Computer-aided evaluation of protein expression in pathological tissue images
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Abstract

This work presents the first fully-automated computer-
aided analysis approach to the quantification of the ex-
pression of receptors for the non-small cell lung carci-
noma. This immunohistochemical analysis is usually per-
formed by pathologists via visual inspection of tissue sam-
ples images. Our techniques streamlines this error-prone
and time-consuming process, thereby facilitating analysis
and diagnosis. Experimental results on several real-life
datasets demonstrate the high quantitative precision of our
approach.

1 Introduction

Direct monitoring the activity of proteins involved in the
genesis and development multi-factorial genetic patholo-
gies is a very useful diagnostic tool. It leads to classify
the pathology in a more accurate way, through its partic-
ular genetic alterations, and to create new opportunities for
early diagnosis as well as to provide information in future
strategies for therapy.

The EGFR/erb-B family of receptors plays an important
role for non-small cell lung carcinoma (NSCLC) develop-
ment. Quantifying and classifying the EGFR expression
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and activity in NSCLC with special regard to the assess-
ment of the prevalence of somatic EGFR mutations, as well
as to ligand-receptor interactions, could lead to new insights
into the modulation of EGFR in individual lung carcinomas.
Thus, it is important to extract these information by using
methodologies that give quantifiable, standardized and pre-
cise measurements [1].

An approach for monitoring and quantifying the activ-
ity of proteins is to analyze their localization and the in-
tensity of their activity in pathological tissues by using, for
example, images of the tissue where the localization of pro-
teins, as well as their ligands, is highlighted by fluorescent-
marked antibodies that can detect and link the target pro-
teins. The antibodies are marked with a particular stain.
The protein activity intensity is related to the intensity of
the stains. This procedure is called immunohistochemistry
(IHC). Figure 1.a shows an example of immunohistochem-
ical image of lung cancer tissue.

What is interesting to extract from these images is not a
specific coloured area, that is almost the standard procedure
with this kind of images [2][3]. Rather, the focus is cell by
cell localization of the coloured areas in particular cellular
regions (i.e. membranes or cytoplasm or nuclei). Similarly,
the quantification of the percentages of coloured areas at
the location of interest is important because it relates to the
activity of specific receptors. In other words, it is important
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to quantify if the proteins have or not a membrane activity
(or cytoplasm or nucleus one), how much of that membrane
is positive for the specific protein activity and, vice versa, if
it is not active.

This type of analysis aims at characterizing each patho-
logical cell, and in average the whole tissue, by performing
a standardized quantitative and qualitative measurement of
protein activations. Moreover, if this information is accu-
rate and objective it can be correlated with the genetic ex-
pression data on same immunohistochemical tissue in order
to better define a group of potential candidates to protein
family-inhibiting therapy.

In this paper we describe a fully-automated procedure
that provides standardized measures of protein activities,
and related ligands, involved in the development of a pathol-
ogy. This goal is reached i) by identifying different cellular
regions, ii) quantifying the percentage of active areas with
respect to each whole region, iii) classifying protein reac-
tions according to the specific region and iv) quantifying the
intensity of the protein activity. These analyses have tradi-
tionally been performed directly by pathologists in a very
subjective and time-consuming way. The major contribu-
tion of this research is to provide an automated, fast and
precise means for performing immunohistochemical image
analysis. To the best of our knowledge the methodology
presented in this paper is the first completely automated ap-
proach to this purpose.

Much previous work in biomedical image processing fo-
cused on automated methods for segmentation of nuclei and
cells [4][5][6][7]. Classical approaches, such as active con-
tours or watersheds, are not effective when the objects to
be identified lack specific geometrical features or gradient
variations. Unfortunately, these critical conditions are very
common in the images targeted by our work. For exam-
ple, the methods in [4][6] aim at detecting and segmenting
cells in the blood using specific active contours algorithms.
Both of these approaches are based on the evaluation of
gradient magnitude along cell boundary and shape-based
segmentation. Cancer tissue cells are characterized by not-
predictable variations in shape that lead to a non-trivial de-
termination of an effective approach based on shape-based
segmentation. Moreover, in immunohistochemical cancer
tissue images cells are not well separated and, in addition,
they are usually not characterized by variations gradient
magnitude.

