < 0.0001). This result shows that our

method tends to find better patterns with respect to the MSR
scores.

VII. CONCLUSION

Compared with conventional biological data-acquisition
techniques, better productivity, reliability, and speed are pos-
sible through the miniaturization and integration realized in
microfluidics-based biochips. Given that the throughput of
these fascinating technologies is growing fast, it is crucial to
have efficient computational tools to analyze the large-scale
biological data obtained. In this paper, we proposed an effec-
tive pattern-mining method that can be useful for a variety
of biochip applications. Given a data matrix, the proposed
method can find patterns appearing as a submatrix of the data
matrix. In particular, we introduced the notion of homogeneous
patterns and formulated the problem of finding three types
of homogeneous patterns frequently encountered in the liter-
ature. We also mathematically characterized the problem and
developed a novel method applicable to large-scale biological
data. The proposed method employed dynamic programming
as well as efficient data structures such as ZBDDs, which were
particularly useful to extend the scalability of our method. Con-
sequently, given a data matrix of practical scale, our approach
can find with great efficiency all the homogeneous patterns that

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 375

Fig. 27. Representation of a set of combinations. (a) ROBDD representation. (b) ZBDD representation. (c) Comparison of ROBDD and ZBDD [27].

satisfy specific input parameters. We tested our method with
the biochip data produced by Affymetrix gene chips and cDNA
microarrays and confirmed the effectiveness of our approach.
Therefore, we conclude that our method can provide the design-
ers of high-throughput biochips with the necessary feedback for
the next design iteration in a timely manner.

APPENDIX A
ZERO-SUPPRESSED BINARY DECISION

DIAGRAMS (ZBDDS)

In most combinatorial applications, sets of combinations (see
Section V-B3) are sparse, which are defined as follows [25].

1) The sets contain only a small fraction of the 2n possible
bit vectors.

2) Each bit vector in the sets has many zeroes.

The ZBDD [26], [27] is an efficient data structure to rep-
resent and manipulate a set of combinations. Minato [26],
[27] proposed two reduction rules to reduce ordinary BDDs to
ZBDDs: 1) merge equivalent subgraphs; and 2) if the 1-edge of
a node v points to the 0-terminal vertex, then eliminate v and
redirect all incoming edges of v to the 0-successor of v. Con-
sequently, ZBDDs can exploit both types of sparsity defined
above and provide an efficient representation for manipulating
large-scale sets of combinations [25].

For instance, the ROBDD in Fig. 27(a) represents a set of
combinations {1000, 0100} for four input variables (abcd).
Each path from the root vertex to the 1-leaf corresponds to a
combination. By applying the ZBDD reduction rules, we can
reduce the BDD in Fig. 27(a) to the ZBDD in Fig. 27(b), which
is more compact in terms of the number of vertices. As shown
in Fig. 27(c), Minato [27] compared the size of a ZBDD with
that of an ROBDD for a large set of combinations and showed
that ZBDDs provide a much more compact representation of
sets of combinations in most cases.

ZBDD representations are independent of the number of
input variables as long as the combination remains the same,
which is due to the “zero-suppression” effect. Consequently,
we do not need to fix the number of input variables before
generating graphs, and ZBDDs automatically suppress the vari-
ables that never appear in any combination [27]. For example,
a set of combinations {1000000, 0100000} for seven variables

(abcdefg) is represented by the same ZBDD in Fig. 27(b). This
property does not hold for other types of BDDs.

APPENDIX B
PROOF OF THEOREM 1

We can prove the theorem by showing that: 1) (T ⊗ U)⊗
W ⊇ T ⊗ (U ⊗W); and 2) (T ⊗ U)⊗W ⊆ T ⊗ (U ⊗W).

Proof: We first prove (1). For the sake of contradiction,
assume that (T ⊗ U)⊗W ⊂ T ⊗ (U ⊗W). This means that
there exists a set S such that S ∈ T ⊗ (U ⊗W) and S �∈
(T ⊗ U)⊗W . Assume that S = T ∩ (U ∩W), where T ∈ T ,
U ∈ U , and W ∈ W . Since S �∈ (T ⊗ U)⊗W , there must ex-
ist W ′ ∈ W such that (T ∩ U) ∩W ⊂ (T ∩ U) ∩W ′. By the
associative law for basic set intersection, T ∩ (U ∩W) = (T ∩
U) ∩W ⊂ (T ∩ U) ∩W ′= T ∩ (U ∩W ′). In other words, if
S �∈ (T ⊗ U)⊗W , then there must exist W ′ ∈ W such that
(U ∩W) ⊂ (U ∩W ′). However, since S ∈ T ⊗ (U ⊗W),
there cannot exist W ′ ∈ W such that (U ∩W) ⊂ (U ∩W ′).
We have reached a contradiction, and thus our original as-
sumption that (T ⊗ U)⊗W ⊂ T ⊗ (U ⊗W) must be false.
Therefore, (T ⊗ U)⊗W ⊇ T ⊗ (U ⊗W). By symmetry, we
can prove (T ⊗ U)⊗W ⊆ T ⊗ (U ⊗W) in a similar way.

We have shown that (T ⊗ U)⊗W ⊇ T ⊗ (U ⊗W) and
(T ⊗ U)⊗W ⊆ T ⊗ (U ⊗W), which completes the proof.�

APPENDIX C
PROOF OF THEOREM 2

The derivation of (4)–(6) is straightforward from the defini-
tion of atomic patterns. If the set I has only one row (type 1)
or two (types 2 and 3), the image J(I) simply consists of the
column set of atomic patterns for the row(s) in I . Equations (7)
and (8) can be derived from the generalization of Properties
1 and 2, respectively, by replacing the operator ∩ with the
operator ⊗ defined in Section V-B.

Here, we focus on the derivation of (9). To this end, we first
propose the following lemma.
Lemma 1: Let (I, J) be a homogeneous pattern. If {i, k} ⊆

I , then there exists at least one set J ′ ∈ J3({i, k}) such that
J ⊆ J ′.

Proof: Assume J ⊃ J ′ for all J ′ ∈ J3({i, k}). Since
(I, J) is a homogeneous pattern and I ⊇ {i, k}, its subpattern

376 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

({i, k}, J) is also a homogeneous pattern under the same defini-
tion. By definition, if J ′ ∈ J3({i, k}), then there exists no J ′′ ⊃
J ′ such that ({i, k}, J ′′) is yet another homogeneous pattern
under the same definition. We have reached a contradiction, and
thus our original assumption that J ⊃ J ′ for all J ′ ∈ J3({i, k})
must be false. Therefore, there must be at least one instance of
J ′ ∈ J3({i, k}) such that J ⊆ J ′.

Now we derive (9). Let P = (I, J) be a maximal homoge-
neous pattern. Then, by Lemma 1, for each {i, k} ⊆ I , there
exists at least one set J{i,k} ∈ J3({i, k}) such that J ⊆ J{i,k}.
For the sake of explanation, assume for now that only one such
J{i,k} is contained in each J3({i, k}). Then, it follows that:

J ⊆
⋂

∀{i,k}⊆I

J{i,k}. (18)

Moreover, since the pattern P is maximal, there is no J ′

such that J ′ ⊃ J and J ′ ⊆
⋂
∀{i,k}⊆I J{i,k}. Thus, the following

equation holds for J :

J =
⋂

∀{i,k}⊆I

J{i,k}. (19)

In general, each J3({i, k}) can have multiple instances of
J{i,k}, not only one as previously assumed. Thus, we can have
multiple instances of (19), which can be compactly represented
using the operator ⊗ defined in Section V-B

J ∈
⊗

∀{i,k}⊆I

{
J{i,k}|J{i,k} ∈ J3 ({i, k}) , J ⊆ J{i,k}

}
. (20)

Finally, suppose that we replace the operands of ⊗ in (20)
with {J{i,k}|J{i,k} ∈ J3({i, k})} = J3({i, k}), removing the
constraint on J . Then, we can find not only the set J but also
the other column sets that can form a homogeneous pattern with
the row set I

{all column sets that can form a type-3 pattern with I}

=
⊗

∀{i,k}⊆I

J3 ({i, k}) . (21)

By definition, the operator ⊗ gives only maximal sets. There-
fore, (21) is equivalent to (9). We have derived (9), and this
completes the proof of Theorem 2. �

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers of the manuscript for their valuable comments. The au-
thors gratefully acknowledge E. Ficarra, C. Nardini, and
Dr. A. Mishchenko for helpful discussions.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algo-
rithms. Reading, MA: Addison-Wesley, 1983.