To address these issues, we developed a novel deter-
ministic fully automated approach for the quantification of
protein activities and localization of molecular activities
in tissue images. We focused on lung cancer pathologies
where cells are characterized by unpredictable variations
in shape. This method help in estimating in a quantitative
way the modulation of specific protein families in individual
pathologies and, thus, to better define appropriate therapies.

Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)
0-7695-2517-1/06 $20.00 © 2006 IEEE

2 Method: Membranes detection and pa-
rameters extraction

Immunohistochemical lung cancer tissue images are
characterized by a blue stain as background colour and a
brown stain where a receptor of the EGFR family is de-
tected. We focus here on quantification of membrane recep-
tor activity. Cell membrane segmentation is a hard problem
because those membranes that are negative to the EGFR
family of receptors, are generally not visible. In other
words, they are not characterized by gradient magnitude
variation. It is also possible that a cell has only some parts
of its membrane positive to receptor activity.

The automated procedure is composed by several se-
quential steps, as outlined in the following subsections. In
this work, our description concentrates on the steps we cus-
tomized.

2.1 Virtual cell membrane detection

To reconstruct the cell membrane locations we first de-
tected nucleus membranes using standard morphological
segmentation approaches. For each nucleus, we detected
seeds applying noise filtering, colour filtering to detect nu-
cleus regions, artifacts removing, filling of connected com-
ponents and boundaries detection. These first steps lead
an approximate detection of nucleus boundaries. We used
these nucleus boundaries as initial curves for the final de-
tection of nucleus membranes. We completed the detection
of nucleus membranes by applying the active contour al-
gorithm presented on [8]. This algorithm was found very
useful for nucleus membranes detection. Further details on
seed detection and active contours are beyond the scope of
this paper because they are obtained and implemented using
standard approaches. The interested readers are directed to
[8] and [6].

After detecting nucleus membranes, we implemented a
procedure for virtual cell membrane detection. This is an
important step in our approach. In fact, to perform mem-
brane cell segmentation, we use virtual membranes as part
of final-detected cell membranes in those regions that are
negative to the EGFR family of receptors and that are as a
consequence not characterized by gradient magnitude vari-
ation. Virtual cell membranes are computed as set of con-
nected points equidistant from closest nucleus membranes.
Since our analysis concerns cells in tissues, the assump-
tion that cellular membranes are equidistant from closest
nucleus boundaries is reasonable as first order approxima-
tion.
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Figure 1. a: example of lung cancer tissue immunohistochemical image; b: example of membranes
detection, see big cell in the bottom-right part of the image

2.2 Color Filtering

To select the region that are positive to receptor acti-
vations, we filtered the image on Hue-Saturation-Intensity
(HSI) colour space. We chose the HSI space because the
stains we used are well defined in (HSI) space. In particular,
looking at several Hue histograms of the tissue images, we
noticed well-separated bi-modal value distributions. To sep-
arate the two distributions there are several standard thresh-
olding algorithms that can be successfully employed, such
as [9] [10] [11]. As expression of receptor activity we chose
brown pixels with hue components minor than a threshold
automatically computed by using Ridler thresholding as de-
tailed in [12].

2.3 Cellular membrane detection

The detection of cellular membranes is done in two steps.
Beforehand, we perform membrane segmentation in the
brown areas one cell at a time and we connect them with
the virtual cell membrane in those regions that are not char-
acterized by receptor reaction. To this purpose, we devel-
oped an ad-hoc procedure, as described later in this section.
The second step consists of a customized fitting procedure
of the detected membrane points to complete the cellular
membrane segmentation.

e Connecting reactive membranes with virtual ones:
Scanning procedure: To connect brown areas with the
virtual membrane in those regions where there was not
receptor reaction, the area across the virtual membrane
is dilated in order to be able to reach, if they exist,
brown regions of the cell. The level of dilation is an
input parameter and it depends on image resolution.
We set this value to 18 (pixels) for images with a res-
olution of about 3nm. Then, we scan the dilated area
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with a scan line having one end on the center of the
nucleus and the other one on the external border of di-
lated area.