[2] R. B. Altman and S. Raychaudhuri, “Whole-genome expression analysis:
Challenges beyond clustering,” Curr. Opin. Struct. Biol., vol. 11, no. 3,
pp. 340–347, Jun. 2001.

[3] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini,“Discovering local struc-
ture in gene expression data: The order-preserving submatrix problem,”
J. Comput. Biol., vol. 10, no. 3–4, pp. 373–384, Aug. 2003.

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of
a BDD package,” in Proc. 27th Design Automation Conf., Orlando, FL,
1990, pp. 40–45.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[6] ——, “Binary decision diagrams and beyond: Enabling technologies for
formal verification,” in IEEE/ACM Int. Conf. Computer Aided Design
(ICCAD), San Jose, CA, 1995, pp. 236–243.

[7] A. Califano, G. Stolovitzky, and Y. Tu, “Analysis of gene expression
microarrays for phenotype classification,” in Proc. Int. Conf. Intelligent
Systems Molecular Biology, San Diego, CA, 2000, pp. 75–85.

[8] W. Chen, M. Reiss, and D. J. Foran, “A prototype for unsupervised analy-
sis of tissue microarrays for cancer research and diagnostics,” IEEE Trans.
Inf. Technol. Biomed., vol. 8, no. 2, pp. 89–96, Jun. 2004.

[9] Y. Cheng and G. M. Church, “Biclustering of expression data,” in Proc.
Intelligent Systems Molecular Biology (ISMB), San Diego, CA, 2000,
pp. 93–103.

[10] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway,
L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J.
Lockhart, and R. W. Davis, “A genome-wide transcriptional analysis of
the mitotic cell cycle,” Mol. Cell, vol. 2, no. 1, pp. 65–73, Jul. 1998.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[12] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[13] J. DeRisi, L. Penland, P. O. Brown, M. L. Bittner, P. S. Meltzer, M. Ray,
Y. Chen, Y. A. Su, and J. M. Trent, “Use of a cDNA microarray to analyse
gene expression patterns in human cancer,” Nat. Genet., vol. 14, no. 4,
pp. 457–460, Dec. 1996.

[14] S. Drǎghici, Data Analysis Tools for DNAMicroarrays. Boca Raton, FL:
CRC, 2003.

[15] A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li,
M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for
physiologically integrated devices,” Proc. IEEE, vol. 92, no. 1, pp. 6–21,
Jan. 2004.

[16] D. Gusfield, Algorithms on String, Trees and Sequences: Computer Sci-
ence and Computational Biology. New York: Cambridge Univ. Press,
1997.

[17] A. Hassibi and T. H. Lee, “A programmable electrochemical biosensor
array in 0.18 µm standard CMOS,” in Proc. IEEE Int. Solid-State Circuits
Conf., San Francisco, CA, Feb. 2005, pp. 564–566.

[18] J. P. T. Higgins, R. Shinghal, H. Gill, J. H. Reese, M. Terris, R. J.
Cohen, M. Fero, J. R. Pollack, M. van de Rijn, and J. D. Brooks, “Gene
expression patterns in renal cell carcinoma assessed by complemen-
tary DNA microarray,” Amer. J. Pathol., vol. 162, no. 3, pp. 925–932,
Mar. 2003.

[19] S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato, and I. Hamachi,
“Semi-wet peptide/protein array using supramolecular hydrogel,” Nat.
Mater., vol. 3, no. 1, pp. 58–64, Jan. 2004.

[20] I. S. Kohane, A. T. Kho, and A. J. Butte, Microarrays for an Integrative
Genomics. Cambridge, MA: MIT Press, 2003.

[21] J. Liu, J. Yang, and W. Wang, “Biclustering in gene expression data by
tendency,” in Proc. Computational Systems Bioinformatics Conf. (CSB),
Stanford, CA, 2004, pp. 182–193.

[22] D. Lockhart, H. Dong, M. Byrne, M. Follettie, M. Gallo, M. Chee,
M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown,
“Expression monitoring by hybridization to high-density oligonucleotide
arrays,” Nat. Biotechnol., vol. 14, no. 13, pp. 1675–1680, Dec. 1996.

[23] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological
data analysis: A survey,” IEEE/ACM Trans. Comput. Biol. Bioinformatics,
vol. 1, no. 1, pp. 24–45, Jan.–Mar. 2004.

[24] C. D. Manning and H. Schütze, Foundations of Statistical Natural
Language Processing. Cambridge, MA: MIT Press, 1999.

[25] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design. Berlin, Germany: Springer-Verlag, 1998.

[26] S. Minato, “Zero-suppressed BDDs for set manipulation in combinatorial
problems,” in IEEE/ACM Design Automation Conf. (DAC), Dallas, TX.
New York: ACM Press, 1993, pp. 272–277.

[27] ——, Binary Decision Diagrams and Applications for VLSI CAD. Nor-
well, MA: Kluwer, 1996.

[28] S. Minato and H. Arimura, “Combinatorial item set analysis based on
zero-suppressed BDDs,” Hokkaido Univ., Sapporo, Japan, Tech. Rep.
TCS-TR-A-04-1, Dec. 2004.

[29] T. M. Murali and S. Kasif, “Extracting conserved gene expression motifs

YOON et al.: A PATTERN-MINING METHOD FOR HIGH-THROUGHPUT LAB-ON-A-CHIP DATA ANALYSIS 377

from gene expression data,” in Proc. Pacific Symp. Biocomputing, Kona,
HI, 2003, pp. 77–88.

[30] R. Peeters, “The maximum edge biclique problem is NP-complete,” Dis-
crete Appl. Math., vol. 131, no. 3, pp. 651–654, Sep. 2003.

[31] S. Raychaundhuri, P. D. Sutphin, J. T. Chang, and R. B. Altman, “Basic
microarray analysis: Grouping and feature reduction,” Trends Biotech.,
vol. 19, no. 5, pp. 189–193, May 2001.

[32] J. A. Rice, Mathematical Statistics and Data Analysis. Belmont, CA:
Duxbury Press, 1994.

[33] A. Y. Rubina, E. I. Dementieva, A. A. Stomakhin, E. L. Darii,
S. V. Pan’kov, V. E. Barsky, S. M. Ivanov, E. V. Konovalova, and
A. D. Mirzabekov, “Hydrogel-based protein microchips: Manufacturing,
properties, and applications,” Biotechniques, vol. 34, no. 5, pp. 1008–
1014, May 2003.

[34] T. Sasao and M. Fujita, Representations of Discrete Functions. Norwell,
MA: Kluwer, 1996.

[35] M. Schienle, C. Paulus, A. Frey, F. Hofmann, B. Holzapfl, P. Schindler-
Bauer, and R. Thewes, “A fully electronic DNA sensor with 128 positions
and in-pixel A/D conversion,” IEEE J. Solid-State Circuits, vol. 39, no. 12,
pp. 2438–2445, Dec. 2004.

[36] E. Scrivener, R. Barry, A. Platt, R. Calvert, G. Masih, P. Hextall,
M. Soloviev, and J. Terrett, “Peptidomics: A new approach to affinity
protein microarrays,” Proteomics, vol. 3, no. 2, pp. 122–128, Feb. 2003.

[37] I. S. Shergill, N. K. Shergill, M. Arya, and H. R. Patel, “Tissue micro-
arrays: A current medical research tool,” Curr. Med. Res. Opin., vol. 20,
no. 5, pp. 707–712, May 2004.

[38] A. Tanay, R. Sharan, and R. Shamir, “Discovering statistically significant
biclusters in gene expression data,” Bioinformatics, vol. 18, no. 90001,
pp. S136–S144, Jul. 2002.

[39] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church,
“Systematic determination of genetic network architecture,” Nat. Genet.,
vol. 22, no. 3, pp. 281–285, Jul. 1999.

[40] E. Verpoorte and N. F. de Rooij, “Microfluidics meets MEMS,” Proc.
IEEE, vol. 91, no. 6, pp. 930–953, Jun. 2003.

[41] C. C. Wang, R. P. Huang, M. Sommer, H. Lisoukov, R. Huang, Y. Lin,
T. Miller, and J. Burke, “Array-based multiplexed screening and quantita-
tion of human cytokines and chemokines,” J. Proteome Res., vol. 1, no. 4,
pp. 337–343, Jul./Aug. 2002.

[42] H. Wang, W. Wang, J. Yang, and P. S. Yu, “Clustering by pattern similarity
in large data sets,” in Proc. ACM SIGMOD Int. Conf. Management Data,
Madison, WI, 2002, pp. 394–405.