At each step, the points of the membrane are computed
as weighted barycentre B of brown pixels among the
scan line, as shown in Equation 1

>_; 157
> ¢l

where j is the coordinate on the scan-line. This co-
ordinate is O on the virtual membrane, negative in the
inner part of the dilated area and positive in the outer
part. Jj is the value of the pixel jth and cj is a coefficient
for barycentre computation. The coefficient cj is 1 for
pixels on scan line negative coordinate while for posi-
tive coordinates the coefficient has a negative parabolic
trend as function of coordinate j. In this way, when a
brown region branches off, the scanning procedure is
forced to choose as points belonging to the membrane
those pixels that lie on the path closest to the nucleus.
Moreover, we assigned to pixels of the scan-line the
value of 1 if they belong or precede to the virtual mem-
brane pixels. This has been done when there are not
brown pixels in the scan-line, to choose as points be-
longing to membrane those pixels that are close to the
virtual membrane. Finally, we set to O the pixels that
are neither brown nor virtual membrane ones.

B = (1)

Fitting and complete membranes detection: To com-
plete the detection of cellular membranes, we imple-
mented an iterative fitting procedure in which outlier
pixels are deleted at each step. We defined outliers
pixels the pixels located far away from the fitting line
more than three-times the standard deviation. An ex-
ample of membrane detection is shown in Fig. 1.b
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2.4 Clinical parameter computation

We quantify the activity of membrane EGFR receptors
through the computation of percentage of active areas with
respect to each whole membrane region. Then, the final
parameter is the average value of all single-cell parameters
on the image.

3 Experimental Results

We tested the algorithm on three data sets. All of them
were real lung cancer tissue immunohistochemical images.
The three data sets present positive reactions at the EGF-
R receptor activation. These reactions are localized in the
cellular membranes. The three data sets differ because of
different levels of positivity intensity.

For each data set, we first localized each cellular mem-
brane in the image, as described in Sec. 2. Afterwards, we
computed for each cell the percentage of area characterized
by positive activation of receptor EGF-R with respect to the
whole cellular membrane surface. At the end, we computed
the final parameter as average value of all single-cell pa-
rameters on the image. This final parameter is the clinical
parameter that characterizes the percentage of receptors that
is active in the lung cancer tissue.

In order to evaluate the performance of our approach,
positive protein reaction parameters have also been com-
puted on membranes drawn manually by pathologists for
taking advantage of knowledge and skills of experts in that
field. Manual analysis has been performed on all the three
data sets. These manual measurements were thus com-
pared with the positive protein reaction parameters com-
puted through our fully automated approach.

Results are reported as follow. For each data set, we
compute the average error and the root mean square er-
ror (RMSE) incurred by our automated approach with re-
spect to manual-trace measurements. We then computed
the coefficient of correlation between each set of automated
results and the correspondent manual-trace measurements.
Finally, we performed a linear regression between auto-
mated manual-trace results to evaluate the level of confi-
dence of the regression coefficient through the Student t-
test.

We first evaluate the correlation between the automated
and the manual-trace measurements on the first immunohis-
tochemical lung cancer tissue image. Our analysis shows
that these two sets of measurements are highly correlated,
with a coefficient of correlation of 0.98. We then computed
a linear regression of automated measures on manual-trace
ones. We performed the Student t-test under the null hy-
pothesis on the regression coefficients in order to estimate
the confidence level of this regression. As a result, we re-
jected this hypothesis at significance level less than 1% ob-

taining a coefficient of the regression line of 0.96 with a re-
gion of acceptance of the hypothesis of the range -0.109 to
0.109. Thus, the two sets of measures are highly correlated
with a confidence level greater of 99%. Figure 2 shows re-
sults obtained for EGF-R protein activation measurements
on the first immunohistochemical lung cancer tissue image.
The figure shows the automated measurements versus the
manual-trace ones as well as the regression line.

Moreover, we computed the difference between auto-
mated and manual-trace measurements and we performed
the same Student t-test. We found that the difference be-
tween the two typologies of measurements is not signifi-
cant and the average of differences between automatic and
manual measurements is of 0.773%. Finally, the RMSE of
our automated measurements is 3.3% (with a confidence of
99%), as shown in the first row of Table 1. Table 1 shows,
in the first column, the computed percentage of receptor ac-
tivation in the lung cancer tissue. In this first data set that
percentage is 58.65%.