[43] C.-J. Wu, Y. Fu, T. M. Murali, and S. Kasif, “Gene expression module
discovery using Gibbs sampling,” Genome Inform., vol. 15, no. 1,
pp. 239–248, 2004.

[44] J. Yang, H. Wang, W. Wang, and P. Yu, “Enhanced biclustering on expres-
sion data,” in Proc. IEEE 3rd Symp. Bioinformatics and Bioengineering,
Washington, DC, 2003, pp. 321–327.

[45] S. Yoon, C. Nardini, L. Benini, and G. De Micheli, “An application
of zero-suppressed binary decision diagrams to clustering analysis of
DNA microarray data,” in Proc. 26th Annu. Int. Conf. IEEE EMBS,
San Francisco, CA, Sep. 2004, pp. 2925–2928.

[46] ——, “Enhanced pClustering and its applications to gene expression
data,” in Proc. IEEE 4th Symp. Bioinformatics and Bioengineering,
Taichung, Taiwan, May 2004, pp. 275–282.

Sungroh Yoon received the B.S. degree in elec-
trical engineering from Seoul National University,
Korea, in 1996 and the M.S. degree and Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 2002 and 2005, respectively.

He has research interests in computer-aided design
and analysis of high-throughput biochip systems and
machine-learning applications in computational biol-
ogy and bioinformatics.

Luca Benini (S’94–M’97–SM’04) received a Ph.D.
degree in electrical engineering from Stanford Uni-
versity, Stanford, CA in 1997.

He is an Associate Professor at the Department
of Electrical Engineering and Computer Science
(DEIS), University of Bologna, Bologna, Italy. His
research interests are in all aspects of computer-aided
design of digital circuits, with special emphasis on
low-power applications, and in the design of portable
systems. On these topics, he has published more than
250 papers in international journals and conferences

and three books.
Dr. Benini has been Program Chair and Vice-chair of the Design Automation

and Test in Europe Conference. He is a member of the Technical Program Com-
mittee and Organizing Committee of several technical conferences, including
the Design Automation Conference, International Symposium on Low Power
Design, and the Symposium on Hardware–Software Codesign.

Giovanni De Micheli (S’79–M’79–SM–89–F’94)
received the B.S. degree in nuclear engineering from
the Politecnico di Milano, Milan, Italy, in 1979, and
the M.S. and Ph.D. degrees in electrical engineering
and computer science from the University of Califor-
nia at Berkeley in 1980 and 1983, respectively.

He is a Professor and the Director of the Integrated
Systems Centre at EPF Lausanne, Switzerland, and
the President of the Scientific Committee of CSEM,
Neuchatel, Switzerland. Previously, he was a Pro-
fessor of Electrical Engineering at Stanford Univer-

sity. His research interests include several aspects of design technologies for
integrated systems on silicon, such as synthesis, hardware–software (hw/sw)
codesign, and low-power design, as well as systems on heterogeneous platforms
including electrical, optical, micromechanical, and biological components. He
is the author of Synthesis and Optimization of Digital Circuits (McGraw-
Hill, 1994), coauthor and/or coeditor of five other books and of over 300
technical articles. He is, or has been, a member of the Technical Advisory Board
of several companies, including Magma Design Automation, Coware, Aplus
Design Technologies, IROC, Ambit Design Systems, and STMicroelectronics.

Dr. De Micheli is the recipient of the 2003 IEEE Emanuel Piore Award for
contributions to computer-aided synthesis of digital systems. He is a fellow
of the Association for Computing Machinery (ACM). He received the Golden
Jubilee Medal for outstanding contributions to the IEEE Circuits and Systems
(CAS) Society in 2000. He received the 1987 D. Pederson Award for the
Best Paper on the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS, two Best Paper Awards at the Design
Automation Conference, in 1983 and in 1993, and a Best Paper Award at
the Design, Automation and Test in Europe (DATE) Conference in 2005. He
was President of the IEEE CAS Society in 2003. He was Editor-in-Chief of
the IEEE TRANSACTIONS ON COMPUTER AND DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS in 1987–2001. He was the Program Chair and
General Chair of the Design Automation Conference (DAC) in 1996–1997 and
2000, respectively. He was the Program and General Chair of the International
Conference on Computer Design (ICCD) in 1988 and 1989, respectively.