We performed the same analysis also on the second and
third data set of immunohistochemical lung cancer tissue
images. On the second data set, our analysis showed that au-
tomated and manual-trace measurements were highly corre-
lated with a coefficient of correlation of 0.97. Performing
the Student t-test under the null hypothesis on the regres-
sion coefficients we finally rejected this hypothesis at sig-
nificance level less than 1%. We obtained a coefficient of
the regression line of 0.85 with a region of acceptance of
the hypothesis of the range -0.11 to 0.11. Figure 3 shows
these results for EGF-R protein activation measurements on
the second immunohistochemical lung cancer tissue image.
By performing the Student t-test on the difference between
automated and manual-trace measurements we found that
the difference between this two typologies of measurement
is not significant. Moreover, the average of difference be-
tween automatic and manual measurements is of 0.25% and
the RMSE of our automated measurements is about 1.6%,
as shown in second row of the Table 1.

The percentage of receptors actives in this second lung
cancer tissue set is 95.89%. In this data set the EGF-R re-
ceptor is highly active in most of the cells on the tissue.
Looking at Figure 3, we notice that almost all the measure-
ments are clustered around a very high value while only
a few measures are slightly smaller. This leads to a very
little dispersion of the measures. At the same time, since
the significance is computed with respect to the dispersion,
lower values on the data set slightly affect the slope of the
regression line thus increasing the level of the significance
of the test. Nevertheless, also in this case, the automated
and manual-trace measurements are correlated with a con-
fidence level greater of 99%.

On the third data set, our analysis showed that the au-
tomated and the manual-trace measurements were again
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highly correlated with a coefficient of correlation of 0.976.
Performing the Student t-test under the null hypothesis on
the regression coefficients we finally rejected this hypoth-
esis at significance level less than 1% and we obtained a
coefficient of the regression line of 0.958 with a region of
acceptance of the hypothesis of the range -0.096 to 0.096.
Thus, the two sets of measures are correlated with a con-
fidence level greater of 99%. Figure 4 shows these results
for EGF-R protein activation measurements on the third im-
munohistochemical lung cancer tissue image. Moreover,
the Student t-test on the difference between automated and
manual-trace measurements showed that the difference be-
tween the two typologies of measurement is not significant
and that the average error is of 0.145%. Finally, the RMSE
of our automated measurements is about 2.65%, and the
percentage of receptors active in the third lung cancer tis-
sue set is 83.96%, as shown in the third row of Table 1.
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Figure 2. Results on the first data set: the
plot shows the automated procedure mea-
surements versus the manual-trace ones and
the regression line

Positive Mem Reaction(%) | Average Error (%) | RMSE (%)
58.65 -0.77 33
95.89 -0.25 1.58
83.96 -0.145 2.65

Table 1. Results on percentage computation
of receptor EGFR family activation on the
three tissue image experimental data sets:
first column shows the clinical parameter
while the other ones indicate the average er-
ror and the root mean square error incurred
by the automated procedure.
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Figure 3. Results on the second data set: the
plot shows the automated procedure mea-
surements versus the manual-trace ones and
the regression line
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Figure 4. Results on the third data set: the
plot shows the automated procedure mea-
surements versus the manual-trace ones and
the regression line

4 Conclusions

We presented a fully-automated computer-aided analysis
approach to the quantification of the expression of recep-
tors in carcinoma tissue images. This immunohistochem-
ical analysis is usually performed by pathologists via vi-
sual inspection of tissue samples images. Our techniques
streamlines this error-prone and time-consuming process,
thereby facilitating analysis and diagnosis. In particular,
our method leads to classify protein reactions according to
a specific cell region and to quantify the percentage and the
intensity of this protein activity. The effectiveness of the
proposed method has been tested using immunohistochem-
ical non-small cell lung carcinoma tissue images. Results
of comparison with manual-trace method on several real-
life datasets demonstrate the high quantitative precision of
our approach.
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As future work we want to correlate the clinical data
coming from lung cancer tissue images analysis with gene
expression data on same immunohistochemical tissue in or-
der to better define a group of potential candidates to protein
family-inhibiting therapy.
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